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ABSTRACT
In Placement Legalization, it is often assumed that (almost) all stan-

dard cells possess the same height and can therefore be aligned in

cell rows, which can then be treated independently. However, this is

no longer true for recent technologies, where a substantial number

of cells of double- or even arbitrary multiple-row height is to be

expected. Due to interdependencies between the cell placements

within several rows, the legalization task becomes considerably

harder. In this paper, we show how to optimize quadratic cell move-

ment for pairs of adjacent rows comprising cells of single- as well

as double-row height with a fixed left-to-right ordering in time

O(𝑛 · log(𝑛)), whereby 𝑛 denotes the number of cells involved.

Opposed to prior works, we thereby do not artificially bound the

maximum cell movement and can guarantee to find an optimum

solution. Experimental results show an average percental decrease

of over 26% in the total quadratic movement when compared to

a legalization approach that fixes cells of more than single-row

height after Global Placement.

CCS CONCEPTS
• Hardware→ Placement.

KEYWORDS
Placement; Legalization; double-row-height cells

1 INTRODUCTION
The Standard Placement Problem captures the task of locating hun-

dreds of thousands or even millions of standard cells, which are

usually assumed to exhibit uniform heights, within the rectangular

chip area. Thereby, multiple objectives such as minimizing the total

length of inter-cell electrical connections (nets) or achieving de-

sirable timing properties have to be respected. Given the fact that

even the underlying packing problem is strongly 𝑁𝑃-hard [9], the

placement task is most commonly split into the three sub-problems

of Global Placement, Legalization and Detailed Placement. Global
Placement aims at finding cell locations that approximately mini-

mize the total netlength for a certain net model and obey bounds

on local packing density, but does not have to ensure internal dis-

jointness of shapes. The Legalization step deals with resolving the

remaining overlaps by shifting cells locally, trying to minimize ei-

ther netlength or the total (squared) cell displacement. The latter

is desirable because it honors the quality of the Global Placement

result (e.g. w.r.t. timing) and balances cell movement. Detailed Place-

ment usually incorporates several post-optimization routines.

When only cells of single-row height are present, the Standard Cell

Legalizers “Tetris” [13] and “Abacus” [20] produce good results.

They process the cells one by one, ordered by the 𝑥-coordinates of

their Global Placement positions, and place each cell at the closest

free position [13] or at the end of a nearby row, choosing the one

that allows for the minimum possible total cell movement [20].

Another strategy, which is employed within the BonnTools project

[16],[3], uses a min-cost-flow approach to first assign the cells to

zones, unblocked parts of a row [1]. Fixing the left-to-right ordering

of the cells contained within each zone to the one imposed by the

Global Placement locations, legal cell positions are then obtained

by minimizing the total squared cell displacement (or (weighted)

bounding box netlength) within each zone. The latter task is cap-

tured by the Single Row Problem, which also occurs as a sub-problem

of the Abacus Legalizer. It was first studied by Kahng, Tucker and

Zelikovsky [15], who suggested the Clumping Algorithm to tackle

it. While their implementation runs in 𝜃 (𝑚 · log
2 (𝑚)) for unit net

weights (where𝑚 denotes the number of nets), the fastest imple-

mentation, which is due to Suhl [21], achieves a running time of

O(𝑚 · log(𝑚)) even for general net weights. A similar result has

been obtained in the context of scheduling [10]. When the goal is

to optimize quadratic cell movement, the Clumping Algorithm can

easily be implemented to run in time linear in the number of cells.

While the mentioned approaches work well in the presence of uni-

form cell heights, it is not obvious how to generalize them to a

setting where cells of double- or even arbitrary multiple-row height

may occur. Wang et al. [23] try to adapt the Clumping Algorithm

to the double-row case, but manage to guarantee optimality only

in a very restricted setting. In contrast to this, Wu and Chu [24]

suggest to handle cells of double-row height by, depending on the

placement density, either inflating or matching cells of single-row

height to ensure uniform cell heights again. However, as was al-

ready pointed out in [19], this strategy can neither handle distinct

power alignment constraints nor cells covering more than two rows.

Besides, both merging and inflating cells may drastically reduce the

placement flexibility as well as lead to a significant area overhead.

Many other authors, therefore, settle for a dynamic programming

solution instead of generalizing the Clumping Algorithm, guaran-

teeing a reasonable runtime by artificially bounding the maximum

displacement allowed for each cell by a small number of placement

sites. In exchange, they show how to make their dynamic program

aware of several other desirable objective traits or incorporate a

larger degree of freedom by allowing for a local reordering of cells,

even between multiple rows [6], [11], [12], [19].

Other approaches comprise solving a linear complementarity prob-

lem to approximately minimize the squared cell movement and then

resolving the remaining overlaps [5], [18], [25], applying integer

linear programming to legalize sufficiently small regions of the chip

separately [14], or making use of a cell insertion scheme [7], com-

bined with bipartite matching and min-cost-flow-algorithms [17].

In this paper, we present a fast O(𝑛 log𝑛)-time (where 𝑛 denotes
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the number of cells) algorithm minimizing the total quadratic dis-

placement for cells of single- and double-row height that need to

be accommodated in two adjacent rows obeying a fixed ordering

of the cells covering each row. In contrast to previous dynamic

programming approaches, we do not need to artificially restrict the

number of available positions for each cell, which may be beneficial

for regions of low density and when dealing with coarser grid sizes

for double-row cells, which our algorithm can take into account.

Moreover, our approach can be extended to support rectangular

movebounds for the cells.

The rest of this paper is organized as follows: In Section 2, we

discuss the Single Row Problem, the Clumping Algorithm and its

implementation for piecewise quadratic cost functions. In Section 3,

we then introduce the Double Row Problem and show how to reduce

it to the Single Row Problem in Section 4. Finally, Section 5 presents

our experimental results.

2 PRELIMINARIES
The following section comprises the base results our reduction from

the Double Row to the Single Row Problem builds upon.

• Section 2.1 reviews the Clumping Algorithm and its analysis.

• Theorem 2.3 points out how an optimum solution to the

Single Row Problem changes when the domain is restricted.

• Section 2.2 discusses an efficient implementation of the Clump-

ing Algorithm for piecewise quadratic cost functions.

2.1 The Single Row Problem and the Clumping
Algorithm

Definition 2.1 (Single Row Problem).
Instance: A tuple (C,𝑤, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , (𝑓𝑖 )𝑛𝑖=1

) consisting of
• a set C := {𝐶1, . . . ,𝐶𝑛} of cells,
• cell widths𝑤 : C → R+,
• a minimum and maximum coordinate 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ∈ R
satisfying

∑𝑛
𝑖=1

𝑤 (𝐶𝑖 ) ≤ 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 and

• convex, continuous functions 𝑓𝑖 : R→ R for 𝑖 = 1, . . . , 𝑛.

Task: Find coordinates (𝑥𝑖 )𝑛𝑖=1
minimizing

∑𝑛
𝑖=1

𝑓𝑖 (𝑥𝑖 ) subject
to

• 𝑥𝑚𝑖𝑛 ≤ 𝑥1,

• 𝑥𝑖 +𝑤 (𝐶𝑖 ) ≤ 𝑥𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1 and

• 𝑥𝑛 +𝑤 (𝐶𝑛) ≤ 𝑥𝑚𝑎𝑥 .

For 𝑖 = 1, . . . , 𝑛, we write

[𝑓 −𝑖 , 𝑓 +𝑖 ] := argmin{𝑓𝑖 (𝑥), 𝑥 ∈ [𝑥𝑚𝑖𝑛+
𝑖−1∑︁
𝑗=1

𝑤 (𝐶 𝑗 ), 𝑥𝑚𝑎𝑥−
𝑛∑︁
𝑗=𝑖

𝑤 (𝐶 𝑗 )]}.

The Single Row Problem can be solved by the aforementioned

Clumping Algorithm [15]. The given formulation of the Clumping

Algorithm (Algorithm 1) is based on [2].

Theorem 2.2 ([15]). The Clumping Algorithm finds an optimum
placement.

We prove a slightly stronger statement which we will need at a

later point. In order to formulate it, we have to introduce the notion

of a block, which we define as follows: For a cell 𝐶𝑖 ∈ L, the block
𝐵(𝑖) represented by 𝐶𝑖 is defined to be the consecutive set of cells

𝐵(𝑖) := {𝐶 𝑗 : 𝑖 ≤ 𝑗 ≤ 𝑛 ∧ �𝐶𝑙 ∈ L : 𝑖 < 𝑙 ≤ 𝑗}. The blocks present
at a given point during the run of the Clumping Algorithm indicate

Algorithm 1: Clumping Algorithm

Input: An instance of the Single Row Problem given by

an ordered list L = (𝐶1, . . . ,𝐶𝑛) of cells,
cell widths𝑤 : {𝐶1, . . . ,𝐶𝑛} → R+,
a row interval [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ] and
convex cost functions (𝑓𝑖 )𝑛𝑖=1

.

