
Linear Time Approximation Algorithms for

Degree Constrained Subgraph Problems

Stefan Hougardy

Research Institute for Discrete Mathematics
University of Bonn
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Abstract. Many real-world problems require graphs of such large size
that polynomial time algorithms are too costly as soon as their runtime
is superlinear. Examples include problems in VLSI-design or problems in
bioinformatics. For such problems the question arises: What is the best
solution that can be obtained in linear time? We survey linear time ap-
proximation algorithms for some classical problems from combinatorial op-
timization, e.g. matchings and branchings.
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1 Introduction

For many combinatorial optimization problems arising from real world appli-
cations, efficient, i.e., polynomial time algorithms are known for computing
an optimum solution. However, there exist several applications for which the
input size can easily exceed 109. In such cases polynomial time algorithms
with a runtime that is quadratic or even higher are much too slow. It is there-
fore desirable to have faster algorithms that not necessarily find an optimum
solution.

An approximation algorithm for a combinatorial optimization problem is
an algorithm that for any possible input returns some feasible solution. An
approximation algorithm has an approximation ratio of c if for any input it
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returns a solution with value at least c times the value of an optimum solution
(in this paper we will consider maximization problems only).

For most reasonable problems the lowest possible runtime for a determinis-
tic algorithm is linear, as at least the whole input must be read. In this paper
we are interested in approximation algorithms that achieve this linear run-
time. Moreover, we are interested here only in approximation algorithms that
achieve a constant approximation ratio. The reason for the latter requirement
is that in practice solutions that are far away from an optimum solution are
quite useless. Thus, even an approximation ratio of 1/2 may be too bad for a
given application. However, as the approximation ratio is a guarantee for the
worst case, in practice approximation algorithms with constant approxima-
tion ratios usually deliver solutions that are very close to the optimum. For
example the greedy algorithm for the Maximum Weight Matching Prob-

lem has an approximation ratio of 1/2 but its solutions are usually within 5%
of the optimum solution [10].

Linear time approximation algorithms offer several benefits against exact
algorithms.

1. The most obvious benefit is its runtime: Exact algorithms even if their
runtime is polynomial may simply be too slow to be applicable.

2. Linear time approximation algorithms are usually simpler than their exact
counterparts. This not only means that the algorithms are simpler, but
also their proofs of correctness may be simpler.

3. The implementation of linear time approximation algorithms can be much
simpler than for exact algorithms. This is the main reason why in many
applications approximation algorithms are used, even though exact algo-
rithms would be fast enough (see for example [2]).

4. There is another major reason, why in many applications approximation
algorithms are used for combinatorial optimization problems even though
exact algorithms would be fast enough: If the algorithm is used as a sub-
routine in some heuristic that does not give any performance guarantee,
it may be a waste of time to compute exact solutions. In some cases one
might even observe the weird effect that an exact solution yields results
that are inferior to approximate solutions.

5. Finally, approximation algorithms can avoid problems with floating point
arithmetic. In [1] such a problem is analyzed for the maximum flow prob-
lem using a preflow-push algorithm. These unexpected difficulties may
always occur when using floating point arithmetic in exact algorithms.

Of course, an algorithm with linear runtime may turn out to be completely
useless in practice. A famous such example is the algorithm of Bodlaender [7]
for determining the treewidth of a graph. More precisely, if k is fixed, then
for a given graph G the algorithm of Bodlaender finds in linear time a tree
decomposition of width at most k, or decides that the treewidth of G exceeds
k. A huge constant is involved in the linear runtime of Bodlaenders algorithm.
Therefore, this algorithm is not feasible in practice, even not for k = 4.
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All linear time algorithms that we present in this paper have constants in
their runtime that are small, which means that they are at least not larger than
the constants involved in the runtime of exact algorithms for the problem.

In this survey we will cover linear time deterministic algorithms only. There
are related subjects as for example nearly linear time algorithms, sublinear
time algorithms, or linear time randomized algorithms which we will not dis-
cuss in this paper. In the following the notion linear time algorithm always
means a deterministic linear time algorithm.

