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1 Introduction

One of the most important outstanding open problems in algorithmic graph theory
is to determine the complexity of recognizing perfect graphs. Results of Lovász [33],
Padberg [37] and Bland et al. [6] imply, as was first observed by Cameron [10] in 1982,
that the problem of recognizing perfect graphs is in co-NP. So far it is not known
whether this problem also belongs to NP, i.e., we do not know of any reasonable way
to certify the perfection of an arbitrary graph.

One weak form of such a certificate is obtained via the Perfect Graph Theorem:
to prove the perfection of a graph it is enough to show that its complement is perfect.
In attempting to generalize this kind of certificate, Chvátal [11] invented in 1984 the
notion of P4-structure. For a given graph G = (V,E), its P4-structure is defined
as the 4-uniform hypergraph on V (G) whose edges are all the 4-element sets that
induce a P4 (i.e., a path on four vertices) in G.

Chvátal [11] conjectured that the perfection of a graph depends solely on its P4-
structure. He was led to this conjecture by observing that odd cycles and their com-
plements have unique P4-structure, i.e., any graph whose P4-structure is isomorphic
(as a hypergraph) to the P4-structure of an odd cycle is an odd cycle or its comple-
ment. Therefore the truth of the Strong Perfect Graph Conjecture would imply his
conjecture. Moreover, as the P4 is a self-complementary graph, the P4-structure of
a graph and its complement are isomorphic. This shows that Chvátal’s conjecture
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implies the Perfect Graph Theorem. Chvátal therefore suggested his conjecture be
called the Semi Strong Perfect Graph Conjecture. In 1987, Reed [40] proved the
conjecture and so it is now known as the Semi Strong Perfect Graph Theorem.

Meanwhile we have a fairly good knowledge of the P4-structure of perfect and
minimally imperfect graphs. It turns out that P4-structure seems not to be powerful
enough to get an NP-characterization for perfect graphs. Nevertheless the notion
of P4-structure has turned out to be a fruitful concept leading to many interesting
structural and algorithmic results, not only in the area of perfect graphs.

In Section 2 we introduce the notion of P4-structure and P4-isomorphism and
discuss the problem of recognizing the P4-structures of graphs which is the central
problem in this area. Section 3 introduces the notions of modules and homogeneous
sets and their counterparts in hypergraphs called h-sets. The powerful tools of mod-
ular and homogeneous decompositions allow the efficient solution of the recognition
problem and some optimization problems for several classes of graphs. Moreover,
they suggest a technique for solving the P4-structure recognition problem and in-
dicate why the P4-structures of split graphs are of special interest in this context.
Section 4 discusses the Semi Strong Perfect Graph Theorem, its consequences for
the problem of recognizing perfect graphs, and its connection to the problem of
recognizing the P4-structures of graphs. In Section 5 we study graphs that have
unique respectively strongly unique P4-structure. Based on the results in this sec-
tion a polynomial time algorithm to recognize P4-structures of graphs is outlined in
Section 6. Also a survey on the recognition of the P4-structure of special classes of
(perfect) graphs is given in this section. Section 7 surveys results on the P4-structure
of minimally imperfect graphs. Section 8 contains some extensions of the notion of
P4-structure and Section 9 shows that several results proven for P4-structure also
hold for P3-structure.

2 P4-Structure: Basics, Isomorphisms and Recognition

The P4-structure of a graph G = (V,E) is a 4-uniform hypergraph on V (G) whose
hyperedges are all sets on four vertices that induce a P4 (a path on four vertices) in
G. Figure 1 shows an example of a graph and its P4-structure. Note that the P4-
structure of a graph contains only the information which vertices in the graph induce
a P4, but no information how these four vertices are connected to induce the P4. If
for a 4-uniform hypergraph H there exists a graph G such that H is the P4-structure
of G, then we call G a realization of H. We say that a hypergraph H has a unique
realization, if it has exactly one realization or if it has exactly two realizations which
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are complements of each other.
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Figure 1: A graph and its P4-structure.

Two graphs are said to have the same P4-structure if their P4-structures are
isomorphic (as hypergraphs). To test whether two given graphs G and H have the
same P4-structure it is not necessary to first compute their P4-structure and then to
decide whether these two hypergraphs are isomorphic. As an immediate consequence
from the definition of P4-structure the following proposition shows a simpler way to
check whether two graphs have the same P4-structure.

