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Abstract. We present a very simple family of traveling salesman instances with
n cities where the nearest neighbor rule may produce a tour that is Θ(log n) times
longer than an optimum solution. Our family works for the graphic, the euclidean,
and the rectilinear traveling salesman problem at the same time. It improves the
so far best known lower bound in the euclidean case and proves for the first time
a lower bound in the rectilinear case.
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1 Introduction

Given n cities with their pairwise distances di,j the traveling salesman prob-

lem (TSP) asks for a shortest tour that visits each city exactly once. This
problem is known to be NP-hard [4] and therefore much effort has been spent
to design efficient heuristics that are able to find good tours. A heuristic
A for the traveling salesman problem is said to have approximation ratio

c if for every TSP instance it finds a tour that is at most c times longer
than a shortest tour. We will consider here only metric TSP instances, i.e.,
TSP instances where the distances between the n cities satisfy the trian-
gle inequality di,j ≤ di,k + dk,j for all 1 ≤ i, j, k ≤ n. Well studied special
cases of the metric TSP are the euclidean and the rectilinear TSP. In these
instances the cities are points in the plane and the distance between two
cities is defined as the euclidean respectively rectilinear distance. A third
example of metric TSP instances are the graphic TSP instances. Such an
instance is obtained from an (unweighted, undirected) connected graph G

which has as vertices all the cities. The distance between two cities is then
defined as the length of a shortest path in G that connects the two cities.

One of the most natural heuristics for the TSP is the nearest neighbor

rule (NNR) [1]. This rule grows partial tours of increasing size where a
partial tour is an ordered subset of the cities. The nearest neighbor rule
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starts with a partial tour consisting of a single city x1. If the nearest neighbor
rule has constructed a partial tour (x1, x2, . . . , xk) then it extends this partial
tour by a city xk+1 that has smallest distance to xk and is not yet contained
in the partial tour. Ties are broken arbitrarily. A partial tour that contains
all cities yields a TSP tour by going from the last city to the first city in
the partial tour. Any tour that can be obtained this way is called an NNR
tour.

1.1 Known Results

Rosenkrantz, Stearns, and Lewis [6] proved that on an n city metric TSP in-
stance the nearest neighbor rule has approximation ratio at most 1

2
⌈log n⌉+

1

2
, where throughout the paper log denotes the logarithm with base 2. They

also constructed a family of metric TSP instances that show a lower bound
of 1

3
log n for the approximation ratio of the nearest neighbor rule. Johnson

and Papadimitriou [3] presented a simplified construction that yields a lower
bound of 1

6
log n. Hurkens and Woeginger [2] constructed a simple family of

graphic TSP instances that proves a lower bound of 1

4
logn. Moreover they

present in the same paper a simple construction of a family of euclidean TSP
instances that proves that the nearest neighbor rule has approximation ratio
at least

(√
3− 3

2

)

(log n− 2) where
√
3 − 3

2
≤ 0.232. For the graphic TSP

Pritchard [5] presents a more complicated construction that shows that for
each ǫ > 0 the approximation ratio of the nearest neighbor rule on graphic
TSP instances is at least 1

2+ǫ
log n.

1.2 Our Contribution

We will present in the next section a very simple construction that proves
a lower bound of 1

4
log n for the graphic, euclidean, and rectilinear TSP at

the same time. Our construction proves for the first time a lower bound
on the approximation ratio of the nearest neighbor rule for rectilinear TSP
instances. Moreover, we improve the so far best known lower bound of [2]
for the approximation ratio of the nearest neighbor rule for euclidean TSP
instances.

2 The Construction of Bad Instances

We will now describe our construction of a family of metric TSP instances
Gk on which the nearest neighbor rule yields tours that are much longer than
optimum tours. As the set of cities Vk we take the points of a 2× (8 · 2k−3)
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subgrid of Z2. Thus we have |Vk| = 16 · 2k − 6. Let Gk be any TSP-instance
defined on the cities Vk that satisfies the following conditions:

(i) if two cities have the same x-coordinate or the same y-coordinate their
distance is the euclidean distance between the two cities.

(ii) if two cities have different x-coordinate and different y-coordinate then
their distance is at least as large as the absolute difference between their
x-coordinates.