1.1 A Technique for Obtaining Linear Runtime

There exists one general approach for obtaining linear time approximation
algorithms for combinatorial optimization problems. Several exact algorithms
for these problems work in phases , where each phase has linear runtime. Ex-
amples are the matching algorithm of Micali and Vazirani [35] which needs
O(

√
n) phases, each phase can be accomplished in O(m), or the algorithm of

Ford and Fulkerson [17] for computing a flow of maximum value, where in
each phase one flow augmenting path is computed in O(m).

A simple way to turn such algorithms into linear time approximation algo-
rithms is to simply stop after executing a constant number of phases. We will
call this approach the phase bounding approach. This approach clearly results
in linear time approximation algorithms, however, it is not at all clear what
approximation ratio it achieves. One can prove for example (see below) that
the phase bounding approach applied to the matching algorithm of Micali and
Vazirani [35] achieves an approximation ratio, that can be arbitrarily close to
1. However, the phase bounding approach applied to Ford and Fulkerson’s
maximum flow algorithm cannot guarantee any constant approximation ratio
larger than 0.

The phase bounding approach while it can produce linear time approxima-
tion algorithms with constant approximation ratio misses one of the advan-
tages that we listed above, namely to be much simpler than exact algorithms.
Nevertheless, in cases where no other approach is known to yield similar re-
sults we do at least know what approximation ratio can be achieved in linear
time. Such a result should be considered as a stimulation to look for simpler
algorithms that do not use the phase bounding approach.

2 Matchings

A matching M in a graph G = (V, E) is a subset of the edges of G such that
no two edges in M are incident to the same vertex. A perfect matching in G
is a matching M such that each vertex of G is contained in an edge of M .
Computing a (perfect) matching that is optimal with respect to certain side
constraints is one of the fundamental problems in combinatorial optimization.
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The first polynomial time matching algorithms date back to the papers of
Kőnig and Egerváry from 1931 [18] which resulted in the famous Hungarian
Method for bipartite graphs due to Kuhn [32]. A major breakthrough was
Edmonds’ polynomial time algorithm for the Maximum Weight Matching

Problem [13]. Edmonds introduced in his paper for the first time the notion
of a ’good’ algorithm which led to the definition of the class P of polynomially
time solvable problems.

Given a matching M in a graph G = (V, E), we say that a vertex x is
matched if {x, y} ∈ M for some y ∈ V and free otherwise. An M -augmenting

path is a simple path P = v0, v1, . . . , vk such that the endpoints v0 and vk

are free, {vi, vi+1} ∈ E(G) and the edges of P are alternately in E(G) \ M
and M . The length of a path is defined as the number of edges contained
in it. As the endpoints of an augmenting path are free this implies that an
augmenting path has odd length. Given an augmenting path, one can augment
the matching M by deleting from M the edges on the path that are in M , and
adding all of the other edges on the path to M . This results in a matching
with one more edge. A well known result that is the basis of many matching
algorithms says that the absence of an augmenting path implies optimality
of the current matching. This result was proved by Petersen [38] in 1891 and
first formulated in the language of modern graph theory by Berge [4].

Theorem 1 ([38][4]). A matching M has maximum size if and only if there

exists no M -augmenting path. �

2.1 Maximum Cardinality Matchings

The maximum cardinality matching problem simply asks for a matching of
maximum size in an unweighted undirected graph. As a special case it contains
the question whether a given graph has a perfect matching.

Cardinality Matching Problem

Input: An undirected graph G.

Output: A maximum cardinality matching in G.

The fastest known deterministic algorithm for the Cardinality Match-

ing Problem is due to Goldberg and Karzanov [25] and has runtime
O(

√
nm log(n2/m)/ logn) (see also [19]). It makes use of graph compression

techniques that have been developed by Feder and Motwani [15]. For dense
graphs Mucha and Sankowski [37] presented a faster randomized algorithm
which has been simplified by Harvey [26].

We will show that the phase bounding approach can be used to get a linear
time approximation algorithm for the Cardinality Matching Problem

with approximation ratio arbitrarily close to 1. The next lemma is the key to
prove such a result. It says that if a matching does not admit short augmenting
paths then its cardinality must be close to the cardinality of a maximum
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cardinality matching. This result is due to Hopcroft and Karp [28] but has
been rediscovered several times, e.g., [16] or [27].

