
The Floyd-Warshall Algorithm on Graphs with

Negative Cycles

Stefan Hougardy

Research Institute for Discrete Mathematics, University of Bonn, Lennéstr. 2, 53113 Bonn,

Germany

Abstract

The Floyd-Warshall algorithm is a simple and widely used algorithm to compute
shortest paths between all pairs of vertices in an edge weighted directed graph.
It can also be used to detect the presence of negative cycles. We will show that
for this task many existing implementations of the Floyd-Warshall algorithm
will fail because exponentially large numbers can appear during its execution.

Keywords: Floyd-Warshall algorithm, design of algorithms, graph algorithms

1. Introduction

The Floyd-Warshall algorithm [3] (see Figure 1) is a simple and widely
used algorithm to compute shortest paths between all pairs of vertices in an
edge weighted directed graph. This algorithm has a worst-case runtime of
O(n3) for graphs with n vertices. There exist several algorithms with a bet-
ter worst-case runtime [4, 11, 6, 12, 16, 13, 2, 7, 1, 5], the best of these al-
gorithms currently achieve a runtime of O(n3 log log n/ log2 n) [5] respectively
O(mn+n2 log log n) [9]. However, these algorithms are much more complicated
than the Floyd-Warshall algorithm and involve complicated data structures.
Therefore, in many cases the Floyd-Warshall algorithm is still the best choice.

The Floyd-Warshall algorithm outputs the correct result as long as no neg-
ative cycles exist in the input graph. In case that a negative cycle exists, com-
puting a shortest (simple) path is an NP-hard problem (see e.g. [8]) and the
Floyd-Warshall algorithm will not output the correct result. Rather, it will de-
tect the presence of a negative cycle by checking that there is a negative entry
in the diagonal of the matrix M (lines 8 and 9 in Figure 1). In many widely
used implementations this is done as shown in Figure 1. See for example the
books [14, 10] or the implementation and the comments given in the section
”Behaviour with negative cycles” in Wikipedia [15]. We will show that for such
implementations there exist simple examples in which the matrix M can have

Email address: hougardy@or.uni-bonn.de (Stefan Hougardy)

Preprint submitted to Elsevier January 21, 2010

This paper appeard in: Information Processing Letters 110 (2010), 279-281

exponentially large entries and thus an overflow may occur during the execution
of the Floyd-Warshall algorithm. As we will see the numbers in M not only can
double but can grow by a factor of six in each iteration.

Floyd-Warshall-Algorithm

Input: A digraph G with V (G) = {1, . . . , n} and weights c :
E(G) → R

Output: An n × n matrix M such that M [i, j] contains the length
of a shortest path from vertex i to vertex j.

1 M [i, j] := ∞ ∀i 6= j

2 M [i, i] := 0 ∀i

3 M [i, j] := c((i, j)) ∀(i, j) ∈ E(G)

4 for i := 1 to n do

5 for j := 1 to n do

6 for k := 1 to n do

7 if M [j, k] > M [j, i] + M [i, k] then M [j, k] := M [j, i] + M [i, k]

8 for i := 1 to n do

9 if M [i, i] < 0 then return(’graph contains a negative cycle’)

Figure 1: The Floyd-Warshall algorithm for computing the lengths of shortest paths between
all pairs of vertices in a directed graph with possibly negative edge weights.

2. Exponentially large numbers in the Floyd-Warshall algorithm

In the following let G = (V, E) be a directed graph with |V | = n and let
c : E(G) → R be an arbitrary weight function on the edges of G. By cmax we
denote the largest absolute value that an edge weight in G has, i.e., cmax :=
maxe∈E(G){|c(e)|}. Using this value one can easily bound the largest number
that appears in the matrix M during the execution of the Floyd-Warshall algo-
rithm under the assumption that no negative cycle exists in the input graph. We
denote by ||M ||max the maximum norm of the matrix M where we ignore entries
with the symbolic value of ∞, i.e., ||M ||max := maxi,j{|M [i, j]| with M [i, j] 6=
∞}.

Proposition 1. If the input graph of the Floyd-Warshall algorithm does not

contain a negative cycle then

||M ||max ≤ n · cmax

at any time during the execution of the algorithm.

Proof. If no negative cycle exists in the input graph then at any time of the
execution of the Floyd-Warshall algorithm an entry M [i, j] 6= ∞ contains the

2

This paper appeard in: Information Processing Letters 110 (2010), 279-281

length of some path from vertex i to vertex j. As such a path can consist of at
most n − 1 edges the result follows.

In contrast to the above result we will now prove that the entries of the
matrix M can become exponentially large, if the input graph is allowed to
contain negative cycles.

Theorem 2. There exist graphs such that

||M ||max = 2 · 6n−1 · cmax

during the execution of the Floyd-Warshall algorithm.

Proof. Consider the following graph on vertices 1, . . . , n with edge set E =
{(1, i)|1 ≤ i ≤ n} ∪ {(i, 1)|2 ≤ i ≤ n}. Let c(e) := −1 for all e ∈ E. We now
prove by induction on the number i of executions of the outer for-loop in the
Floyd-Warshall algorithm (line 4 in Figure 1) that the following equations hold:

M [i, i] = −
1

3
· 6i (1)

M [i, j] = −
1

2
· 6i, for j > i (2)

M [j, i] = −
1

2
· 6i, for j > i (3)

M [i + 1, j] = −6i, for j > i. (4)

For i = 1 this is easily seen to be true: For j = 1 line 7 of the algorithm sets
M [1, k] to the value M [1, 1]+M [1, k] for k = 1, . . . , n. This results in M [1, 1] =
−1 + (−1) = −2 = − 1

3 · 61 and M [1, k] = −2 + (−1) = −3 = − 1
2 · 61. Similarly

we have M [j, 1] = M [j, 1] + M [1, 1] = −1 + (−2) = −3 = − 1
2 · 61 for 2 ≤ j ≤ n.