Output: Optimum positions (𝑥𝑖 )𝑛𝑖=1
.

1 Add an auxiliary element 𝐶0 to the front of L and set

𝑥0 ← 𝑥𝑚𝑖𝑛 and𝑤0 ← 0.

2 for 𝑖 ← 1 to 𝑛 do
3 Compute 𝑓 −

𝑖
and 𝑓 +

𝑖
.

4 𝑤𝑖 ← 𝑤 (𝐶𝑖 )
5 for 𝑖 ← 1 to 𝑛 do
6 𝑃𝐿𝐴𝐶𝐸 (𝐶𝑖 ,L)
7 for 𝑖 ← 1 to 𝑛 with 𝐶𝑖 ∉ L do
8 𝑥𝑖 ← 𝑥𝑖−1 +𝑤 (𝐶𝑖−1)
9 return (𝑥𝑖 )𝑛𝑖=1

Algorithm 2: 𝑃𝐿𝐴𝐶𝐸 (𝐶𝑖 ,L)
1 𝐶ℎ ← predecessor of 𝐶𝑖 in L
2 if 𝑥ℎ +𝑤ℎ ≤ 𝑓 +

𝑖
then

3 𝑥𝑖 ← max{𝑥ℎ +𝑤ℎ, 𝑓
−
𝑖
}

4 else
5 𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 (𝐶ℎ,𝐶𝑖 ,L)
6 𝑃𝐿𝐴𝐶𝐸 (𝐶ℎ,L)

Algorithm 3: 𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 (𝐶ℎ,𝐶𝑖 ,L)
1 Redefine 𝑓ℎ as 𝑥 ↦→ 𝑓ℎ (𝑥) + 𝑓𝑖 (𝑥 +𝑤ℎ) and update 𝑓 −

ℎ
and

𝑓 +
ℎ

(w.r.t. [𝑥𝑚𝑖𝑛 +
∑ℎ−1

𝑗=1
𝑤 (𝐶 𝑗 ), 𝑥𝑚𝑎𝑥 −

∑𝑛
𝑗=ℎ

𝑤 (𝐶 𝑗 )])
2 𝑤ℎ ← 𝑤ℎ +𝑤𝑖

3 Remove 𝐶𝑖 from L

sets of cells that the algorithm forces to be placed contiguously

(or has clumped together) at that time. Note that the partition into

blocks can only get coarser throughout the run of the algorithm.

Theorem 2.3. Let 𝐼 ′ := (C,𝑤, 𝑥 ′
𝑚𝑖𝑛

, 𝑥 ′𝑚𝑎𝑥 , (𝑓𝑖 )𝑛𝑖=1
) be an instance

of the Single Row Problem, let 𝑥𝑚𝑖𝑛 ≤ 𝑥 ′
𝑚𝑖𝑛

< 𝑥 ′𝑚𝑎𝑥 ≤ 𝑥𝑚𝑎𝑥 and
let 𝐼 denote the instance of the Single Row Problem that arises from
replacing 𝑥 ′

𝑚𝑖𝑛
and 𝑥 ′𝑚𝑎𝑥 by 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 , respectively. Then there

exists an optimum solution (𝑥∗
𝑖
)𝑛
𝑖=1

for 𝐼 ′ such that for any block 𝐵(𝑖)
formed during the run of Algorithm 1 on 𝐼 , the cells in 𝐵(𝑖) are placed
contiguously.

Proof. By induction on the number of calls to 𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸. Ini-

tially, the statement is clearly true because every cell constitutes a

block on its own. Consider a call to 𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 where two blocks

𝐵(ℎ) and 𝐵(𝑖) are united by deleting 𝐶𝑖 from L, and pick an op-

timum solution (𝑥∗
𝑖
)𝑛
𝑖=1

for 𝐼 ′ respecting all previously formed

blocks. If additionally 𝑥∗
𝑖−1
+ 𝑤 (𝐶𝑖−1) = 𝑥∗

𝑖
, we are done, so as-

sume 𝑥∗
ℎ
+ ∑𝑖−1

𝑙=ℎ
𝑤 (𝐶𝑙 ) = 𝑥∗

𝑖−1
+ 𝑤 (𝐶𝑖−1) < 𝑥∗

𝑖
. By construction
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of the algorithm, we have 𝑓 −
ℎ
≤ 𝑥ℎ ≤ 𝑓 +

ℎ
, 𝑤ℎ =

∑𝑖−1

𝑙=ℎ
𝑤 (𝐶𝑙 ) and

𝑥ℎ + 𝑤ℎ > 𝑓 +
𝑖
. If 𝑥∗

𝑖
> 𝑓 +

𝑖
, then we can shift 𝐵(𝑖) to the left un-

til it hits max{𝑥∗
𝑖−1
+𝑤 (𝐶𝑖−1), 𝑓 +𝑖 } and thereby decrease the total

cost since the cost function 𝑓𝑖 of 𝐵(𝑖) is strictly monotonically in-

creasing on [𝑓 +
𝑖
, 𝑥𝑚𝑎𝑥 −

∑𝑛
𝑗=𝑖 𝑤 (𝐶 𝑗 )] ⊇ [𝑓 +𝑖 , 𝑥

′
𝑚𝑎𝑥 −

∑𝑛
𝑗=𝑖 𝑤 (𝐶 𝑗 )], a

contradiction to the assumed optimality of (𝑥∗
𝑖
)𝑛
𝑖=1

. Hence 𝑥∗
𝑖
≤ 𝑓 +

𝑖
.

Then 𝑥∗
𝑖
−𝑤ℎ < 𝑥ℎ ≤ 𝑓 +

ℎ
, so we can shift 𝐵(ℎ) to the right until

it hits the left boundary of 𝐵(𝑖) without increasing the total cost

since the cost function 𝑓ℎ of 𝐵(ℎ) is monotonically decreasing on

[𝑥𝑚𝑖𝑛 +
∑ℎ−1

𝑗=1
𝑤 (𝐶 𝑗 ), 𝑓 +ℎ ] ⊇ [𝑥

′
𝑚𝑖𝑛
+∑ℎ−1

𝑗=1
𝑤 (𝐶 𝑗 ), 𝑓 +ℎ ]. □

Remark. Together with the fact that the Clumping Algorithm

places each block 𝐵(𝑖) with its optimum range [𝑓 −
𝑖
, 𝑓 +
𝑖
] and hence

also within [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 −𝑤𝑖 ] (whereby 𝑓𝑖 and 𝑤𝑖 refer to the re-

spective values after 𝐵(𝑖) has been formed), Theorem 2.3 implies op-

timality and therefore in particular the correctness of Theorem 2.2.

Theorem 2.4. Let 𝐼 and 𝐼 ′ be as in Theorem 2.3 and let (𝑥∗
𝑖
)𝑛
𝑖=1

be the solution computed by a run of the Clumping Algorithm on 𝐼 .
Then an optimum solution (𝑥 ′∗

𝑖
)𝑛
𝑖=1

for 𝐼 ′ is given by

𝑥 ′∗𝑖 = min

𝑥 ′𝑚𝑎𝑥 −
𝑛∑︁
𝑗=𝑖

𝑤 (𝐶 𝑗 ),max

𝑥 ′𝑚𝑖𝑛 +
𝑖−1∑︁
𝑗=1

𝑤 (𝐶 𝑗 ), 𝑥∗𝑖




for 𝑖 = 1, . . . , 𝑛.

Proof. Feasibility follows easily from the fact that we have

𝑥 ′𝑚𝑎𝑥 −𝑥 ′𝑚𝑖𝑛
≥ ∑𝑛

𝑖=1
𝑤 (𝐶𝑖 ) by definition of the Single Row Problem.