Lemma 1 ([28]). If M is a matching in a graph G such that every M -

augmenting path has length at least 2k − 1 then

|M | ≥ k − 1

k
· |M∗|,

where M∗ denotes a maximum cardinality matching in G.

Proof. Suppose the matching M does not admit augmenting paths of length
less than k. Consider the symmetric difference between M and M∗. It contains
|M∗| − |M | vertex disjoint M -augmenting paths. Since each of these paths
contains at least k − 1 edges of M, we have

|M | ≥ k − 1

k
· |M∗|.

�

For the phase bounding approach one can make use of the maximum car-
dinality matching algorithm due to Micali and Vazirani [35], see also [42, 5]
and [23]. Their algorithm constructs in each phase a maximal set of vertex
disjoint augmenting paths. Each phase can be implemented in O(m) time.
The size of the shortest augmenting path strictly increases from a phase to
the next. Thus, by applying Lemma 1 one gets the following result which was
first observed by Gabow and Tarjan [22].

Theorem 2 ([22]). For every fixed ǫ > 0 there exists an algorithm that com-

putes a matching of size at least (1 − ǫ) · |M∗| in linear time. �

The number of phases needed to obtain a maximum cardinality matching
is O(

√
n). One can easily construct instances where this number of phases is

needed. In practice it turns out that usually a much fewer number of phases
suffices to find a maximum cardinality matching in a graph. This observation
can be proved for certain graph instances rigorously. A first such result is
due to Motwani [36]. It has been improved by Bast, Mehlhorn, Schäfer, and
Tamaki [3] who proved the following statement.

Theorem 3 ([3]). In Gn, 33

n

the algorithm of Micali and Vazirani terminates

with high probability after O(log n) phases. �

Here, Gn, 33

n

denotes a random graph on n vertices where each edge is in

the graph with probability 33
n .

Theorem 2 shows that one can find in linear time a matching whose cardi-
nality is arbitrarily close to the cardinality of a maximum cardinality match-
ing. However, as we used the phase bounding approach to get this result, the
algorithm is not simpler than the exact one. Therefore we will consider here
alternative approaches to compute large matchings in linear time.
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One such approach is to simply compute a maximal matching. A matching
M is called maximal if for all e ∈ E(G)\M the set M ∪{e} is not a matching.
For maximal matchings we get the following simple result in the special case
k = 2 of Lemma 1.

Lemma 2. If M is a maximal matching and M∗ a maximum cardinality

matching then |M | ≥ 1
2 · |M∗|. �

Fig. 1. An example where a maximum matching is twice as large as a maximal
matching (bold edges).

Maximal matchings can easily be computed in linear time: start with
M = ∅ and for each e ∈ E(G) add e to M if both endpoints of e are free.
Therefore, Lemma 2 immediately implies a very simple linear time approxi-
mation algorithm for the Cardinality Matching Problem with approxi-
mation ratio 1/2. It is easily seen that this approximation ratio is tight (see
Figure 1).

Figure 1 suggest that it should be a good idea to consider the degrees
when computing a maximal matching: First sort in linear time the vertices
in increasing order by their degrees and then compute a maximal matching
by choosing as the next edge one that is incident to a vertex of currently
lowest degree. This approach is often used in practice [30] and usually yields
better results. But as Figure 2 shows this approach does not improve the
approximation ratio.

A better approximation ratio than 1/2 can be achieved by a simple algo-
rithm that results from an algorithm of Drake Vinkemeier and Hougardy [12]
for the Maximum Weight Matching Problem by specializing it to the
unweighted case. The slightly complicated computation of ’good’ augmen-
tations that is needed in their algorithm becomes completely trivial in the
unweighted case. This way one obtains a simple linear time approximation al-
gorithm for the Cardinality Matching Problem with an approximation
ratio arbitrarily close to 2/3.
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Fig. 2. An example where a maximum matching is asymptotically twice as large as
a maximal matching (bold edges) that considers vertex degrees.

However, one can obtain even an approximation ratio of 4/5 in the un-
weighted case. For this we will make use of the following result of Hopcroft
and Karp [28].