Proposition 1 Two graphs G and H have the same P4-structure if there exists a
bijection ϕ : V (G) → V (H) such that four vertices {a, b, c, d} induce a P4 in G if
and only if {ϕ(a), ϕ(b), ϕ(c), ϕ(d)} induces a P4 in H. ut

The bijection ϕ used in Proposition 1 is called a P4-isomorphism between G and
H. Figure 2 shows an example of four different graphs that all have the same P4-
structure. It is easily verified that four vertices induce a P4 in one of these graphs
if and only if the four vertices with the same labels induce a P4 in the other three
graphs.

Clearly, the relation ”having the same P4-structure” defines an equivalence rela-
tion on the set of all graphs. The equivalence classes defined this way are called the
P4-isomorphism classes. The question arises, how difficult it is to decide whether
two graphs belong to the same P4-isomorphism class, i.e., what is the complexity of
the following decision problem:
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Figure 2: Example of graphs having the same P4-structure.

PROBLEM P4-Isomorphism

Input: Two graphs G and H
Question: Do G and H have the same P4-structure ?

This problem is closely related to the problem GraphIsomorphism, i.e., the
problem of deciding whether two given graphs are isomorphic. This problem is one
of the most studied problems that has neither been shown to be in P, nor been
shown to be NP-complete. See [39], [22] and [31] for more background on the graph
isomorphism problem and [7], [42] for arguments why it is unlikely that GraphIso-
morphism is an NP-complete problem.

Reed [41] provided a simple reduction that shows that the problem P4-Isomorphism
is polynomial time equivalent to GraphIsomorphism, i.e., a polynomial time algo-
rithm for one of the two problems would also yield a polynomial time algorithm for
the other problem.

Lemma 1 (Reed 1986 [41])
P4-Isomorphism is polynomial time equivalent to GraphIsomorphism.

Sketch of proof: To transform an instance of P4-Isomorphism into an instance
of GraphIsomorphism construct for a given graph G a bipartite graph as follows:
vertices of the new graph are all vertices of G together with all induced P4’s of G
and two additional vertices x and y. Now connect in the new graph each vertex of G
with all P4’s that contain this vertex and connect all P4’s with x and add the edge
xy. It is easily seen that two graphs are P4-isomorphic if and only if the bipartite
graphs constructed this way are isomorphic as graphs.

To transform an instance of GraphIsomorphism into an instance of P4-Isomorphism
it is enough to add for every edge in a given graph two cycles of length at least |G|+1
that are identified in the edge of the graph. The correctness of this transformation
follows from Lemma 4. ut
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One of the central algorithmic questions concerning P4-structure is whether one
can efficiently decide for a given 4-uniform hypergraph whether there exists a graph
that has this hypergraph as its P4-structure.

PROBLEM P4-StructureRecognition

Input: A 4-uniform hypergraph H
Question: Is there a graph having H as its P4-structure ?

The problem P4-StructureRecognition and its solution will be studied in
more detail in Section 3 and Section 6. Its connection with the problem of recognizing
perfect graphs is discussed in Section 4.

3 Modules, h-Sets, Split Graphs and Unique P4-Structure

For many P4-structures H, we can efficiently find, not just one realization of H but
all of its realizations. Indeed, as we shall see, it is the fact that we can often solve
this more difficult problem which allows us to obtain a recursive algorithm to solve
P4-StructureRecognition. We cannot hope to solve this problem efficiently for
all P4-structures as some P4-structures have exponentially many realizations. One
important part of our approach is to analyze the structure of P4-structures with many
realizations. We shall be particularly interested in characterizing graphs with unique
P4-structures. We begin our discussion in this section by studying the relationship
between unique P4-structures and modules.

A module M in a graph G is a set of vertices such that no vertex outside M
can distinguish between the vertices in M , i.e., every vertex outside of M is either
adjacent to all or no vertices in M . A module is called trivial if it contains only one
or all vertices of G. A nontrivial module is called a homogeneous set. See Figure 3
for two examples of homogeneous sets. A graph without a homogeneous set is called
prime.

Figure 3: Graphs with homogeneous set (bold vertices).
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There exists a close relationship between the modules of a graph and its P4-
structure because no P4 contains a non-trivial module. Thus, a P4 intersects a
module in 0,1, or 4 vertices. More strongly we have the following:

Key Fact: For any module M , every P4 is either contained in M , disjoint from M ,
or has exactly one vertex in M . Furthermore, if some P4 P intersects a module M
in exactly one vertex x then P − x + y is a P4 for every vertex y in M .

This is the easy direction of a classical result of Seinsche concerning graphs whose
P4-structures have no edges, the so-called P4-free graphs.