By Theorem 2.3, it, therefore, suffices to show that (𝑥 ′∗
𝑖
)𝑛
𝑖=1

places

each block𝐵(𝑖) arising from the run of the Clumping Algorithm on 𝐼

optimally. Pick such a block 𝐵(𝑖) and call its cumulated cost function

to which 𝑓𝑖 is set during the course of the algorithm
¯𝑓𝑖 . Then by

definition of the Clumping Algorithm, we have 𝑥∗
𝑖
∈ [ ¯𝑓 −

𝑖
, ¯𝑓 +
𝑖
]. We

distinguish the three cases

• 𝑥∗
𝑖
< 𝑥 ′

𝑚𝑖𝑛
+∑𝑖−1

𝑗=1
𝑤 (𝐶 𝑗 ),

• 𝑥∗
𝑖
∈ [𝑥 ′

𝑚𝑖𝑛
+∑𝑖−1

𝑗=1
𝑤 (𝐶 𝑗 ), 𝑥 ′𝑚𝑎𝑥 −

∑𝑛
𝑗=𝑖 𝑤 (𝐶 𝑗 )] and

• 𝑥 ′𝑚𝑎𝑥 −
∑𝑛

𝑗=𝑖 𝑤 (𝐶 𝑗 ) < 𝑥∗
𝑖
.

In the first case, 𝑥 ′∗
𝑖

= 𝑥 ′
𝑚𝑖𝑛
+ ∑𝑖−1

𝑗=1
𝑤 (𝐶 𝑗 ) is set to the leftmost

feasible position and furthermore,
¯𝑓𝑖 is monotonically increasing

to the right of 𝑥∗
𝑖

< 𝑥 ′∗
𝑖
, showing that 𝐵(𝑖) is placed optimally.

In the second case, 𝑥 ′∗
𝑖

= 𝑥∗
𝑖
is placed within the optimum range

of
¯𝑓𝑖 ↾ [𝑥𝑚𝑖𝑛 +

∑𝑖−1

𝑗=1
𝑤 (𝐶 𝑗 ), 𝑥𝑚𝑎𝑥 −

∑𝑛
𝑗=𝑖 𝑤 (𝐶 𝑗 )] and therefore in

particular occupies an optimum position for this function. Finally, in

the third case, we get 𝑥 ′∗
𝑖

= 𝑥 ′𝑚𝑎𝑥 −
∑𝑛

𝑗=𝑖 𝑤 (𝐶 𝑗 ), which is the right-

most feasible position𝐶𝑖 may attain. Given that
¯𝑓𝑖 is monotonically

decreasing on [𝑥 ′
𝑚𝑖𝑛
+∑𝑖−1

𝑗=1
𝑤 (𝐶 𝑗 ), 𝑥 ′∗𝑖 ] ⊆ [𝑥𝑚𝑖𝑛+

∑𝑖−1

𝑗=1
𝑤 (𝐶 𝑗 ), ¯𝑓 +

𝑖
],

optimality follows again. □

Note that if all of the 𝑓𝑖 are quadratic functions stored as triples

(𝑎, 𝑏, 𝑐) of coefficients such that 𝑓𝑖 : 𝑥 ↦→ 𝑎 · 𝑥2 + 𝑏 · 𝑥 + 𝑐 , the
Clumping Algorithm can be implemented to run in linear time, as

pointed out, for example, in [21], since the computation of minima

as well as shifting a quadratic function in 𝑥-direction or adding

it to another one only requires a constant number of arithmetic

operations on the respective coefficients.

2.2 Implementation of the Clumping
Algorithm with piecewise quadratic
objective functions

Our strategy to solve the problem of minimizing squared movement

within two adjacent rows containing cells of both single- and double-

row height with a prescribed left-to-right ordering is based on a

reduction of an instance of the latter problem to an instance of the

Single Row Problem with piecewise quadratic objective functions. In
the following subsection, we therefore discuss how to implement

the Clumping Algorithm in this case.

Definition 2.5 (piecewise quadratic function). For [𝑎, 𝑏] ⊆ R, we
call a continuous function 𝑓 : [𝑎, 𝑏] → R piecewise quadratic if
there exist a nonnegative integer 𝑘 and

• real numbers 𝑎 =: 𝑥0 < 𝑥1 < · · · < 𝑥𝑘 < 𝑥𝑘+1 := 𝑏 and

• quadratic functions (𝑓𝑖 : R→ R)𝑘
𝑖=0

such that 𝑓 ↾ [𝑥𝑖 , 𝑥𝑖+1] = 𝑓𝑖 ↾ [𝑥𝑖 , 𝑥𝑖+1] for all 𝑖 = 0, . . . , 𝑘 . The

positions (𝑥𝑖 )𝑘𝑖=1
are called kinks of 𝑓 . Note that there exists a

unique representation of 𝑓 with 𝑓𝑖 ≠ 𝑓𝑖+1 for all 𝑖 = 0, . . . , 𝑘 − 1, to

which we refer when talking about the set of kinks of a piecewise
quadratic function.

Our goal is to achieve a running time ofO((𝑛+𝑚) log(min{𝑛,𝑚}))
for the Clumping Algorithm, where 𝑛 denotes the number of cells

and 𝑚 specifies the total number of kinks occurring among all

cost functions. Therefore, we suggest an implementation of the

algorithm that is based on the one proposed in [21] for the case of

piecewise linear objective functions. Due to page limit, we do not

present a detailed description, but rather give a short overview of

the data structures used as well as a brief outline of the analysis.

Representation of cost functions of cells. We associate the qua-

dratic function 𝑥 ↦→ 𝑎 · 𝑥2 + 𝑏 · 𝑥 + 𝑐 with the triple (𝑎, 𝑏, 𝑐) and
store the restriction 𝑓𝑖 ↾ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ] of the piecewise quadratic
cost function 𝑓𝑖 as follows:

Let 𝑥𝑚𝑖𝑛 =: 𝑝
𝑚𝑖+1
𝑖

< 𝑝
𝑚𝑖

𝑖
< · · · < 𝑝1

𝑖
< 𝑝0

𝑖
:= 𝑥𝑚𝑎𝑥 such

that {𝑝1

𝑖
, . . . , 𝑝

𝑚𝑖

𝑖
} is the set of kinks of 𝑓𝑖 ↾ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ] and let

𝑓𝑖 ↾ [𝑝 𝑗+1𝑖
, 𝑝

𝑗
𝑖
] be given by the quadratic function 𝑓

𝑗
𝑖
, 𝑗 = 0, . . . ,𝑚𝑖 .

Then we represent 𝑓𝑖 by the ordered list 𝐹𝑖 := ((𝑝 𝑗+1
𝑖

, 𝑓
𝑗
𝑖
))𝑚𝑖

𝑗=0
con-

sisting of pairs of quadratic functions defining 𝑓𝑖 ↾ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ] on
a certain interval and the left boundary of their domain. Through-

out the algorithm, for each cell 𝐶𝑖 that has already been processed

and is currently placed at the position 𝑥𝑖 , we maintain the index

𝑗 (𝑖) ∈ {0, . . . ,𝑚𝑖 } for which 𝑝
𝑗 (𝑖)+1
𝑖

< 𝑥𝑖 ≤ 𝑝
𝑗 (𝑖)
𝑖

respectively

𝑗 (𝑖) =𝑚𝑖 if 𝑥𝑖 = 𝑥𝑚𝑖𝑛 . Observe that if we implicitly assume all cells

to be located at 𝑥𝑚𝑎𝑥 initially and further consider a cell 𝐶 𝑗 ∈ 𝐵(𝑖)
as being placed at 𝑥𝑖 +

∑𝑗−1

𝑙=𝑖
𝑤 (𝐶𝑙 ), cells never move to the right

during a run of the Clumping Algorithm. To see this, note that by

definition of 𝑓 −
𝑖

and 𝑓 +
𝑖
, each cell is located within [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ] by

construction. Moreover, whenever 𝑥ℎ is reassigned after a call to

𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 (𝐶ℎ,𝐶𝑖 ,L), then ℎ ≠ 0 and for𝐶𝑔 the predecessor of𝐶ℎ
in L, we get max{𝑥𝑔 +𝑤𝑔, 𝑓

−
ℎ
} = 𝑥ℎ ≤ 𝑓 +

ℎ
and 𝑥ℎ +𝑤ℎ > 𝑓 +

𝑖
≥ 𝑓 −

𝑖

before 𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 is performed. Hence, after the update of 𝑓ℎ , we

have 𝑓 −
ℎ
≤ 𝑥ℎ , implying that 𝑥ℎ is decreased, remains unchanged or

another call to 𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 is launched. In the first case, all already

processed cells 𝐶𝑖 with 𝑖 > ℎ belong to 𝐵(ℎ) and therefore move to
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the left as well.

As a consequence, the total time needed to maintain the indices

𝑗 (𝑖) can be bounded by O(∑𝑛
𝑖=1

𝑚𝑖 ) = O(𝑚) since none of these
indices is ever decreased.

