
Approximating Weighted Matchings in Parallel

Stefan Hougardy & Doratha E. Vinkemeier

Humboldt-Universität zu Berlin
Institut für Informatik

10099 Berlin, GERMANY
{hougardy,drake}@informatik.hu-berlin.de

revised Version

Abstract. We present an NC approximation algorithm for the
weighted matching problem in graphs with an approximation ratio
of (1 − ε). This improves the previously best approximation ratio of
(1

2
− ε) of an NC algorithm for this problem.

Keywords. approximation algorithms, parallel algorithms, analysis
of algorithms, graph algorithms, maximum weight matching

1 Introduction

The class NC is the class of all problems that are computable in polylogarith-
mic time with polynomially many processors. A major open problem in par-
allel algorithms is the question whether there exists an NC algorithm for the
maximum cardinality matching problem in graphs. There exist O(

√

|V ||E|)
sequential algorithms for this problem [9, 13], but no NC algorithm is known,
not even for the special case of bipartite graphs. Karp, Upfal and Wigder-
son [8] have shown that there exists an RNC algorithm for the maximum
cardinality matching problem. Mulmuley, Vazirani and Vazirani [10] pre-
sented another such algorithm with improved running time. Karloff [6] es-
tablished that the maximum cardinality matching problem belongs to ZNC.

1

This paper appeared in: Information Processing Letters, 99:3 (2006), 119-123

Fischer, Goldberg, Haglin and Plotkin [3] have shown that there exists an
NC-approximation scheme for the maximum cardinality matching problem.

In this paper we are interested in parallel algorithms for the weighted

matching problem, i.e., the problem of finding a matching of maximum
weight in an edge weighted graph. The maximum cardinality matching
problem is a special case of the weighted matching problem where all edges
have weight one. Therefore, there are also no NC algorithms known for
finding an optimal solution to the weighted matching problem. This problem
is also not known to belong to RNC. In the special case that the edge
weights are given in unary RNC algorithms are known [8, 10]. Uehara and
Chen [12] have shown that there exists an NC approximation algorithm for
the weighted matching problem that achieves an approximation ratio of 1

2−ε.
In this paper we improve this result by presenting a 1−ε NC approximation
algorithm for the weighted matching problem.

Our algorithm makes use of a combination of the ideas from the NC-
approximation scheme for the maximum cardinality matching problem due
to Fischer, Goldberg, Haglin and Plotkin [3], from the 1

2 − ε approximation
algorithm of Uehara and Chen [12], and from a recent linear time sequential
2
3 − ε approximation algorithm due to Drake and Hougardy [1, 2].

2 Preliminaries

A matching M in a graph G = (V,E) is a subset of the edges E of G such
that no two edges in M have a vertex in common. The maximum cardinality
matching problem is to find a matching of maximum cardinality in a graph.
Let G = (V,E) be a graph and w : E → R+ be a function which assigns a
positive weight to each of the edges of G. Then the weight w(F) of a subset
F ⊆ E of the edges of G is defined as w(F) :=

∑

e∈F w(e). The weighted
matching problem is to find a matching M in G that has maximum weight.

The model of computation used in this paper is the CREW PRAM
(concurrent reads exclusive writes parallel random access machine). In this
model there exists a sequence of indexed random access machines, each of
which knows its own index. The processors synchronously execute the same
central program, communicating with one another through a shared random
access memory. CREW means that several processors can concurrently read
a particular memory address but at most one processor can write to a single
memory address in each step. See [5, 7] for more background on parallel
algorithms.

The quality of an approximation algorithm for the weighted matching

2

This paper appeared in: Information Processing Letters, 99:3 (2006), 119-123

problem is measured by its so-called approximation ratio. An approximation
algorithm has an approximation ratio of c, if for all graphs it finds a matching
with a weight of at least c times the weight of an optimal solution.

3 The Ranked Augmentation Graph

The main idea of our algorithm is to start with some (possibly empty) match-
ing and to allow each processor to make some local changes of this matching
to improve its weight. The local changes made by different processors need
to be independent of each other. To achieve this we construct from the given
graph a new graph which we call the augmentation graph. In this augmen-
tation graph an independent set of vertices corresponds to a set of pairwise
independent local changes of the matching in the given graph. As we aim
to increase the weight of a given matching by a set of local changes by as
much as possible, we will rank all possible local changes for a given match-
ing. This means that we partition the set of all possible local changes of a
matching into classes such that the local changes within each class achieve
a similar increase in weight. Instead of computing an independent set in
the augmentation graph the idea is to compute an independent set in each
of the classes of the partition. The augmentation graph together with the
ranking of its vertices will be called the ranked augmentation graph. We
are going to describe the construction of this graph in more detail in the
following.