Lemma 2 (Seinsche 1986 [43])
A graph is P4-free if and only if every induced subgraph with at least three vertices
contains a homogeneous set. ut

Our Key Fact also has implications concerning the uniqueness of non-empty P4-
structures. The graph G2 in Figure 4 is obtained from the graph G1 by replacing the
subgraph induced by the vertices of M by its complement. We note that these two
graphs have the same P4-structure. In fact any two graphs one of which is obtained
from the other by replacing the graph induced by a module by its complement will
have the same P4-structure. In general, these two graphs will not be isomorphic and
therefore neither will have unique P4-structure (there are exceptions – see Figure 8).
It is this fact which motivates our study of modules.
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Figure 4: Replacing a module M by its complement.

The following result, which can be found in Chapter **** of this book, is the
foundation on which the study of modules is built:

Theorem 1 (Modular Decomposition Theorem, Gallai 1967 [21])
For any graph G = (V,E) with at least two vertices precisely one of the following
conditions holds:

(i) G is disconnected
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(ii) G is disconnected

(iii) There exists some Y ⊆ V, |Y | ≥ 4 and a unique partition V1, V2, . . . of V such
that Y induces a maximal prime subgraph in G and every Vi is a module with
|Vi ∩ Y | = 1.

A modular decomposition of any graph can be built up by recursively applying
this theorem. See Figure 5 for an example of a modular decomposition tree. For-
mally, the modular decomposition of G is a tree-representation of all the (possibly
exponentially many) modules of G that requires only linear space. (It is the transi-
tive reduction of the containment relation on the set of all modules which is unique
up to tree isomorphisms.)
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Figure 5: The modular decomposition tree of a graph G. The nontrivial modules in
this graph are the sets {1, 2, 3}, {1, 3}, {4, 5} and {6, 7}. The labels at the internal
nodes of the decomposition tree indicate which operation of the Modular Decompo-
sition Theorem was applied.

The idea of modular decomposition goes back to Gallai [21] and is also known
as substitution decomposition [35], prime tree decomposition [20] and X-join decom-
position [23] and has been extended to more general combinatorial objects.

The knowledge of the modular decomposition of a graph allows in several cases
the efficient solution of optimization problems or the recognition problem for the
underlying class of graphs (see for example [45]). It is therefore desirable to have
very efficient algorithms to compute modular decompositions of graphs. In case of
P4-free graphs a linear time algorithm to compute the modular decomposition was
given by Corneil, Perl and Stewart in 1985 [15]. Recently McConnell and Spinrad [34]
found such an algorithm for general graphs. Their algorithm also implies a linear
time recognition method for comparability graphs. Another linear time algorithm
to compute the modular decomposition of graphs was presented by Cournier and
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Habib [16]. Their algorithm is applicable to directed and undirected graphs. Effi-
cient parallel algorithms and related algorithmic results for computing the modular
decomposition can be found in [17] [18] [32].

The close relationship between modules and P4’s discussed above motivates our
definition of an analogous notion for P4-structures. A nontrivial subset S of the
vertices of a 4-uniform hypergraph H is called an h-set, if every hyperedge in H
intersects S in 0, 1 or 4 vertices. Furthermore, if a hyperedge h intersects S in
exactly one vertex x then h− x + y is a hyperedge in H for every y in S. Obviously,
if a graph contains a homogeneous set, then its P4-structure contains an h-set. The
converse is not necessarily true as shown by an example in Figure 6. Both graphs
shown in this figure have the same P4-structure which contains an h-set, but only
the graph depicted on the right contains a homogeneous set.

Figure 6: Two graphs with h-sets in the P4-structure.

The graph that is obtained from a given graph by shrinking all maximal ho-
mogeneous sets into a single vertex is called its characteristic graph. Similarly, the
hypergraph obtained by shrinking all maximal h-sets is called the characteristic hy-
pergraph. Given a vertex x in a graph G1 and some other graph G2 one can substitute
x by G2 which means the following: Form the disjoint union of G1 − x and G2 and
connect every vertex of G2 with all neighbors of x in G1. Clearly, in this new graph
the graph G2 is a module. The following key result is an immediate consequence
from the definition of h-sets and our Key Fact:

Proposition 2 Let S be an h-set in a 4-uniform hypergraph H. Let x be a vertex
of S. Suppose G1 is a realization of the subhypergraph induced by H − (S − x) and
G2 is a realization of the subhypergraph induced by S. Then substituting G2 for x in
G1 yields a realization of G. ut

The above remarks suggest that we should be particularly interested in hyper-
graphs which contain no h-sets. We call such hypergraphs prime.

An h-set in a 4-uniform hypergraph H can easily be found in polynomial time by
making use of the following algorithm [26]:
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ALGORITHM Find h-Set (a, b)

Input: A 4-uniform hypergraph H and two vertices a and b
Output: An h-set containing a and b if exists.