Lemma 3 ([28]). Let M be a matching in a graph G such that every M -

augmenting path has length at least k. If P is a maximal set of vertex disjoint

M -augmenting paths of length k then after augmenting all paths in P the

shortest augmenting path in the new matching has length at least k + 2. �

A maximal set of vertex disjoint M -augmenting paths of length k can be
found in linear time for small k.

Lemma 4. Let M be a matching in a graph G. For k ≤ 7 a maximal set of

vertex disjoint M -augmenting paths of length k can be found in linear time.

Proof. We prove the result here for k = 7 only. The proof shows that the
statement also holds for smaller k. Let M be a matching in G such that each
M -augmenting path has length at least 7. We then scan all edges in M and
check whether such an edge is the middle edge of an M -augmenting path of
length 7 in G.

Let e = {x, y} ∈ M be such an edge. Then we scan all matched neighbors
of y. For each such neighbor, say y′, we scan its incident edge {y′, y′′} ∈ M .
This can be done in time proportional to the degree of y. Similarly, we scan all
possible neighbors x′ and incident edges {x′, x′′} ∈ M of x in time proportional
to the degree of x (see Figure 3).

Now we simply have to look for a vertex y′′ that has a free neighbor y′′′

and a vertex x′′ that has a free neighbor x′′′. This clearly can be done in time
proportional to the sum of the degrees of vertex x and y. However, we need to
be a bit more careful, as the vertices y′, y′′, y′′′ and x′, x′′, x′′′ need not to be
distinct. Therefore we proceed as follows: If there is a vertex y′′ that has at
least two free neighbors and there is an edge {x′, x′′} different from {y′, y′′}
such that x′′ has a free neighbor then we have found an M -augmenting path
of length 7 in time proportional to the sum of the degree of x and y. If all y′′
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x y

x′ y′x′′ y′′

Fig. 3. How to find a maximal set of vertex disjoint augmenting paths of length 7
in linear time.

have only one free neighbor, we check whether there are at least two different
such neighbors. If so, we can find an M -augmenting path of length 7 as soon
as there is a vertex x′′ on the other side. If all vertices y′′ are adjacent to the
same free vertex we also can easily check whether an M -augmenting path of
length seven can be found.

Therefore we can find an M -augmenting path of length 7 with the edge
{x, y} in the middle in time proportional to the sum of the degrees of x and
y. Thus, a maximal vertex disjoint set of such paths can be found in linear
time. �

As a consequence of Lemma 3 and Lemma 4 we get a linear time algorithm
with approximation ratio 4/5 for the Cardinality Matching Problem.

Theorem 4. If M∗ is a maximum cardinality matching then a matching M
with |M | ≥ 4

5 |M∗| can be computed in linear time. �

Better approximation algorithms can be obtained in the special case of
bounded degree graphs. In this case one easily can check for all augmenting
paths up to a fixed length k containing a given vertex x in constant time. More
precisely: if all vertex degrees are bounded by a constant B, then there can
exist at most Bk paths of length k containing a given vertex. Therefore, one
gets a simple linear time approximation algorithm for bounded degree graphs
with approximation ratio arbitrarily close to 1. However, as this approach
involves the constant Bk in the runtime it is not useful in practice.

2.2 Maximum Weight Matchings

Given a graph G = (V, E) and a weight function c : E(G) → R, the weight
of a matching M ⊆ E is defined as w(M) :=

∑

e∈M w(e). The maximum
weight matching problem now asks for a matching of maximum weight. The
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Cardinality Matching Problem is a special case of this problem where
all weights are equal.

Maximum Weight Matching Problem

Input: An undirected graph G and edge weights c : E(G) → R.

Output: A maximum weight matching in G.

The fastest known algorithm for the Maximum Weight Matching

Problem is due to Gabow [21] and has runtime O(nm + n2 log n). How-
ever, this algorithm involves rather complicated data structures that prevent
it from being useful in practice. The fastest implementations known today
for solving the Maximum Weight Matching Problem are due to Cook
and Rohe [9] respectively Mehlhorn and Schäfer [33]. These algorithms have a
worst case runtime of O(n3) respectively O(nm log n). Under the assumption
that all edge weights are integers in the range [1...N ] Gabow and Tarjan [23]
presented an algorithm with runtime O(

√

n log nα(m, n)m log(Nn)), where α
is the inverse of Ackermanns function.