Given a graph G = (V,E) and a matching M ⊆ E let an augmentation

with respect to the matching M be any matching S ⊂ E\M . If the matching
M is known from the context we will simply say that S is an augmentation.
Let M(S) denote all edges in M that have a vertex in common with an
edge in S. Then (M \ M(S)) ∪ S is again a matching. We say that (M \
M(S)) ∪ S is the matching that is obtained by augmenting M by S. If S is
an augmentation with respect to M then the gain of augmenting M by S
is defined as gainM (S) = w(S) − w(M(S)). Thus the gain is the difference
of weight between the matching M and the matching (M \M(S))∪S. Our
definition allows augmentations that have negative gain, but our algorithm
will only consider augmentations that have positive gain, i.e., that increase
the weight of the matching M .

The size of an augmentation S is simply the number of edges contained
in S. Let G = (V,E) be a graph, M ⊆ E be a matching and l > 0 be
an integer. Then the augmentation graph G′ = G′(G,M, l) is defined as
follows. The vertices of G′ are all augmentations with respect to M of size

3

This paper appeared in: Information Processing Letters, 99:3 (2006), 119-123

at most l. Two such vertices are connected by an edge if the corresponding
augmentations have at least one vertex of G in common.

All augmentations which are vertices of G′ will be ranked according to
their gains as follows (this is very similar to the ranking of the edges that
Uehara and Chen [12] used in their algorithm). First find the augmentation
of V (G′) with the largest gain denoted by gainmax. For each vertex S in
V (G′) we define its rank r(S) as follows (n denotes the number of vertices
in G)

• If gain(S) ≤ gainmax

l·n then r(S) = 0

• Otherwise r(s) = i > 0 where i is the smallest integer for which it is
true that gain(S) ≤ 2i · gainmax

l·n .

This definition implies that for constant l the rank of an augmentation is an
integer of size O(log n).

We call the augmentation graph G′ together with the ranking of its ver-
tices the ranked augmentation graph of G. This graph can be computed
using O(n4l) processors and O(log n) time as follows. Use O(n2l) processors
to generate all possible augmenting sets S of size at most l. For each such
set the assigned processor can check in constant time whether it is a match-
ing. Next remove all sets that do not form a matching. This is possible
in O(log n) time using list compression methods (see for example [5]). Now
we have generated all vertices of G′. Assign one processor to each of the
O(n4l) pairs of vertices to check in constant time whether the corresponding
augmenting sets intersect.

4 The Algorithm

Our algorithm for computing a 1 − ε approximation of a maximum weight
matching starts with the empty matching and makes c calls to the algorithm
ImproveMatching for some constant c which depends only on ε. The algo-
rithm ImproveMatching is shown in Figure 1. This algorithm takes as input
a weighted graph G and a matching M and returns a new matching M ′. It
starts by calculating out of G and M the ranked augmentation graph G′ as
described in Section 3. Within the graph G′ a maximal independent set is
calculated in the following way. Let Vi be the vertices of G′ that have rank
i. Then starting from the highest rank a maximal independent set ALGi is
calculated in the subgraph of G′ that is induced by the vertices of Vi which
have not yet been removed from G′. All neighbors of vertices of ALGi are

4

This paper appeared in: Information Processing Letters, 99:3 (2006), 119-123

ImproveMatching: G = (V, E), w : E → R+, matching M
Output: matching M ′

1 ALG = ∅
2 calculate the ranked augmentation graph G′

3 for i = rankmax downto 1 do

4 calculate a maximal independent set ALGi in the graph G′

i
:= (V ′

i
, E′

i
)

that is induced by all vertices still in G′ that have rank i
5 remove all vertices from G′ that have neighbors in ALGi

6 ALG = ALG ∪ ALGi

7 M ′ = M augmented by all augmentations in ALG

Figure 1: An NC algorithm for improving the weight of a matching M .

removed to ensure that the union of all sets ALGi is an independent set of
G′. The process considers all vertices from the highest rank down to those of
rank 1. Vertices of rank 0 are thrown away. The set ALG is the union of all
the sets ALGi and is by construction a maximal independent set in G′ \ V0.
ALG is used as an augmenting set for M to obtain the new matching M ′

which is returned by the algorithm ImproveMatching.