S := {a, b}
while ∃f ∈ E(H) with |S ∩ f | ∈ {2, 3} or

S ∩ f = {s} and ∃x ∈ S s. t. f − s + x 6∈ E(H) do
add f to S

if S 6= V (H) then output S
else no h-set in H contains a and b

Now, we can apply the algorithm above to determine if H has an h-set and if
so apply Proposition 2 to reduce our problem to two subproblems. Repeating this
process allows us to restrict our attention to prime hypergraphs.

Unfortunately, there are also prime hypergraphs which do not have unique real-
izations. For one example, see Figure 7. The graphs in Figure 7 are split graphs,
that is the vertices can be partitioned into two sets such that one of the two sets
induces a clique and the other a stable set. Note that this implies that every P4 has
its endpoints in the stable set and its midpoints in the clique. It follows easily that
replacing the clique by a stable set and the stable set by a clique yields a new split
graph with the same P4-structure. The next decomposition allows us to handle this
and similar situations.
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Figure 7: Two prime graphs with the same P4-structure which are not complements
of each other.

The modular decomposition has been extended by Jamison and Olariu [30] to the
so called homogeneous decomposition. It gives a refined decomposition of graphs by
permitting the decomposition of graphs that are prime with respect to the modular
decomposition. As with the modular decomposition, the homogeneous decomposition
of a graph can be computed in linear time [5] and is therefore the basis for several
efficient optimization algorithms, see [4] for a survey of results of this type.
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The basis for homogeneous decomposition is the notion of p-connectedness. A
graph is called p-connected, if for every partition of its vertex set into two nonempty
disjoint sets, there exists a P4 in the graph that intersects both sets. A maximal p-
connected subgraph is called a p-component. A p-connected graph is called separable
if its vertex set can be partitioned into two nonempty sets such that each P4 that
is not completely contained in one of the two sets has its endpoints in one set and
its midpoints in the other set. The foundation of the homogeneous decomposition of
graphs is given by the following structure theorem:

Theorem 2 (Primeval Decomposition Theorem, Jamison and Olariu 1995 [30])

For any graph G = (V,E) precisely one of the following conditions holds:

(i) G is disconnected

(ii) G is disconnected

(iii) G is p-connected

(iv) There is a unique proper separable p-component H of G with a partition (H1,H2)
such that every vertex outside H is adjacent to all vertices in H1 and misses
all vertices in H2.

By recursively applying the Primeval Decomposition Theorem one gets the so
called primeval decomposition tree of a graph. The homogeneous decomposition of
a graph is obtained by using two more decomposition operations: one operation
that allows substituting vertices by homogeneous sets and another one that gives
a clique representation for split graphs. Of special interest in this context is the
following result of Jamison and Olariu that shows the significance of split graphs for
the problem P4-StructureRecognition:

Lemma 3 (Jamison, Olariu 1995 [30])
A p-connected graph is separable if and only if its characteristic graph induces a split
graph. ut

4 The Semi Strong Perfect Graph Theorem and Certi-

fying Perfection

The Perfect Graph Theorem induces an equivalence relation on the set of all graphs
by putting two graphs into the same equivalence class, if they are complements of
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each other. The statement of the Perfect Graph Theorem then simply is that if
we partition the set of all graphs into perfect and imperfect graphs, then any such
equivalence class will completely belong to one side of the partition. As the P4 is a
selfcomplementary graph, this implies that the P4-isomorphism classes extend these
equivalence classes. Chvátal [11] conjectured that the P4-isomorphism classes also
have the property that their members are either all perfect or all are imperfect.
This conjecture was called the Semi Strong Perfect Graph Conjecture. Chvátal was
led to this conjecture by observing that odd cycles of length at least five and their
complements have unique P4-structure, i.e., the P4-isomorphism class of these graphs
contain only the graph and its complement. Hayward then observed [24] that the
same also holds for long enough even cycles, so we have:

Lemma 4 (Chvátal 1984 [11], Hayward 1983 [24])
Odd cycles of length at least five and even cycles of length at least 8 have unique
P4-structure. ut

Note that the C6 does not have unique P4-structure as all graphs in Figure 2 have
the P4-structure of a C6.

The Strong Perfect Graph Conjecture together with Lemma 4 implies the truth
of the Semi Strong Perfect Graph Conjecture. On the other hand the Perfect Graph
Theorem is implied by the Semi Strong Perfect Graph Conjecture, which explains
why it was given this name.

The Semi Strong Perfect Graph Conjecture first has been proved for the special
cases of bipartite graphs [14] and triangulated graphs [24] until in 1987 Reed gave a
proof for the conjecture in general which was from then on called the Semi Strong
Perfect Graph Theorem.