The greedy algorithm for the weighted matching problem is a very sim-
ple approximation algorithm that achieves an approximation ratio of 1/2 [29,
31, 2]. This algorithm simply sorts the edges by decreasing weight and then
computes a maximal matching using this ordering. The runtime of the greedy
algorithm is O(m log n) as sorting the edges requires this amount of time.
Surprisingly, for long time no linear time approximation algorithm for the
Maximum Weight Matching Problem was known that achieves a con-
stant approximation ratio strictly larger than zero. The first such algorithm
was presented by Preis in 1999 [40]. The idea of this algorithm is that in-
stead of using the heaviest edge in each step it is enough to consider a locally
heaviest edge, i.e., an edge that is heavier than all adjacent edges. Using this
approach it is easy to see that the algorithm achieves an approximation ratio
of 1/2. However, it is quite complicated to prove that its runtime is indeed
linear.

In 2003 Drake and Hougardy [10] presented a much simpler linear time
approximation algorithm for the Maximum Weight Matching Problem

with approximation ratio 1/2. This algorithm is called the Path Growing
Algorithm and is shown in Figure 4. Its idea is to simultaneously compute two
matchings and for the heavier of these two matchings the algorithm guarantees
that its weight is at least half the weight of a maximum weight matching.

It is easily seen that the runtime of the Path Growing Algorithm is lin-
ear [10]. The next result shows the correctness of the algorithm.

Theorem 5 ([10]). The Path Growing Algorithm has a performance ratio of

1/2.

Proof. For the analysis of the performance ratio we will assign each edge of
the graph to some vertex of the graph in the following way. Whenever a vertex
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PathGrowingAlgorithm (G = (V, E), w : E → R+)

1 M1 := ∅, M2 := ∅, i := 1
2 while E 6= ∅ do begin
3 choose x ∈ V of degree at least 1 arbitrarily
4 while x has a neighbor do begin
5 let {x, y} be the heaviest edge incident to x
6 add {x, y} to Mi

7 i := 3 − i
8 remove x from G
9 x := y

10 end
11 end
12 return max(w(M1), w(M2))

Fig. 4. The Path Growing Algorithm for finding maximum weight matchings.

is removed in line 8 of the algorithm all edges which are currently incident to
that vertex x are assigned to x. This way each edge of G is assigned to exactly
one vertex of G. Note that there might be vertices in G that have no edges
assigned to them.

Now consider a maximum weight matching M in G. As M must not contain
two incident edges, all edges of M are assigned to different vertices of G. In
each step of the algorithm the heaviest edge that was currently incident to
vertex x is chosen in line 5 of the algorithm and added to M1 or M2. Therefore
the weight of M1 ∪ M2 is at least as large as the weight of M . As

max(w(M1), w(M2)) ≥ 1

2
w(M1 ∪ M2) ≥ 1

2
w(M)

the weight returned by the Path Growing Algorithm is at least half the weight
of the optimal solution. �

It turns out that the greedy algorithm, the algorithm of Preis, and the
Path Growing Algorithm of Drake and Hougardy are in practice much better
than the approximation factor of 1/2 suggests. In [10] it is shown that the
solution found by these algorithms is typically about 5% away from the weight
of an optimum solution. For the Path Growing Algorithm one even can get
a guarantee that the solution found by the algorithm is strictly larger than
the approximation ratio of 1/2. This is due to the fact that this algorithm
computes two different matchings for which it guarantees that the sum of
the weights of these two matchings is at least as large as the weight of an
optimum solution. Therefore we have the following observation which allows
to get a better guarantee how far the solution returned by the Path Growing
Algorithm is away from an optimum solution.

Lemma 5. The matching M returned by the Path Growing Algorithm has

weight at least
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max{w(M1), w(M2)}
w(M1) + w(M2)

· w(M∗),

where M∗ is a maximum weight matching.

Note that we have 1
2 ≤ max{w(M1),w(M2)}

w(M1)+w(M2)
≤ 1. This means that the Path

Growing Algorithm might even return a matching M and a guarantee that
this matching M is a maximum weight matching.