5 The Analysis of the Algorithm ImproveMatching

For the analysis of the algorithm ImproveMatching we will define a multiset
OPT of vertices of G′. The idea of the set OPT is that it can be seen as
a fractional covering of augmentations that all together yield a maximum
weight matching in G. Let M ∗ be a maximum weight matching in G. Con-
sider the symmetric difference of M and M ∗. This consists of alternating
paths and cycles. Let C denote a cycle or path in this symmetric difference
and let C∗ denote the edges C ∩M ∗. If |C∗| ≤ l then put the augmentation
C∗ (vertex of G′) in OPT with multiplicity l. If |C∗| > l (is long) then there
are two cases: either C is a cycle or C is a path. If C is a long cycle then
for each edge e of C∗ add to OPT the augmentation that begins with e and
includes the next l − 1 edges of C∗ as they occur consecutively in C. This
way there are |C∗| different augmenting sets defined over C each containing
l edges of M ∗. If C is a long path then consider the edges of C∗ to be
consecutively indexed from 1 to p := |C∗| and use wrap around so that the
lowest index edge e1 follows the highest indexed edge ep as for a long cycle
and add to OPT the same augmenting sets for C as for a long cycle.

By definition of OPT the edges of M ∗ \ M are contained in at least l
augmentations from OPT . Moreover, for each edge of M \ M ∗ there exist

5

This paper appeared in: Information Processing Letters, 99:3 (2006), 119-123

at most l + 1 augmentations S ∈ OPT such that the edge is contained in
M(S). Therefore we have:

∑

S∈OPT

gain(S) ≥ l · w(M ∗) − (l + 1) · w(M) (1)

According to how we defined the multiset OPT the number of augmentations
in OPT is bounded by l ·n. Vertices in V0 have rank 0 and the corresponding
augmentations a gain of at most gainmax

l·n . Therefore we get:

∑

S∈OPT∩V0

gain(S) ≤ l · n · gainmax

l · n ≤ w(M∗) − w(M). (2)

We are now able to prove the main statement about the weight of the
matching M ′ that is returned by the algorithm ImproveMatching.

Theorem 1 If the algorithm ImproveMatching gets a matching M as input

then it returns a matching M ′ such that

w(M ′) ≥ w(M) +
1

4l
·
(

l − 1

l
· w(M∗) − w(M)

)

.

Proof. The algorithm ImproveMatching computes a maximal independent
set in the graph G′ \ V0 which consists of maximal independent sets in
the graphs G′

i. Therefore it must be the case that for every augmentation
S in OPT \ V0 there exists an augmentation A in ALG with gain(S) ≤
2 · gain(A) and A and S are connected by an edge in G′. This means
that the augmentations A and S must have a vertex v in G in common
and we assign S to one such vertex v. By definition of the set OPT each
vertex of G is contained in at most l augmentations and therefore at most
l augmentations can be assigned to it. Each augmentation of ALG has at
most 2l vertices. Therefore it follows that

gain(ALG) ≥ 1

2

1

2l2

∑

S∈OPT\V0

gain(S) . (3)

For the sum appearing at the right hand side of (3) we get the following
inequality by using (1) and (2):

∑

S∈OPT\V0

gain(S) =
∑

S∈OPT

gain(S) −
∑

S∈OPT∩V0

gain(S)

≥ l · w(M ∗) − (l + 1) · w(M) − (w(M ∗) − w(M))

= (l − 1) · w(M ∗) − l · w(M) (4)

6

This paper appeared in: Information Processing Letters, 99:3 (2006), 119-123

Now combining (3) and (4) we get

gain(ALG) ≥ 1

2
· 1

2l2
· l ·
(

l − 1

l
· w(M∗) − w(M)

)

=
1

4l
·
(

l − 1

l
· w(M∗) − w(M)

)

As we have w(M ′) = w(M) + gain(ALG) this proves the result. �

The following result now shows that we get an NC algorithm that finds
a matching of weight at least (1− ε) ·w(M ∗) by making a constant number
of calls to the algorithm ImproveMatching.

Theorem 2 For every ε > 0 there exists an NC algorithm that finds in a

weighted graph a matching of weight at least (1 − ε) · w(M ∗).