Theorem 3 (The Semi Strong Perfect Graph Theorem, Reed 1987 [40])
A graph is perfect if and only if it has the P4-structure of a perfect graph. ut

This result shows that for solving the recognition problem for perfect graphs, i.e.
the problem

PROBLEM PerfectGraphRecognition

Input: A graph G
Question: Is G perfect ?

it suffices to be able to identify P4-structures that belong to perfect graphs. This
problem is called PerfectP4-StructureRecognition:
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PROBLEM PerfectP4-StructureRecognition

Input: A 4-uniform hypergraph H
Question: Is there a perfect graph having H as its P4-structure ?

Chvátal[13] asked whether there exists a polynomial time algorithm for the prob-
lem PerfectP4-StructureRecognition. Clearly, such an algorithm would yield
a polynomial time algorithm for the problem of recognizing perfect graphs. Therefore,
Chvátal also asked for a simpler problem, namely the recognition of P4-structures
for special classes of (perfect) graphs. Such a result could lead to an NP characteri-
zation of perfect graphs as follows. To certify the perfection of a given graph G it is
enough to present a graph H for which its perfectness is easily verified and that has
the same P4-structure as G. The question of course arises whether such a graph H
always exists. There are many classes of graphs for which we know the perfectness
as for example bipartite graphs or triangulated graphs. Therefore a natural ques-
tion is whether there exists a simple class C of perfect graphs that intersects every
P4-isomorphism class that contains only perfect graphs.

Question 1 Is there some simple class C of perfect graphs such that for each perfect
graph G there is a graph in C that has the same P4-structure as G ?

Clearly, a positive answer to Question 1 would imply that the problem PerfectGraph-
Recognition belongs to NP. We may assume that a class C that could be an answer
to Question 1 is closed under taking graph complements, as these can be computed
in polynomial time. Therefore, a necessary condition for a class C is that it must
contain all graphs that have unique P4-structure. This leads us to the next question:

Question 2 Which (perfect) graphs have unique P4-structure ?

We have already touched on this question in Section 3, we will discuss it further in
the next section. This discussion implies that we get a negative answer to Question 1.

5 The Structure of the P4-Isomorphism Classes

To answer Question 2 we need to know which (perfect) graphs have unique P4-
structure. First we will mainly be interested in asymptotic results which will tell us
how many (perfect) graphs have unique P4-structure. For a class C of graphs and
a graph property Π we say that almost all graphs in C have property Π if the ratio
|Cn(Π)|/|Cn| tends to 1, as n goes to infinity. Here Cn denotes all graphs in C on n
vertices and Cn(Π) denotes all graphs in Cn that have property Π.

It is easily seen that the P4-isomorphism classes can be arbitrarily large, as for
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example all P4-free graphs belong to the same P4-isomorphism class. Thus, the
following result may be surprising at the first sight, but a close look at Reed’s proof
of the Semi Strong Perfect Graph Theorem [40] reveals that a weaker form of the
following result is essentially the idea of the proof.

Theorem 4 (Hougardy 1996 [28])
Almost all graphs have unique P4-structure. ut

This result shows that the P4-isomorphism classes almost always contain just two
elements, namely the graph and its complement. But, as almost no graph is perfect,
it could still be the case that on the class of perfect graphs these equivalence classes
have almost always a much larger size. The following result shows that this is not
the case.

Theorem 5 (Hougardy 1996 [28])
Almost all perfect graphs have unique P4-structure. ut

The proof of this result is based on a result of Prömel and Steger [38] who proved
that almost all Berge graphs are perfect, i.e., they showed that the Strong Perfect
Graph Conjecture is almost always true.

As noted in Section 3 there exists a close relation between the P4-structure of
graphs and homogeneous sets.

As we saw in Section 3, most graphs containing a homogeneous set do not have
unique P4-structure. Some exceptions are shown in Figure 8 We need a slightly
more restricted notion of unique P4-structure to get the desired connection between
homogeneous sets and unique P4-structure. A graph is said to have strongly unique
P4-structure if it has unique P4-structure and every P4-automorphism is also a graph
automorphism.

Figure 8: Graphs with homogeneous set (bold vertices) and unique P4-structure.

13

This paper appeared as a chapter in the book: Perfect Graphs, 93-112 , John Wiley & Sons, Inc. 2001



Clearly, if a graph has strongly unique P4-structure it also has unique P4-structure.
The C5 is an example of a graph that has unique but not strongly unique P4-structure:
each of the 120 permutations of the five vertices is a P4 isomorphism, but only 10 of
them are graph isomorphisms.