Representation of cost functions of blocks. In order to realize calls

to 𝑃𝐿𝐴𝐶𝐸 and𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 efficiently, we need some additional data

which we store for the blocks consisting of cells we have already

processed. Thereby, the key observation is the fact that in order to

implement the function 𝑃𝐿𝐴𝐶𝐸, only local information on the given

convex cost function is required since for a convex real function, the

question whether the interval where it attains its minimum lies to

the left or right of or contains a certain coordinate can be answered

by considering local monotonicity properties. In this spirit, for each

block 𝐵(𝑖), we store the following data:

• a heap 𝐻 (𝑖) that contains for each 𝐶𝑙 ∈ 𝐵(𝑖) the position
𝑝
𝑗 (𝑙)+1
𝑙

−∑𝑙−1

ℎ=𝑖
𝑤 (𝐶ℎ) unless 𝑗 (𝑙) =𝑚𝑙 and

• the quadratic function 𝑔𝑖 defining 𝑓𝑖 on the non-empty in-

terval (max𝐻 (𝑖), 𝑥𝑖 ] (whereby max ∅ := −∞).

We outline how to use them in order to implement 𝑃𝐿𝐴𝐶𝐸 and

𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸. Consider a call to 𝑃𝐿𝐴𝐶𝐸 (𝐶𝑖 ,L) and remember that

we implicitly assume that 𝑥𝑖 = 𝑥𝑚𝑎𝑥 for 1 ≤ 𝑖 ≤ 𝑛 initially. Fur-

ther observe that this convention ensures that throughout the

algorithm, for 𝐶ℎ,𝐶𝑖 ∈ L with ℎ < 𝑖 , we have 𝑥ℎ + 𝑤ℎ ≤ 𝑥𝑖 .

In order to execute 𝑃𝐿𝐴𝐶𝐸, the first thing we have to decide is

whether 𝑥ℎ + 𝑤ℎ ≤ 𝑓 +
𝑖
. While we can compute the value of the

left hand side in constant time, 𝑓 +
𝑖
is not necessarily known to us.

However, what we do know is that by convexity of 𝑓𝑖 , 𝑓
+
𝑖

is the

unique position in [𝑥𝑚𝑖𝑛 +
∑𝑖−1

𝑗=1
𝑤 (𝐶 𝑗 ), 𝑥𝑚𝑎𝑥 −

∑𝑛
𝑗=𝑖 𝑤 (𝐶 𝑗 )] such

that 𝑓𝑖 ↾ [𝑥𝑚𝑖𝑛 +
∑𝑖−1

𝑗=1
𝑤 (𝐶 𝑗 ), 𝑥𝑚𝑎𝑥 −

∑𝑛
𝑗=𝑖 𝑤 (𝐶 𝑗 )] is monotoni-

cally decreasing to its left and strictly monotonically increasing to

its right. As a consequence, if 𝑓𝑖 ↾ (max𝐻 (𝑖), 𝑥𝑖 ] (which is given

by the quadratic function 𝑔𝑖 ) is monotonically decreasing, we can

be sure that 𝑓 +
𝑖
≥ 𝑥𝑖 ≥ 𝑥ℎ + 𝑤ℎ . On the other hand, as long as

𝑓𝑖 ↾ (max𝐻 (𝑖), 𝑥𝑖 ] is strictly monotonically increasing, we can de-

crease 𝑥𝑖 to max{𝑥ℎ +𝑤ℎ,max𝐻 (𝑖)}, and, whenever this maximum

is attained by max𝐻 (𝑖), pop all corresponding entries from the

heap, increment the corresponding indices 𝑗 (𝑙) by one and insert

a new heap entry unless they reach𝑚𝑙 , and update 𝑔𝑖 . Note that

if one precomputes all of the values

∑𝑖−1

𝑗=1
𝑤 (𝐶 𝑗 ), 𝑖 = 1, . . . , 𝑛 re-

cursively in linear time, which allows to determine

∑𝑙−1

𝑗=𝑖 𝑤 (𝐶 𝑗 ) in
constant time throughout the algorithm, each of these update steps

takes constant time per heap entry. In each case where the maxi-

mum is not attained by max𝐻 (𝑖), we can infer that 𝑓 +
𝑖

< 𝑥ℎ +𝑤ℎ

and therefore launch a call of 𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸. Finally, if there is some

𝑧 ∈ (max𝐻 (𝑖), 𝑥𝑖 ) where 𝑔𝑖 changes from being monotonically

decreasing to being strictly monotonically increasing, then 𝑧 = 𝑓 +
𝑖

and we are able to decide whether or not 𝑥ℎ +𝑤ℎ ≤ 𝑓 +
𝑖
holds. In

case the latter is true, we also have to determine max{𝑥ℎ +𝑤ℎ, 𝑓
−
𝑖
}.

To this end, observe that by convexity of 𝑓𝑖 , 𝑓
−
𝑖

is the unique co-

ordinate in [𝑥𝑚𝑖𝑛 +
∑𝑖−1

𝑗=1
𝑤 (𝐶 𝑗 ), 𝑥𝑚𝑎𝑥 −

∑𝑛
𝑗=𝑖 𝑤 (𝐶 𝑗 )] such that 𝑓𝑖 ,

restricted to the latter interval, is strictly monotonically decreasing

to the left, and monotonically increasing to the right of 𝑓 −
𝑖
. By ap-

plying a similar strategy as before, we can therefore either compute

𝑓 −
𝑖
∈ (max𝐻 (𝑖), 𝑥𝑖 ] or set 𝑥𝑖 to max{𝑥ℎ +𝑤ℎ,max𝐻 (𝑖)} ≥ 𝑓 −

𝑖
. As

a consequence, we are left with discussing the implementation of

𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 (𝐶ℎ,𝐶𝑖 ,L). Since we do not explicitly recompute 𝑓 −
ℎ

and 𝑓 +
ℎ

and the updates of 𝑤ℎ and L can be easily performed in

constant time when implementing L as a doubly linked list, we

only have to take care of the redefinition of 𝑓ℎ . To this end, note

that 𝑔ℎ can be updated by setting 𝑔ℎ (𝑥) ← 𝑔ℎ (𝑥) + 𝑔𝑖 (𝑥 + 𝑤ℎ)
by a constant number of arithmetic operations on the respective

coefficients. As far as the heap 𝐻 (ℎ) is concerned, we have to shift

all entries in 𝐻 (𝑖) by𝑤ℎ to the left and then merge 𝐻 (𝑖) into 𝐻 (ℎ).
By employing Leftist Heaps and storing key differences instead of

the actual keys (see [22] for further details), the shifting can be per-

formed in constant and the merging in logarithmic (w.r.t. the total

number of heap elements) time. A logarithmic or even constant

time bound also applies for all other heap operations we perform,

which comprise the creation of empty heaps, the extraction and

deletion of maximum heap entries as well as the insertion of new

elements. By observing that the maximum heap size is bounded

by min{𝑛,𝑚} since each heap contains at most one entry per cell,

but also at most one entry per kink, and that the total number of

heap operations is O(𝑛 +𝑚) since for every (pair of) shifting and

merging, we remove an entry from L, and every kink position is

added to and removed from a heap at most once, we obtain the

claimed runtime bound.

3 THE DOUBLE ROW PROBLEM
In this section, we

• formally introduce the Double Row Problem and

• reformulate the feasibility constraints as those of an instance

of the Single Row Problem defined on the set of cells of

double-row height.

As the name of the problem indicates, the task is to place a set

of cells of single- and double-row height within a given rectangu-

lar window covering two rows, minimizing a sum of continuous,

convex objective functions on the positions of the individual cells.

Thereby, the left-to-right ordering of those cells occupying a certain

row is fixed and the cells are not allowed to overlap.