Note that if we choose asGk the euclidean or the rectilinear TSP instance
on Vk then conditions (i) and (ii) are satisfied. We can define a graph on
Vk by adding an edge between each pair of cities at distance 1. The graphic
TSP that is induced by this graph is exactly the rectilinear TSP. The graph
for G0 is shown in Figure 1. We label the lower left vertex in Vk as lk and
the top middle vertex in Vk as mk.

l0

m0

Fig. 1. The graph defining the graphic TSP G0 together with a partial NNR tour that connects
l0 with m0.

Our construction of an NNR tour in Gk will only make use of the proper-
ties (i) and (ii) of Gk. Thus with the same proof we get a result for euclidean,
rectilinear and graphic TSP instances. We will prove by induction on k that
the nearest neighbor rule can find a rather long tour in Gk. For this we
need to prove the following slightly more general result which is similar to
Lemma 1 in [2].

Lemma 1. Let the cities of Gk be embedded into Gm with m > k. Then

there exists a partial NNR tour in Gm that

(a) visits exactly the cities in Gk,

(b) starts in lk and ends in mk, and

(c) has length exactly (12 + 4k) · 2k − 3.

Proof. We use induction on k to prove the statement. For k = 0 a partial
NNR tour of length 12 · 20 − 3 = 9 that satisfies (a), (b), and (c) is shown
in Figure 1. Now assume we already have defined a partial NNR tour for
Gk. Then we define a partial NNR tour for Gk+1 recursively as follows. As
|Vk+1| = 16 · 2k+1 − 6 = 2 · (16 · 2k − 6) + 6 = 2 · |Vk| + 6 we can think of
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Fig. 2. The recursive construction of a partial NNR tour for the instance Gk+1. The dashed
lines indicate partial NNR tours in G

′

k and G
′′

k .

Gk+1 to be the disjoint union of two copies G′

k and G′′

k of Gk separated by
a 2× 3 grid. This is shown in Figure 2.

Now we can construct a partial NNR tour for Gk+1 as follows. Start in
vertex l′k and follow the partial NNR tour in G′

k that ends in vertex m′

k.
The leftmost top vertex of the 2 × 3-grid is now a closest neighbor of m′

k

that has not been visited so far. Go to this vertex, visit some of the vertices
of the 2 × 3-grid as indicated in Figure 2, and then go to vertex l′′k . From
this vertex follow the partial NNR tour in G′′

k which ends in vertex m′′

k.
A nearest neighbor for this vertex now is the rightmost top vertex of the
2×3-grid. Continue with this vertex and go to the left to reach vertex mk+1.
The partial NNR tour constructed this way obviously satisfies conditions
(a) and (b). Moreover, this partial NNR tour is also a partial NNR tour
when Gk+1 is embedded into some Gl for l > k + 1.

The length of this partial NNR tour is twice the length of the par-
tial NNR tour in Gk plus five edges of length 1 plus two edges of length
1

2

(

1

2
· |Vk|+ 1

)

. Thus we get a total length of

2
(

(12 + 4k) · 2k − 3
)

+ 5 + 8 · 2k − 2 = (12 + 4(k + 1)) · 2k+1 − 3

for the partial NNR tour constructed in Gk+1. This proves condition (c).

Theorem 1. On graphic, euclidean, and rectilinear TSP instances with n

cities the approximation ratio of the nearest neighbor rule is no better than
1

4
· log n− 1.

Proof. The instance Gk defined above has n := 16 · 2k − 6 cities and an
optimum TSP tour in Gk has length n. As shown in Lemma 1 there exists
a partial NNR tour in Gk of length at least (12 + 4k) · 2k − 3. Thus the
approximation ratio of the nearest neighbor rule is no better than

(12 + 4k) · 2k − 3

16 · 2k − 6
≥ 12 + 4k

16
=

3 + k

4
=

3 + log
(

n+6

16

)

4
≥ 1

4
(logn− 1) .
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3 Comments

Conditions (i) and (ii) in Section 2 are satisfied whenever the distances in
Gk are defined by an Lp-norm. Thus Theorem 1 not only holds for the L2-
and the L1-norm but for all Lp-norms. As already noted in [3] and [2] one
can make the NNR tour unique in the euclidean and rectilinear case (and
more generally in the Lp-case) by moving all cities by some small amount.
The Θ(logn) lower bound of our family is independent of the city in which
the nearest neighbor rule starts.
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