If a graph G has a homogeneous set S and we take the complement on the graph
induced by S, this will give us a P4-isomorphism but not a graph isomorphism or
an isomorphism to the complement of G. Thus, if a graph has a homogeneous set
it cannot have strongly unique P4-structure. The other direction does not hold in
general, as for example the P5 or C6 provide examples of graphs without homogeneous
set which do not have strongly unique P4-structure. But it turns out, that graphs
without homogeneous set that contain a certain fixed induced subgraph all have
strongly unique P4-structure.

Theorem 6 (Hougardy 1996 [28])
If a graph G contains an induced cycle of length at least seven then G has strongly
unique P4-structure if and only if G does not contain a homogeneous set. ut

Theorem 6 was generalized by Hayward, Hougardy and Reed, as follows. A graph
is CSC if it can be partitioned into two cliques with no edges between them and a
stable set. It is SCS if its complement is CSC.

Theorem 7 (Hayward, Hougardy, Reed 1996 [26])
If a prime graph G contains a (prime) subgraph F which has a strongly unique P4-
structure then provided F is neither SCS nor CSC, G also has a strongly unique
P4-structure.

The example of Figure 9 shows that the condition that F is not SCS or CSC is
necessary. All the graphs of Figure 10 are neither SCS nor CSC and all have strongly
unique P4-structure. Thus Theorem 6 remains true if we replace cycle of length seven
by any graph in Figure 10.

Theorem 7 has negative consequences for the applicability of P4-structure to
certify perfection: for all perfect graphs that contain this subgraph, P4-structure is
no better than homogeneous sets in certifying perfection. Theorem 6 and 7 show
that the class C that was asked for in Question 1 cannot exist. On the other hand
as we see in the next section, Theorem 7 is very helpful in designing an algorithm to
solve P4-StructureRecognition.
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Figure 9: A prime graph without strongly unique P4-structure even though the
subgraph induced by the bold vertices has strongly unique P4-structure.

Figure 10: Graphs with strongly unique P4-structure that are neither SCS nor CSC.

6 Recognizing P4-Structure

The preceding sections have shown how the problem P4-StructureRecognition
relates to the problem PerfectGraphRecognition. While the latter problem
is still open, the problem P4-StructureRecognition allows a polynomial time
algorithm for its solution as was shown by Hayward, Hougardy and Reed:

Theorem 8 (Hayward, Hougardy, Reed 1996 [26])
The problem P4-StructureRecognition can be solved in polynomial time. ut

Theorem 7 is the key to the algorithm of Hayward, Hougardy and Reed. They
also need the following results:

Lemma 5 If F is a prime hypergraph of a prime P4-structure H then there is a
prime subhypergraph of H containing F and at most two other vertices. ut

This allows them to solve P4-StructureRecognition, given a strongly unique
realization of a subhypergraph F of H which is neither SCS or CSC as follows:

They repeatedly find a larger prime hypergraph by applying Lemma 5 and find
the corresponding unique realization (it turns out to be fairly straightforward to find
all the 2 vertex extensions of a given realization).
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The rest of the algorithm involves dealing with hypergraphs for which we cannot
find such a subhypergraph F . One crucial point is to have a subroutine that checks
whether a 4-uniform hypergraph H has a realization as a split graph. Hayward,
Hougardy and Reed [26] present a polynomial time algorithm for this problem re-
stricted to h-set free hypergraphs and show how it can be extended to hypergraphs
containing h-sets. Their algorithm starts with the realization of one single hyperedge
partitioned into four sets W,X, Y, Z and successively adds in each step one or two
vertices to the sets W,X, Y, Z such that the following two conditions hold

• In any realization of H as a split graph the vertices from the same set must
belong to the same side of the split graph

• There exists a P4 with a vertex in each of W,X, Y, Z.

When posing the problem P4-StructureRecognition Chvátal [13] also asked
whether this problem can be solved for some interesting subclasses of (perfect)
graphs.

PROBLEM P4-StructureRecognitionForClassC

Input: A 4-uniform hypergraph H
Question: Is there a graph in C having H as its P4-structure ?

The first class C for which a polynomial time algorithm for the problem P4-
StructureRecognitionForClassCwas presented was the class of trees. Ding [19]
gave such an algorithm whose running time was later improved by Brandstädt, Le
and Olariu [9]. Meanwhile the problem P4-StructureRecognitionForClassC
has been proved for many other classes of (perfect) graphs. For example Babel,
Brandstädt and Le solved the problem for bipartite graphs [3], Brandstädt and Le
for block graphs [8], Sorg for linegraphs of bipartite graphs [44], Babel for linegraphs
[1] and for claw-free graphs [2], and Hayward, Hougardy and Reed for split graphs
[26].