Definition 3.1 (Double Row Problem).
Instance:
• a non-empty set C := {𝐶1, . . . ,𝐶𝑘 } of double-row cells,

• sets of cells

– B := {𝑏𝑖 𝑗 , 𝑖 = 0, . . . , 𝑘, 𝑗 = 1, . . . ,𝑚𝑖 } and
– T := {𝑡𝑖 𝑗 , 𝑖 = 0, . . . , 𝑘, 𝑗 = 1, . . . , 𝑛𝑖 }
to be placed in the bottom respectively top row,

where𝑚𝑖 , 𝑛𝑖 ∈ N0 for 𝑖 = 0, . . . , 𝑘 ,

• cell widths𝑤 : C ∪ B ∪ T → R+,
• a minimum and maximum coordinate 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ∈ R
such that

𝑥𝑚𝑖𝑛 +
𝑘∑︁
𝑖=1

𝑤 (𝐶𝑖 ) +
𝑘∑︁
𝑖=0

max


𝑚𝑖∑︁
𝑗=1

𝑤 (𝑏𝑖 𝑗 ),
𝑛𝑖∑︁
𝑗=1

𝑤 (𝑡𝑖 𝑗 )
 ≤ 𝑥𝑚𝑎𝑥

and

• convex, continuous cost functions

– 𝑓𝑖 : R→ R for 𝑖 = 1, . . . , 𝑘 ,

– 𝑔𝑖 𝑗 : R→ R for 𝑖 = 0, . . . , 𝑘 , 𝑗 = 1, . . . ,𝑚𝑖 and

– ℎ𝑖 𝑗 : R→ R for 𝑖 = 0, . . . , 𝑘 , 𝑗 = 1, . . . , 𝑛𝑖 .
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𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥

𝑏01 𝑏11 𝑏12 𝑏21

𝑡01 𝑡11 𝑡12 𝑡21 𝑡22 𝑡23

B0 B1 B2

T0 T1 T2

𝐶1 𝐶2

Figure 1: The Double Row Problem.

Task: Find coordinates (𝑥𝑖 )𝑘𝑖=1
, (𝑦𝑖 𝑗 )𝑘𝑖=0

𝑚𝑖

𝑗=1
and (𝑧𝑖 𝑗 )𝑘𝑖=0

𝑛𝑖
𝑗=1

min-

imizing

∑𝑘
𝑖=1

𝑓𝑖 (𝑥𝑖 ) +
∑𝑘
𝑖=0

(∑𝑚𝑖

𝑗=1
𝑔𝑖 𝑗 (𝑦𝑖 𝑗 ) +

∑𝑛𝑖
𝑗=1

ℎ𝑖 𝑗 (𝑧𝑖 𝑗 )
)

subject to

• 𝑥𝑖 +𝑤 (𝐶𝑖 ) ≤ 𝑥𝑖+1 for 𝑖 = 0, . . . , 𝑘 ,

• 𝑥𝑖 +𝑤 (𝐶𝑖 ) ≤ 𝑦𝑖1 for 𝑖 = 0, . . . , 𝑘 ,

• 𝑦𝑖 𝑗 +𝑤 (𝑏𝑖 𝑗 ) ≤ 𝑦𝑖 𝑗+1 for 𝑖 = 0, . . . , 𝑘 , 𝑗 = 1, . . . ,𝑚𝑖 − 1,

• 𝑦𝑖𝑚𝑖
+𝑤 (𝑏𝑖𝑚𝑖

) ≤ 𝑥𝑖+1 for 𝑖 = 0, . . . , 𝑘 ,

• 𝑥𝑖 +𝑤 (𝐶𝑖 ) ≤ 𝑧𝑖1 for 𝑖 = 0, . . . , 𝑘 ,

• 𝑧𝑖 𝑗 +𝑤 (𝑡𝑖 𝑗 ) ≤ 𝑧𝑖 𝑗+1 for 𝑖 = 0, . . . , 𝑘 , 𝑗 = 1, . . . , 𝑛𝑖 − 1 and

• 𝑧𝑖𝑛𝑖 +𝑤 (𝑡𝑖𝑛𝑖 ) ≤ 𝑥𝑖+1 for 𝑖 = 0, . . . , 𝑘 ,

where 𝑥0 := 𝑥𝑚𝑖𝑛 , 𝑤 (𝐶0) := 0, 𝑥𝑘+1 := 𝑥𝑚𝑎𝑥 and each con-

straint only applies if all of its variables exist.

For 𝑖 = 0, . . . , 𝑘 , we defineB𝑖 := {𝑏𝑖 𝑗 , 𝑗 = 1, . . . ,𝑚𝑖 } andT𝑖 := {𝑡𝑖 𝑗 , 𝑗 = 1, . . . , 𝑛𝑖 }.

Proposition 3.2. Given a tuple (𝑥∗
𝑖
)𝑘
𝑖=1

and an instance of the
Double Row Problem as defined above, there exists a feasible solution
to the Double Row Problem with 𝑥𝑖 = 𝑥∗

𝑖
for 𝑖 = 1, . . . , 𝑘 if and only if

𝑥∗𝑖 +𝑤 (𝐶𝑖 ) +max


𝑚𝑖∑︁
𝑗=1

𝑤 (𝑏𝑖 𝑗 ),
𝑛𝑖∑︁
𝑗=1

𝑤 (𝑡𝑖 𝑗 )
 ≤ 𝑥∗𝑖+1 for 𝑖 = 0, . . . , 𝑘,

where 𝑥∗
0

:= 𝑥0 := 𝑥𝑚𝑖𝑛 ,𝑤 (𝐶0) := 0 and 𝑥∗
𝑘+1 := 𝑥𝑘+1 := 𝑥𝑚𝑎𝑥 .

We call such a tuple (𝑥∗
𝑖
)𝑘
𝑖=1

feasible.

Remark. Note that a tuple (𝑥∗
𝑖
)𝑘
𝑖=1

is feasible if and only if it

defines a feasible solution to the instance of the Single Row Problem

with cell set C, cell widths

𝑤 ′(𝐶𝑖 ) := 𝑤 (𝐶𝑖 ) +max


𝑚𝑖∑︁
𝑗=1

𝑤 (𝑏𝑖 𝑗 ),
𝑛𝑖∑︁
𝑗=1

𝑤 (𝑡𝑖 𝑗 )


and enclosing 𝑥-interval [𝑥 ′
𝑚𝑖𝑛

, 𝑥 ′𝑚𝑎𝑥 ] given by

𝑥 ′𝑚𝑖𝑛 := 𝑥𝑚𝑖𝑛 +max


𝑚0∑︁
𝑗=1

𝑤 (𝑏0𝑗 ),
𝑛0∑︁
𝑗=1

𝑤 (𝑡0𝑗 )


and 𝑥 ′𝑚𝑎𝑥 := 𝑥𝑚𝑎𝑥 .

4 REDUCTION TO THE SINGLE ROW
PROBLEM

For the remainder of this paper, we restrict ourselves to the case

of piecewise quadratic cost functions and show how to reduce

the respective variant of the Double Row Problem to the Single

Row one. As we have already seen how to deal with the subject

of feasibility, it remains to transfer costs from the single-row cells

to the double-row ones, i.e. to determine the minimum cost of a

feasible extension of a feasible tuple (𝑥∗
𝑖
)𝑘
𝑖=1

and to express it as∑𝑘
𝑖=1

𝑓 ′
𝑖
(𝑥∗

𝑖
) for some piecewise quadratic objective functions 𝑓 ′

𝑖
.

• We examine the structure of an optimum extension of a

feasible tuple to coordinates for the single-row height cells.

• Lemma 4.1 expresses the total cost of such an extension, up

to a constant, as a sum

∑𝑘
𝑖=1

𝐹𝑖 (𝑥∗𝑖 ).
• We show that each of the functions 𝐹𝑖 is convex and piece-

wise quadratic and linearly bound the total number of kinks.

• We then derive our main result stated in Theorem 4.2.