In 2005 Drake-Vinkemeier and Hougardy [12] improved on the Path Grow-
ing Algorithm by presenting a linear time approximation algorithm for the
Maximum Weight Matching Problem that achieves an approximation
ratio arbitrarily close to 2/3. This approximation ratio is the best that is
currently known to be achievable in linear time.

Theorem 6 ([12]). For every fixed ǫ > 0 there exists a linear time algorithm

that computes a matching of weight at least (2/3− ǫ) · w(M∗) where M∗ is a

maximum weight matching. �

Pettie and Sanders [39] improved on this result by presenting another linear
time 2/3−ǫ approximation algorithm for the Maximum Weight Matching

Problem whose runtime has a better dependence on ǫ.

2.3 Minimum Weight Perfect Matchings

Computing a perfect matching of maximum or minimum weight is a problem
that appears quite often in applications. The maximum and minimum perfect
matching problem can easily be transformed into each other by just negating
the edge weights.

Minimum Weight Perfect Matching Problem

Input: An undirected graph G and edge weights c : E(G) → R.

Output: A minimum weight perfect matching in G or a proof that
G has no perfect matching.

There is a simple reduction that allows to formulate the Maximum

Weight Matching Problem as a Maximum Weight Perfect Match-

ing Problem. Take a copy G′ of the input graph G and connect each vertex
in G by an edge of weight 0 with its copy in G′. Then a maximum weight per-
fect matching in the new graph corresponds to a maximum weight matching
in G (the weights differ exactly by a factor of 2).

This is a simple reduction that can be performed in linear time, unfortu-
nately it does not preserve approximation ratios. However, we cannot expect
to find any such reduction as every algorithm that finds an approximate so-
lution to the Minimum Weight Perfect Matching Problem must at
least be able to decide whether the graph has a perfect matching. The fastest
algorithm for doing so has runtime O(

√
nm log(n2/m)/ logn) [25]. Therefore
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linear time approximation algorithms with constant approximation ratios do
not exist for the Minimum Weight Perfect Matching Problem unless
one can decide in linear time whether a given graph has a perfect matching.

3 Degree Constrained Subgraphs

Let G = (V, E) be an undirected graph and b : V (G) → N a degree constraint
for every vertex. A subgraph H of G is a degree constrained subgraph for G
with respect to b, if the degree of each vertex x in H is at most b(x). We
consider here the problems of finding a degree constrained subgraph with the
largest possible number of edges and a weighted version of this problem. A
degree constrained subgraph is also known as b-matching. A subset M ⊂ E
is called a b-matching if for all v ∈ V (G) the number of edges in M incident
to v is at most b(v). For the special case that b(v) = 1 for all v ∈ V (G)
the b-matching is a matching. Therefore, the degree constrained subgraph
problems are generalizations of matching problems. As the connections to
matching problems are quite strong, we prefer here the notion of b-matchings
instead of degree constrained subgraphs.

Cardinality b-Matching Problem

Input: An undirected graph G and b : V (G) → N.

Output: A maximum cardinality b-matching in G.

The Cardinality b-Matching Problem can be reduced to the Car-

dinality Matching Problem by the following reduction which is due to
Shiloach [41]: Replace each vertex v of degree d(v) by d(v) copies, such that
each edge incident to v uses another copy of v. Then add additional b(v) ver-
tices for each vertex v that are completely connected to the d(v) copies of v.
Figure 5 shows an example for this reduction.

b = 2 b = 2

b = 2b = 3

b = 1

Fig. 5. An example illustrating the reduction of a b-matching problem to a matching
problem.
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Let G be an arbitrary graph with n vertices and m edges and let G′

be the graph that results from this reduction. Then it is not difficult to
prove that a matching in G′ of size α + m corresponds to a b-matching
in G of size α [41]. The graph G′ has O(m) vertices and O(Bm) edges,
where B = maxv∈V (G){b(v)}. For constant B this reduction leads to a b-

matching algorithm with runtime O(m3/2) by using the algorithm of Micali
and Vazirani [35]. For non-constant B the fastest known algorithm for the
Cardinality b-Matching Problem has runtime O(nm log n) and is due
to Gabow [20].