7 The P4-Structure of Minimally Imperfect Graphs

A graph is called unbreakable if neither the graph nor its complement contains a
star-cutset. Chvátal’s Star-Cutset Lemma states that minimally imperfect graphs
are unbreakable. To prove the Strong Perfect Graph Conjecture it is therefore enough
to have it proved for the class of unbreakable graphs. This explains why studying
the P4-structure of unbreakable graphs is of special interest with respect to perfect
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graphs. There exist several results that show that the P4-structure of an unbreakable
graph is in some sense densely connected.

Two P4’s h and h′ in a graph G are 3-chained if there exists a sequence h =
h1, h2, . . . , hk = h′ of P4’s in G such that any two consecutive ones have exactly
three vertices in common.

Lemma 6 (Chvátal 1987 [12])
In an unbreakable graph every two P4’s are 3-chained. ut

An alignment in a graph is a sequence Q1, Q2, . . . , Qk of sets of vertices such
that each Qi induces a P4, and each Qi with i ≥ 2 has precisely one vertex outside
Q1 ∪Q2 ∪ . . .∪Qi−1. The alignment is called full if each vertex of the graph belongs
to at least one Qi.

Lemma 7 (Chvátal, Hoàng 1985 [14])
In an unbreakable graph every alignment extends into a full alignment. ut

Both these results have been extended by Olariu [36]. He partitions the edges of
a graph G into coercion classes such that two edges xy and ab belong to the same
coercion class if abxy is a P4 in G.

Theorem 9 (Olariu 1991 [36])
An unbreakable graph contains at most two coercion classes and in an unbreakable
graph with exactly two coercion classes the neighborhood of any vertex is the disjoint
union of two cliques. ut

Any counterexample to the Strong Perfect Graph Conjecture must be C5-free
and unbreakable which makes this class of graphs of special interest. For the class
of C5-free unbreakable graphs we can give a complete description of the structure of
the P4-isomorphism classes.

Theorem 10 (Hougardy 1997 [29])
C5-free unbreakable graphs different from C6 and its complement have unique P4-
structure. ut

This result shows that for the class of C5-free unbreakable graphs the Semi Strong
Perfect Graph Theorem and the Perfect Graph Theorem make exactly the same
statement.
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Theorem 10 cannot be extended to the class of all unbreakable graphs as there
exist unbreakable graphs different from C6 and its complement that have the same
P4-structure. Figure 11 shows two such graphs.
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Figure 11: Two unbreakable graphs with the same P4-structure

From Theorem 10 one can easily derive the Semi Strong Perfect Graph Theorem.
However, it should be noted, that the proof of Theorem 10 is longer than the proof
of the Semi Strong Perfect Graph Theorem, thus the following proof is not really a
better proof to the Semi Strong Perfect Graph Theorem but sheds some more light
on it.

Short proof for the SSPGT
Assume G and H are two graphs having the same P4-structure such that G is perfect
and H is minimally imperfect. Chvátal’s Star-Cutset Lemma implies that H is C5-
free and unbreakable. Now Theorem 10 shows that H has unique P4-structure, i.e.
G or its complement must be isomorphic to H, which is a contradiction. ut

8 The Partner Structure and Other Generalizations

We have seen in Section 5, that the P4-isomorphism classes almost always are of size
at most two. Thus, a natural question arises whether the notion of P4-structure can
be extended in such a way that the equivalence classes defined by this extension be-
come larger and still a statement similar to the Semi Strong Perfect Graph Theorem
holds. One such approach uses the notion of partner structure.

Two vertices a and b of a graph G are called partners if there are vertices x, y, z
in G−{a, b} such that {a, x, y, z} and {b, x, y, z} each induce a P4 in G. The partner
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graph of a graph G is the graph whose vertices are the vertices of G, and whose edges
are the pairs of vertices that are partners in G. The notion of partner graphs was
introduced by Chvátal [12] who proved the following beautiful decomposition result:

Lemma 8 (Chvátal [12] 1987)
If the vertices of a graph G can be colored by two colors such that any two partners
obtain the same color, then G is perfect if and only if the two graphs induced by the
two color-classes are perfect.

To test whether a given graph admits a two-coloring as requested in the lemma,
one simply has to check whether its partner-graph is connected. Therefore a decom-
position according to Chvátal’s result can be found in polynomial time. However,
not all perfect graphs admit such a decomposition.