Consider the coordinates (𝑦𝑖 𝑗 )𝑘𝑖=0

𝑚𝑖

𝑗=1
and (𝑧𝑖 𝑗 )𝑘𝑖=0

𝑛𝑖
𝑗=1

arising from

runs of the Clumping Algorithm on the instances of the Single

Row Problem given by (B𝑖 ,𝑤 ↾ B𝑖 , 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , (𝑔𝑖 𝑗 )𝑚𝑖

𝑗=1
) and (T𝑖 ,

𝑤 ↾ T𝑖 , 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , (ℎ𝑖 𝑗 )𝑛𝑖𝑗=1
) for 𝑖 = 0, . . . , 𝑘 . Note that once a

feasible tuple (𝑥∗
𝑖
)𝑘
𝑖=1

of coordinates for the double-row cells has

been fixed, coordinates (𝑦𝑖 𝑗 )𝑘𝑖=0

𝑚𝑖

𝑗=1
and (𝑧𝑖 𝑗 )𝑘𝑖=0

𝑛𝑖
𝑗=1

extend them

to a feasible solution of the Double Row Problem if and only if

for each 𝑖 ∈ {0, . . . , 𝑘}, (𝑦𝑖 𝑗 )𝑚𝑖

𝑗=1
and (𝑧𝑖 𝑗 )𝑛𝑖𝑗=1

constitute feasible

solutions of the instances of the Single Row Problem given by

(B𝑖 ,𝑤 ↾ B𝑖 , 𝑥∗𝑖 +𝑤 (𝐶𝑖 ), 𝑥
∗
𝑖+1, (𝑔𝑖 𝑗 )

𝑚𝑖

𝑗=1
) and (T𝑖 ,𝑤 ↾ T𝑖 , 𝑥∗𝑖 +𝑤 (𝐶𝑖 ),

𝑥∗
𝑖+1, (ℎ𝑖 𝑗 )

𝑛𝑖
𝑗=1
), respectively, whereby again 𝑥∗

0
:= 𝑥𝑚𝑖𝑛 ,𝑤 (𝐶0) := 0

and 𝑥∗
𝑘+1 := 𝑥𝑚𝑎𝑥 . Note that these instances are feasible by fea-

sibility of (𝑥∗
𝑖
)𝑘
𝑖=1

. But now, since for each 𝑖 = 0, . . . , 𝑘 , we have

𝑥𝑚𝑖𝑛 ≤ 𝑥∗
𝑖
+ 𝑤 (𝐶𝑖 ) ≤ 𝑥∗

𝑖+1 ≤ 𝑥𝑚𝑎𝑥 , Theorem 2.4 tells us that an

optimum extension (𝑦∗
𝑖 𝑗
)𝑘
𝑖=0

𝑚𝑖

𝑗=1
and (𝑧∗

𝑖 𝑗
)𝑘
𝑖=0

𝑛𝑖
𝑗=1

of (𝑥∗
𝑖
)𝑘
𝑖=1

is given

by

𝑦∗𝑖 𝑗 = min{𝑥∗𝑖+1−
𝑚𝑖∑︁
𝑙=𝑗

𝑤 (𝑏𝑖𝑙 ),max{𝑥∗𝑖 +𝑤 (𝐶𝑖 )+
𝑗−1∑︁
𝑙=1

𝑤 (𝑏𝑖𝑙 ), 𝑦𝑖 𝑗 }} (1)

and

𝑧∗𝑖 𝑗 = min{𝑥∗𝑖+1−
𝑛𝑖∑︁
𝑙=𝑗

𝑤 (𝑡𝑖𝑙 ),max{𝑥∗𝑖 +𝑤 (𝐶𝑖 )+
𝑗−1∑︁
𝑙=1

𝑤 (𝑡𝑖𝑙 ), 𝑧𝑖 𝑗 }}. (2)

This allows us to express the total cost of the solution in terms of

the coordinates (𝑥∗
𝑖
)𝑘
𝑖=1

:

Lemma 4.1. Let (𝑦𝑖 𝑗 )𝑘𝑖=0

𝑚𝑖

𝑗=1
and (𝑧𝑖 𝑗 )𝑘𝑖=0

𝑛𝑖
𝑗=1

as before and define

𝐹𝑖 : 𝑥 ↦→𝑓𝑖 (𝑥) (3)

+
𝑚𝑖−1∑︁
𝑗=1

𝑔𝑖−1𝑗 (min{𝑥 −
𝑚𝑖−1∑︁
𝑙=𝑗

𝑤 (𝑏𝑖−1𝑙 ), 𝑦𝑖−1𝑗 }) (4)

+
𝑚𝑖∑︁
𝑗=1

𝑔𝑖 𝑗 (max{𝑥 +𝑤 (𝐶𝑖 ) +
𝑗−1∑︁
𝑙=1

𝑤 (𝑏𝑖𝑙 ), 𝑦𝑖 𝑗 }) (5)

+
𝑛𝑖−1∑︁
𝑗=1

ℎ𝑖−1𝑗 (min{𝑥 −
𝑛𝑖−1∑︁
𝑙=𝑗

𝑤 (𝑡𝑖−1𝑙 ), 𝑧𝑖−1𝑗 }) (6)

+
𝑛𝑖∑︁
𝑗=1

ℎ𝑖 𝑗 (max{𝑥 +𝑤 (𝐶𝑖 ) +
𝑗−1∑︁
𝑙=1

𝑤 (𝑡𝑖𝑙 ), 𝑧𝑖 𝑗 }) (7)

and 𝑐 :=
∑𝑘−1

𝑖=1

∑𝑚𝑖

𝑗=1
𝑔𝑖 𝑗 (𝑦𝑖 𝑗 ) +

∑𝑘−1

𝑖=1

∑𝑛𝑖
𝑗=1

ℎ𝑖 𝑗 (𝑧𝑖 𝑗 ). Then for a feasi-

ble tuple (𝑥∗
𝑖
)𝑘
𝑖=1

, the total cost of an optimum solution to the Double
Row Problem with 𝑥𝑖 = 𝑥∗

𝑖
for 𝑖 = 1, . . . , 𝑘 amounts to

∑𝑘
𝑖=1

𝐹𝑖 (𝑥∗𝑖 )−𝑐 .

Proof. Recall that an optimum extension (𝑦∗
𝑖 𝑗
)𝑘
𝑖=0

𝑚𝑖

𝑗=1
and (𝑧∗

𝑖 𝑗
)𝑘
𝑖=0

𝑛𝑖
𝑗=1

of (𝑥∗
𝑖
)𝑘
𝑖=1

is given by (1) and (2). We are done if we can show that
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for any cell, the part of the cost term involving its objective function

matches the cost of its position in the given solution.

For the cells (𝐶𝑖 )𝑘𝑖=1
, this is clear.

For a cell 𝑏0𝑗 with 𝑗 ∈ {1, . . . ,𝑚0}, the desired statement follows

from 𝑥∗
0
+𝑤 (𝐶0) +

∑𝑗−1

𝑙=1
𝑤 (𝑏

0𝑙 ) = 𝑥𝑚𝑖𝑛 +
∑𝑗−1

𝑙=1
𝑤 (𝑏

0𝑙 ) ≤ 𝑦0𝑗 , and a

similar argument applies for 𝑖 = 𝑘 .

For a cell 𝑏𝑖 𝑗 with 𝑖 ∈ {1, . . . , 𝑘 − 1} and 𝑗 ∈ {1, . . . ,𝑚𝑖 }, we exem-

plarily consider the case where𝑦𝑖 𝑗 ≤ 𝑥∗
𝑖
+𝑤 (𝐶𝑖 )+

∑𝑗−1

𝑙=1
𝑤 (𝑏𝑖𝑙 ) since

the cases 𝑥∗
𝑖
+𝑤 (𝐶𝑖 ) +

∑𝑗−1

𝑙=1
𝑤 (𝑏𝑖𝑙 ) < 𝑦𝑖 𝑗 < 𝑥∗

𝑖+1 −
∑𝑚𝑖

𝑙=𝑗
𝑤 (𝑏𝑖𝑙 ) and

𝑥∗
𝑖+1 −

∑𝑚𝑖

𝑙=𝑗
𝑤 (𝑏𝑖𝑙 ) ≤ 𝑦𝑖 𝑗 can be treated similarly. In the mentioned

case, we get

𝑦∗𝑖 𝑗 = min{𝑥∗𝑖+1 −
𝑚𝑖∑︁
𝑙=𝑗

𝑤 (𝑏𝑖𝑙 ),max{𝑥∗𝑖 +𝑤 (𝐶𝑖 ) +
𝑗−1∑︁
𝑙=1

𝑤 (𝑏𝑖𝑙 ), 𝑦𝑖 𝑗 }}

= max{𝑥∗𝑖 +𝑤 (𝐶𝑖 ) +
𝑗−1∑︁
𝑙=1

𝑤 (𝑏𝑖𝑙 ), 𝑦𝑖 𝑗 }

and min{𝑥∗
𝑖+1 −

∑𝑚𝑖

𝑙=𝑗
𝑤 (𝑏𝑖𝑙 ), 𝑦𝑖 𝑗 } = 𝑦𝑖 𝑗 , so

𝑔𝑖 𝑗 (max{𝑥∗𝑖 +𝑤 (𝐶𝑖 ) +
𝑗−1∑︁
𝑙=1

𝑤 (𝑏𝑖𝑙 ), 𝑦𝑖 𝑗 })

+ 𝑔𝑖 𝑗 (min{𝑥∗𝑖+1 −
𝑚𝑖∑︁
𝑙=𝑗

𝑤 (𝑏𝑖𝑙 ), 𝑦𝑖 𝑗 }) − 𝑔𝑖 𝑗 (𝑦𝑖 𝑗 )