Finally for j > 1 we have M [2, j] = M [2, 1] + M [1, j] = −3 + (−3) = −61.
For i > 1 we use (4) to obtain M [i, i] = M [i, i]+M [i, i] = −6i−1+(−6i−1) =

− 1
3 · 6i which proves (1). From (4) we also get M [i, j] = M [i, i] + M [i, j] =

− 1
3 · 6i + (−6i−1) = − 1

2 · 6i for j > i. Similarly M [i, j] = M [j, i] + M [i, i] =
−6i−1 + (− 1

3 · 6
i) = − 1

2 · 6
i for j > i. Finally we have M [i + 1, j] = M [i + 1, i] +

M [i, j] = − 1
2 · 6i + (− 1

2 · 6i) = −6i for j > i.
Thus we get from (1): M [n, n] = − 1

3 · 6n = −2 · 6n−1. As we have cmax = 1
in our graph the result follows.

The graphs that are constructed in Theorem 2 contain one negative loop, i.e.,
a negative cycle of length 1. However, it is easily seen that exponentially large
numbers can appear even if there do not exist short negative cycles: Simply
subdivide all negative edges a suitable number of times. By doing so one can
easily see that the largest entry of M still can grow as Ω(6n · cmax).

3

This paper appeard in: Information Processing Letters 110 (2010), 279-281

3. Conclusion

We have shown that during the execution of the Floyd-Warshall algorithm
exponentially large numbers may occur, if the input graph contains negative
cycles. Theorem 2 implies that even for graphs with less than 30 vertices and
60 edges with weight −1 it may happen that during the execution of the Floyd-
Warshall algorithm numbers with absolute value larger than 264 occur. This
shows that for larger graphs it can be quite likely to have subgraphs causing an
overflow.

Of course, there is a simple way to avoid this pitfall: Instead of checking
for negative cycles at the end of the algorithm one can include lines 8 and 9
in Figure 1 in the for-loop in line 6 without increasing the worst-case runtime.
Another possibility is to first use the Bellman-Ford algorithm [8] to detect nega-
tive cycles in O(mn) and to start the Floyd-Warshall algorithm only if the input
graph has no negative cycles. Most implementations of the Floyd-Warshall al-
gorithm we have seen apply neither of these two solutions and therefore might
fail if negative cycles exist in the input graph. With this note we want to make
aware of this potential pitfall.

[1] Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted
graphs. In STOC07, pages 590–598, 2007.

[2] Timothy M. Chan. All-pairs shortest paths with real weights in O(n3/ log n)
time. Algorithmica, 50:236–243, 2008.

[3] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the

ACM, 5(6):345, 1962.

[4] Michael L. Fredman. New bounds on the complexity of the shortest path
problem. SIAM Journal on Computing, 5(1):83–89, 1976.

[5] Yijie Han. An O(n3 log log n/ log2 n) time algorithm for all pairs shortest
paths. Manuscript, 2009.

[6] Yijie Han. A note of an O(n3/ logn) time algorithm for all pairs shortest
paths. Information Processing Letters, 105:114–116, 2008.

[7] Yijie Han. An O(n3(log log n/ logn)5/4) time algorithm for all pairs shortest
paths. Algorithmica, 51:428–434, 2008.

[8] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and

Algorithms. Springer-Verlag Berlin Heidelberg, fourth edition, 2008.

[9] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted
graphs. Theoretical Computer Science, 312:47–74, 2004.

[10] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo. Combinatorial

Algorithms: Theory and Practice. Prentice-Hall, Inc., 1977.

4

This paper appeard in: Information Processing Letters 110 (2010), 279-281

[11] Tadao Takaoka. A new upper bound on the complexity of the all pairs
shortest path problem. Information Processing Letters, 43:195–199, 1992.

[12] Tadao Takaoka. A faster algorithm for the all-pairs shortest path problem
and its application. In K.-Y. Chwa and J.I. Munro, editors, COCOON

2004, volume 3106 of Lecture Notes in Computer Science, pages 278–289.
Springer-Verlag Berlin Heidelberg, 2004.

[13] Tadao Takaoka. An O(n3 log log n/ logn) time algorithm for the all-pairs
shortest path problem. Information Processing Letters, 96:155–161, 2005.

[14] Mark Allen Weiss. Data Structures and Algorithm Analysis. The Ben-
jamin/Cummings Publishing Company, Inc., second edition, 1995.

[15] Wikipedia. Floyd-Warshall algorithm — Wikipedia, The Free Encyclope-
dia, 2009. [Online; accessed 20-November-2009].

[16] Uri Zwick. A slightly improved sub-cubic algorithm for the all pairs shortest
paths problem with real edge lengths. Algorithmica, 46:181–192, 2006.

5

This paper appeard in: Information Processing Letters 110 (2010), 279-281