Proof. Let M0 be the empty matching and Mi+1 be the matching that is
obtained from Mi by applying the algorithm ImproveMatching. By The-
orem 1 we have w(Mi+1) ≥ wi+1 · w(M∗) where wi+1 is defined by the
following recurrence

wi+1 = wi +
1

4l
·
(

l − 1

l
− wi

)

, and w0 = 0 .

By solving this linear recurrence equation (see for example [11]) we get

w(Mi) ≥ l − 1

l
·
(

1 −
(

1 − 1

4l

)i
)

· w(M∗) .

Now by setting for example l = 2
ε we get

w(Mi) ≥
(

1 − ε

2

)

·
(

1 −
(

1 − ε

8

)i
)

· w(M∗) .

which immediately shows that if i is larger than some constant c (which is
bounded by O(1/ε)) we have

w(Mc) ≥ (1 − ε) · w(M ∗) .

The algorithm ImproveMatching is called a constant number of times.
Within one call the ranked augmentation graph G′ can be calculated in
O(log n) time using O(n4l) processors as shown in Section 3. The while-
loop is executed O(log n) times. In each iteration a maximal independent

7

This paper appeared in: Information Processing Letters, 99:3 (2006), 119-123

set needs to be computed in a graph with at most n2l vertices. The algorithm
of Goldberg and Spencer [4] allows to compute such an independent set in
O(log4 n) time using O(n4l) processors. Lines 5 and 6 of the algorithm
ImproveMatching can obviously be executed in O(log n) time using O(n2l)
processors. In total our algorithm needs O(n8/ε) processors using O(1

ε log5 n)
time.

�

6 Conclusion

Our algorithm needs nO(1

ε
) processors. This is the same amount of processors

that is needed in the 1 − ε NC-approximation algorithm for the unweighted
case [3]. The dependence on ε can be improved by defining the ranking of
the vertices suitably depending on ε. However, this makes the analysis much
more complicated so we did not do it in this paper.

References

[1] D.E. Drake, S. Hougardy, Improved linear time approximation algorithms
for weighted matchings, In: Approximation, Randomization, and Combinato-
rial Optimization, (Approx/Random) 2003, S.Arora, K.Jansen, J.D.P.Rolim,
A.Sahai (Eds.), LNCS 2764, Springer 2003, 14–23.

[2] D.E. Drake, S. Hougardy, A linear time approximation algorithm for weighted
matchings in graphs, ACM Transactions on Algorithms 1 (2005).

[3] T. Fischer, A.V. Goldberg, D.J. Haglin, S. Plotkin, Approximating matchings
in parallel, Information Processing Letters 46 (1993), 115–118.

[4] M. Goldberg, T. Spencer, A new parallel algorithm for the maximal indepen-
dent set problem, SIAM Journal on Computing 18:2 (1989), 419–427.

[5] J. Jájá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading,
Massachusetts 1992.

[6] H.J. Karloff, A Las Vegas RNC algorithm for maximum matching, Combina-
torica 6:4 (1986), 387–391.

[7] M. Karpinski, W. Rytter, Fast Parallel Algorithms for Graph Matching Prob-
lems, Clarendon Press, Oxford 1998.

[8] R.M. Karp, E. Upfal, A. Wigderson, Constructing a Perfect Matching is in
Random NC, Combinatorica 6:1 (1986), 35–48.

[9] S. Micali and V.V. Vazirani, An O(
√

V E) Algorithm for Finding Maximum
Matching in General Graphs, Proc. 21st Annual IEEE Symposium on Foun-
dations of Computer Science (1980) 17–27.

8

This paper appeared in: Information Processing Letters, 99:3 (2006), 119-123

[10] K. Mulmuley, U.V. Vazirani, V.V. Vazirani, Matching is as easy as matrix
inversion, Combinatorica 7:1 (1987), 105–113.

[11] P.W. Purdom, C.A. Brown, The Analysis of Algorithms, Holt, Rinehart and
Winston, New York, 1985.

[12] R. Uehara, Z.-Z. Chen, Parallel approximation algorithms for maximum
weighted matching in general graphs, Information Processing Letters 76:1-2
(2000), 13–17.

[13] V.V. Vazirani, A Theory of Alternating Paths and Blossoms for Proving Cor-
rectness of the O(

√
V E) General Graph Maximum Matching Algorithm, Com-

binatorica 14:1 (1994), 71–109.

9

This paper appeared in: Information Processing Letters, 99:3 (2006), 119-123