Motivated by Chvátal’s result Hoàng [27] defined two graphs G and G′ to have
the same partner-structure if there exists a mapping f : V → V ′ such that vertices
x, y are partners with respect to a set {a, b, c} in G if and only if f(x), f(y) are
partners with respect to f({a, b, c}) in G′. Thus, the partner-structure of a graph is
obtained by removing all hyperedges from its P4-structure that do not intersect some
other hyperedge in exactly three vertices. Obviously, if two graphs have the same
P4-structure then they also have the same partner-structure. The other direction
does not hold as can be seen for example by considering the P4 and the K4. Thus,
the following result of Hoàng is a generalization of the Semi Strong Perfect Graph
Theorem. Its relation to the Semi Strong Perfect Graph Theorem is studied in [28].

Theorem 11 (Hoàng 1990 [27])
Let G and G′ be two graphs with the same partner-structure. Then G is perfect if
and only if G′ is. ut

9 P3-Structure

The notion of P4-structure can be extended to F -structure for arbitrary fixed graphs
F . Thus, it is a natural question to ask what is so special about the P4 that makes it
closely related to perfect graphs allowing results like the Semi Strong Perfect Graph
Theorem ? As we will see in this section, there exists only one other graph, namely
the P3, that leads to results similar to the Semi Strong Perfect Graph Theorem.

For a fixed graph F , all graphs not containing F as an induced subgraph have
the same F -structure. Thus any graph that is a candidate to replace the P4 in the
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Semi Strong Perfect Graph Theorem must be an induced subgraph of all sufficiently
long (i.e. of size at least |F |) odd holes and odd antiholes. This implies that the
stability number and the clique number of F must have the value at most two.

Thus the only reasonable candidate for a statement similar to the Semi Strong
Perfect Graph Theorem is the P3 or its complement. However, it is easily seen that
the perfection of a graph does not just depend on its P3-structure. Figure 12 shows
a well known counterexample.
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Figure 12: Two graphs with the same P3-structure.

This simple counterexample leads astray as it seems to suggest that for larger
graphs there exist much more counterexamples. However, one can show that this
simple example is essentially the only exceptional case. More precisely we have

Theorem 12 (Hougardy 1996 [28])
A C5-free graph is perfect if and only if it has the P3-structure of a perfect graph. ut

In contrast to the P4 the P3 is not a self-complementary graph. Therefore The-
orem 12 does not immediately imply the Perfect Graph Theorem. But using the
Perfect Graph Theorem one easily gets the following stronger result.

Theorem 13 (Hougardy 1996 [28])
A C5-free graph G is perfect if and only if G or G has the P3-structure of a perfect
graph. ut

Of course Theorem 13 implies the Perfect Graph Theorem, and the following re-
sult shows that the Strong Perfect Graph Conjecture implies Theorem 13. Therefore
Theorem 12 can be seen as ”another” Semi Strong Perfect Graph Theorem.

Theorem 14 (Hougardy 1996 [28])
Cycles of length at least six and complements of odd cycles of length at least seven
have unique P3-structure. ut
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Even so Theorem 12 lacks the beauty of the Semi Strong Perfect Graph Theorem,
it has in principle the same consequences as the Semi Strong Perfect Graph Theorem.
A certificate to prove perfection for a given graph now would just consist of two parts.
The first part is a perfect graph that has the same P3-structure as the given graph.
The second part is the proof that the given graph does not contain a C5 as an induced
subgraph. This is obviously easily done in polynomial time.

Since the P3 is a subgraph of the P4, one might think that Theorem 13 is already
implied by the Semi Strong Perfect Graph Theorem. That this is not the case can be
shown by the graphs in Figure 13a) and Figure 13b). This is a non-trivial example of
two graphs that have the same P3-structure but different P4-structure. On the other
hand there (of course) exist examples of graphs that have the same P4-structure but
different P3- and P 3-structure. One example is shown in Figure 13c) and Figure 13d).PSfrag replacements
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Figure 13: Two pairs of graphs showing that P3-structure and P4-structure are in-
dependent of each other.

Not very surprisingly, the asymptotic results that were stated in Section 5 for
P4-structure also hold for P3-structure.

Theorem 15 (Hougardy 1996 [28])
Almost all (perfect) graphs have unique P3-structure. ut

The Problem P4-StructureRecognition can be naturally extended from P4

to any other graph F .

PROBLEM F -StructureRecognition

Input: A |F |-uniform hypergraph H
Question: Is there a graph having H as its F -structure ?

Currently, the P3 is the only non-trivial graph different from the P4 for which the
complexity of this problem is known:

Theorem 16 (Hayward 1996 [25])
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There exists a polynomial time algorithm to recognize the P3-structures of graphs. ut
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