Unfortunately the above reduction does not preserve approximation ratios.
Therefore, even for constant B we cannot use the constant factor approx-
imation algorithms for the Cardinality Matching Problem to obtain
such algorithms for the Cardinality b-Matching Problem. Instead, we
directly have to adapt the approximation algorithms to the Cardinality

b-Matching Problem. A b-matching M in a graph G = (V, E) is called
maximal if M ∪ {e} is not a b-matching for all e ∈ E \ M . A maximal b-
matching can easily be computed in linear time: Start with M = ∅ and for
each e ∈ E(G) add e to M if this does not violate the degree conditions. The
following result shows that this already gives a linear time 1/2-approximation
algorithm for the Cardinality b-Matching Problem.

Theorem 7. The Cardinality b-Matching Problem can be solved in lin-

ear time with approximation ratio 1
2 .

Proof. As observed above a maximal b-matching can be computed in linear
time. Thus we simply have to prove that if M∗ is a maximum cardinality
b-matching and M is a maximal b-matching then |M | ≥ 1

2 · |M∗|. By S we
denote all vertices v such that there are exactly b(v) edges of M incident to
v. Then every edge in M∗ must have at least one endpoint in S as otherwise
M is not maximal. As for each vertex v ∈ S there are at most b(v) edges of
M∗ incident to v and each edge in M is incident to at most two vertices in S
we have:

|M∗| ≤
∑

v∈S

b(v) ≤ 2 · |M |

which proves the approximation ratio of 1/2. �

We now also consider a weighted version of the b-maching problem.

Maximum Weight b-Matching Problem

Input: An undirected graph G and edge weights c : E(G) → R.

Output: A maximum weight b-matching in G.

For the weighted version of the b-matching problem one can use the above
mentioned reduction of Shiloach [41] to get a Maximum Weight Match-

ing Problem. Again, faster algorithms are possible by adapting algorithms
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for the Maximum Weight Matching Problem directly to the Maxi-

mum Weight b-Matching Problem. This has been done by Gabow [20]
who obtained the currently fastest algorithm for the Maximum Weight b-
Matching Problem. His algorithm has runtime O(m2 log n). It is easily seen
that the Greedy algorithm for the Maximum Weight b-Matching Prob-

lem achieves an approximation ratio of 1/2 and has runtime O(m log n) [2].
Linear time approximation algorithms for the Maximum Weight b-

Matching Problem are known only for the case that b(x) is bounded by
some constant for all x ∈ V (G). In this case Mestre [34] obtained the following
result by adapting an algorithm of Drake and Hougardy [11] for the Maxi-

mum Weight Matching Problem to the Maximum Weight b-Matching

Problem.

Theorem 8 ([34]). If b(x) is bounded by some constant for all x ∈ V (G)
then the Maximum Weight b-Matching Problem can be solved in linear

time with approximation ratio 1
2 . �

4 Branchings

A branching is a directed graph without circuits such that each vertex has
indegree at most one. Computing branchings of maximum weight is one of the
classical problems in combinatorial optimization.

Maximum Weight Branching Problem

Input: A directed graph G and edge weights c : E(G) → R.

Output: A maximum weight branching in G.

Edmonds [14] and independently Chu and Liu [8] and Bock [6] gave the
first polynomial time algorithms for computing a maximum weight branching.
Later Gabow, Galil, Spencer, and Tarjan [24] showed that Edmond’s algorithm
can be implemented in O(m + n log n) time. This is already quite close to a
linear time algorithm but from a practical point of view one is still interested
in simpler linear time approximation algorithms for the Maximum Weight

Branching Problem.
One such algorithm is given by the following greedy approach: Start with

an empty branching B and sort the edges by decreasing weight. Now check
for each edge one by one whether its addition violates the degree condition. If
not then add it to B. Now one can destroy each circuit that might appear by
removing the lightest edge from each circuit. This can be done in linear time.
As each circuit has at least two edges, the algorithm has an approximation
ratio of 1/2. The total runtime is linear, as sorting of the edges is actually not
required: simply take the heaviest incoming edge for each vertex.
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This result can be improved by applying the phase bounding approach
to Edmond’s algorithm. This has been observed recently by Ziegler [43]. He
obtained the following result.

Theorem 9 ([43]). For every ǫ > 0 there exists a linear time approximation

algorithm for the Maximum Weight Branching Problem that has an

approximation ratio of 1 − ǫ.
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