=𝑔𝑖 𝑗 (𝑦∗𝑖 𝑗 ) + 𝑔𝑖 𝑗 (𝑦𝑖 𝑗 ) − 𝑔𝑖 𝑗 (𝑦𝑖 𝑗 ) = 𝑔𝑖 𝑗 (𝑦∗𝑖 𝑗 ) .
The cells in T can be treated analogously. □

Up to the constant 𝑐 , which only depends on the given instance

of the Double Row Problem, but not on the tuple (𝑥∗
𝑖
)𝑘
𝑖=1

, we can

hence express the costs of an optimum solution extending a fea-

sible tuple (𝑥∗
𝑖
)𝑘
𝑖=1

as a sum of the cost functions (𝐹𝑖 )𝑘𝑖=1
applied

to the individual coordinates. Note that each of the summands

contributing to 𝐹𝑖 and hence 𝐹𝑖 itself is piecewise quadratic since

linear shifting as well as replacement by a constant function to

the left or right of a certain coordinate (ensuring continuity) pre-

serves this property. In addition to that, it is not hard to see that

the total number of kinks the cost functions (𝐹𝑖 )𝑘𝑖=1
possess can

be bounded by 2 · ( |B| + |T |) + 𝑁 , where 𝑁 denotes the total

number of kinks present in the cost functions of the single- and

double-row cells. To show that all 𝐹𝑖 are actually convex, it is suffi-

cient to show that each of the summands (3)-(7) induces a convex

function. This is clear for (3), and we exemplarily show it for (5).

Let L𝑏
𝑖
denote the list of cells arising from the run of the Clump-

ing Algorithm on the aforementioned instance of the Single Row

Problem with cell set B𝑖 . Given that for 𝑏𝑖 𝑗 ∈ L𝑏𝑖 , the cells in the

block 𝐵(𝑖 𝑗) starting at 𝑏𝑖 𝑗 are placed contiguously, we can rewrite

(5) as

∑
𝑏𝑖 𝑗 ∈L𝑏

𝑖
𝐺𝑖 𝑗 (max{𝑥 +𝑤 (𝐶𝑖 ) +

∑𝑗−1

𝑙=1
𝑤 (𝑏𝑖𝑙 ), 𝑦𝑖 𝑗 }), where𝐺𝑖 𝑗

denotes the cumulated cost function of the block represented by 𝑏𝑖 𝑗 .

Recall that by definition of the Clumping Algorithm, 𝑦𝑖 𝑗 occupies a

minimum position of𝐺𝑖 𝑗 for 𝑏𝑖 𝑗 ∈ L𝑏𝑖 . Given that for a continuous,

convex function 𝑓 : [𝑎, 𝑏] → R and 𝑥0 ∈ argmin{𝑓 (𝑥), 𝑥 ∈ [𝑎, 𝑏]},
the function mapping 𝑥 ∈ [𝑎, 𝑏] to 𝑓 (max{𝑥, 𝑥0}) is convex, it
follows that (5) defines a convex function in 𝑥 . By applying anal-

ogous arguments for the remaining summands, we can infer that

each 𝐹𝑖 is convex as a sum of convex functions. This completes

our reduction from the Double to the Single Row Problem and

it remains to discuss the runtime it requires. Note that the posi-

tions (𝑦𝑖 𝑗 )𝑘𝑖=0

𝑚𝑖

𝑗=1
and (𝑧𝑖 𝑗 )𝑘𝑖=0

𝑛𝑖
𝑗=1

can be computed in total time

O((|B| + |T | +𝑁 ) · log( |B| + |T |)), where again 𝑁 denotes the total

number of kinks of the all cost functions appearing in the given

instance of the Double Row Problem.

A time of O((|C| + |B| + |T | + 𝑁 ) · log( |C| + |B| + |T | + 𝑁 )) then
suffices to build up and solve the instance of the Single Row Problem

on the set of double-row cells to which we reduce, and optimum

coordinates for the single-row cells can be deduced from the com-

puted positions for the cells in C in linear time. Putting everything

together, we can therefore formulate the following theorem:

Theorem 4.2. The Double Row Problem with piecewise quadratic
functions with a total amount of 𝑁 kinks can be solved in time
O((|C| + |B| + |T | + 𝑁 ) · log( |C| + |B| + |T | + 𝑁 )).

5 EXPERIMENTAL RESULTS
We implemented the proposed algorithm in the C++ programming

language and embedded it into the legalization framework described

in [1]. More precisely, we first run the legalization algorithm from

[1], which legalizes all cells of more than single-row height via

a greedy projection approach and then proceeds by assigning all

cells of single-row height to so-called zones, unblocked segments

of cell rows, through a min-cost-flow algorithm. Within each zone,

the left-to-right ordering is inferred from the Global Placement

positions. While the algorithm from [1] proceeds by optimizing

squared cell movement only within each zone making use of the

Clumping Algorithm, we instead apply the Double Row Algorithm

to the instances of the Double Row Problem arising from the given

left-to-right ordering in every second pair of rows, treating all cells

of more than double-row height as blockages.

All experiments were performed single-threaded on Intel Xeon

3.3GHz CPUs with 384GB RAM. We conduct two experiments on

two different sets of benchmarks. The first one aims at establishing

the competitiveness of our legalization approach when compared

to recent works on the matter of mixed-cell-height legalization. The

second experiment displays the effectiveness of the Double Row

Algorithm in improving squared cell movement.

For the first experiment, we run our algorithm on benchmark in-

stances from the ICCAD-2017 CADContest onMulti-Deck Standard-

Cell Legalization [8]. In doing so, we omit fence region constraints

as well as soft constraints, but stick to the required power-rail align-

ment. As most prior works optimize linear instead of squared cell

movement, we employ our proposed legalization method to mini-

mize linear movement during the Double Row Algorithm. Observe

that this is possible since for each cell, once its row assignment is

fixed, the distance to its Global Placement location constitutes a

piecewise linear and hence in particular piecewise quadratic func-

tion. However, we point out that minimizing l1 movement is not

the main purpose of our algorithm and that in particular, the as-

signment to zones is designed to optimize squared instead of linear

movement. Hence, the subsequent comparison should be regarded

as proof that our algorithm, even though not explicitly devised

to do so, can compete with state-of-the-art legalizers concerning

linear cell movement. We compare the average l1 cell movement
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Table 1: Comparison between the average cell movement in terms of horizontal placement sites.

Instance GP HPWL (m) Δ HPWL Av. L1 Movement (Sites) Max. L1 Movement (Sites) CPU (sec)

DAC’17 ISPD’19 TCAD’13 Ours DAC’17 ISPD’19 TCAD’13 Ours

Ours

ISPD’19

DAC’17 ISPD’19 TCAD’13 Ours DAC’17 ISPD’19 Ours

des_perf_1 1.217 16.21% 6.66% 4.52% 4.52% 10.86 6.97 6.66 6.66 95.55% 200.82 48.95 57.22 57.22 11.23 11.75 9.97

des_perf_ a_md1 2.160 3.27% 2.48% 2.20% 2.19% 6.71 5.94 5.85 5.79 97.47% 607.30 607.30 607.30 607.30 2.30 2.79 8.05

des_perf_a_md2 2.177 3.35% 2.51% 2.23% 2.23% 6.77 5.93 6.08 6.07 102.36% 403.86 403.86 403.86 403.86 2.19 6.82 8.53

des_perf_b_md1 2.106 1.75% 1.52% 1.61% 1.59% 5.17 4.77 4.78 4.72 98.95% 79.34 38.45 48.19 45.19 2.01 3.64 6.79

des_perf_b_md2 2.137 2.05% 1.72% 1.50% 1.49% 5.74 5.25 5.38 5.31 101.14% 198.74 39.76 50.68 50.68 2.31 3.12 8.06

edit_dist_1_md1 4.004 1.47% 1.39% 1.27% 1.26% 6.22 5.79 5.75 5.69 98.27% 109.34 95.45 67.55 67.55 3.49 5.19 9.67

edit_dist_a_md2 5.103 1.17% 1.01% 0.92% 0.91% 6.02 5.51 5.57 5.51 100.00% 164.00 164.00 164.00 164.00 2.59 2.24 10.78

edit_dis_ a_md3 5.328 2.69% 1.48% 1.02% 1.02% 9.11 7.08 6.96 6.93 97.88% 233.00 233.00 233.00 233.00 5.91 15.68 15.87

fft_2_md2 0.444 11.21% 8.78% 7.14% 7.02% 8.84 7.54 7.89 7.76 102.92% 102.94 73.60 59.55 60.55 0.70 2.89 2.81

fft_a_md2 1.092 0.98% 0.95% 1.13% 1.13% 5.03 4.86 4.74 4.70 96.71% 345.50 345.50 343.48 346.50 0.69 0.60 2.15

ff_ a_md3 0.949 1.08% 1.08% 1.22% 1.22% 4.73 4.55 4.43 4.42 97.14% 109.62 109.62 102.59 102.59 0.63 0.40 1.91

pci_bridge32_a_md1 0.454 3.61% 3.38% 3.00% 2.95% 6.01 5.64 5.83 5.76 102.13% 72.48 63.76 63.76 63.76 0.61 2.29 2.01

pci_bridge32_a_md2 0.565 8.33% 4.38% 3.68% 3.62% 9.43 7.14 7.55 7.45 104.34% 186.08 121.35 121.35 121.35 0.53 3.34 3.76

pc_ bridge32_b_md1 0.660 2.55% 2.26% 2.13% 2.11% 6.35 6.01 5.79 5.72 95.17% 322.71 332.71 313.99 313.99 0.52 0.70 2.41

pci_bridge32_b_md2 0.574 2.80% 2.53% 2.57% 2.57% 5.92 5.53 5.43 5.42 98.01% 640.12 430.04 430.04 430.04 0.50 0.66 1.89

pci_bridge32_b_md3 0.583 3.63% 3.17% 3.14% 3.13% 6.74 6.10 6.13 6.12 100.33% 398.57 398.57 398.58 398.58 0.51 1.58 2.21

average 4.13% 2.83% 2.46% 2.44% 6.85 5.91 5.93 5.88 99.27% 260.90 219.12 216.57 216.64 2.30 3.98 5.06

Table 2: Comparison between the squared cell movement
resulting from the legalization algorithm described in
TCAD’13 and our algorithm.

Instance GP HPWL (m) Cells Squared Cell Movement

Single Double

# double

# cells

TCAD’13 Ours

Ours

TCAD’13

des_perf_1 1.433 103842 8802 7.81% 4.15E+10 2.82E+10 68.00%

des_perf_a 2.573 99775 8513 7.86% 3.66E+09 2.51E+09 68.53%

des_perf_b 2.131 103842 8802 7.81% 3.84E+09 2.49E+09 64.94%

edit_dist_a 5.252 121913 5500 4.32% 4.49E+09 3.17E+09 70.55%

fft_1 0.456 30297 1984 6.15% 9.53E+09 5.54E+09 58.18%

fft_2 0.463 30297 1984 6.15% 1.95E+09 1.20E+09 61.43%

fft_a 0.750 28718 1907 6.23% 1.30E+09 9.04E+08 69.41%

fft_b 0.952 28718 1907 6.23% 1.89E+09 1.27E+09 67.13%

matrix_mult_1 2.391 152427 2898 1.87% 9.80E+09 6.81E+09 69.47%

matrix_mult_2 2.584 152427 2898 1.87% 8.26E+09 5.68E+09 68.77%

matrix_mult_a 3.772 146837 2813 1.88% 2.97E+09 2.31E+09 77.89%

matrix_mult_b 3.299 143695 2740 1.87% 2.61E+09 2.15E+09 82.07%

pci_bridge32_a 0.460 26268 3249 11.01% 1.23E+09 7.93E+08 64.60%

pci_bridge32_b 0.980 25734 3180 11.00% 6.13E+08 3.61E+08 58.86%

superblue11_a 42.915 861314 64302 6.95% 2.67E+11 2.48E+11 92.74%

superblue12 39.110 1172586 114362 8.89% 5.61E+11 5.38E+11 95.84%

superblue14 27.905 564769 47474 7.75% 2.00E+11 1.81E+11 90.19%

superblue16 a 31.330 625419 55031 8.09% 6.35E+10 4.76E+10 74.99%

superblue19 20.722 478109 27988 5.53% 1.22E+11 1.14E+11 93.21%

average 73.51%

achieved by our algorithm to the results obtained by [5] and the

state-of-the-art paper [18] as reported in [18] as well as the legal-

ization approach from [1]. Table 1 displays the relative increase

(Δ HPWL) of the half-perimeter wire length after Global Placement

(GP HPWL), the average l1 cell movement (measured in horizontal

placement sites), the maximum l1 cell movement (again measured

in placement sites) and the runtime in CPU seconds for the algo-

rithms in [5](DAC’17), [18](ISPD’19) and [1](TCAD ’13) and the

algorithm suggested in this paper (Ours). Concerning the average

cell movement, which we are mainly interested in for this compari-

son, the column labeled ”Ours/ISPD’19” contains the percentages

the average cell movement obtained by "Ours" constitutes of the

average cell movement reported by ISPD’19 [18]. The final row

labeled ”average” displays the average of all prior values in the

respective column. In particular, the respective entry in the column

”Ours/ISPD’19” refers to the average of the above percentages. One

can see that on average, our proposed algorithm achieves com-

parable results to the algorithm in [18], which in turn produces

considerably better results than [5] when it comes to average cell

movement. However, the deviation between the different instances

is relatively high: While there are some on which our algorithm

significantly outperforms the method from [18] (including those

where no cells of triple- and quadruple-row height are present),

the converse is true for several other test cases. One possible ex-

planation for this might be the fact that the greedy legalization

of cells of more than double-row height only works well if they

are sufficiently spaced out in the Global Placement solution, which

is true for only some of the given benchmarks. When it comes to

running time, maximum movement, and increase in HPWL, our

algorithm can be seen to yield comparable or even better results.

In our second experiment, we compare the total quadratic cell

movement achieved by the algorithm described in [1] to minimize

squared cell movement and our new method. As the number of

double-row cells on the ICCAD-2017 CAD Contest benchmarks

[8] is rather small, we employ a set of benchmarks generated by

the authors of [7] by modifying instances from the ISPD 2015 De-

tailed Routing-Driven Placement Contest [4]. While these are more

suitable for the primary application of our algorithm, we decided

against using them for a comparison to other legalizers since they

are not publicly available and the parsing process appears to be

more error-prone due to a non-standard format. For completeness,

we nevertheless state that our experiments revealed an average cell

movement better than the one obtained by [7], [5] and [23], but

worse than what is claimed in [14] (at the cost of a considerably

higher runtime) and [17].

The results of our second experiment can be read from Table 2,

which displays the squared cell movement achieved by the algo-

rithm described in TCAD’13 [1] and the algorithm proposed in

this paper. The first column contains the instance name, while the

columns labeled "Single" and "Double" display the number of cells

of single- respectively double-row height present on the given test

case, whereby the fraction the number of double-row cells consti-

tutes of the total number of cells can be found in the following col-

umn labeled "# double/# cells". Cells of more than double-row height

do not occur. The last three columns contain the total quadratic cell

movement in squared base units resulting from the TCAD’13 legal-

ization algorithm and ours as well as the ratio between both. One

can see that an average percental decrease in quadratic movement

of more than 26% is achieved. Even on instances with only a few
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Figure 2: superblue12

Figure 3: matrix_mult_1 after our algorithm. Blue lines in-
dicate movement w.r.t. the output of TCAD’13.

cells of double-row height, improvements achieved by the applica-

tion of the Double Row Algorithm are quite significant, which can

be explained by the fact that even a single double-row cell being

fixed in position may lead to the displacement of huge blocks of

consecutive cells of single-row height in densely packed regions

(see Figure 3). On the other hand, if many of the cells of double-row

height do not interfere with those of single-row height at all in that

there is sufficient horizontal whitespace around them, comparably

small improvements are obtained despite a considerable number

of cells of double-row height present (see Figure 2). However, as

the legalization task becomes more difficult in those cases where

the Global Placement packs the cells relatively dense locally, the

Double Row Algorithm can be considered a worthwhile extension

of the considered legalization framework.

6 CONCLUSION
In this paper, we have presented a fast algorithm to minimize qua-

dratic (or linear) cell displacement for pairs of cell rows comprising

cells of both single- and double-row height with predefined target

locations and a fixed left-to-right ordering. Even though the sur-

rounding legalization framework is designed to optimize squared

instead of linear cell displacement, our results are competitive when

compared to state-of-the-art works on mixed-cell-height legaliza-

tion. Moreover, experimental results comparing the squared cell

displacement when fixing all cells of double-row height and when

employing the Double Row Algorithm, respectively, clearly speak

in favor of its effectiveness.
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