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Abstract

We present a new algorithm designed to solve floorplanning problems optimally. More
precisely, the algorithm finds solutions to rectangle packing problems which globally minimize
wirelength and avoid given sets of blocked regions. We present the first optimal floorplans
for 3 of the 5 intensely studied MCNC block packing instances and a significantly larger
industrial instance with 27 rectangles and thousands of nets. Moreover, we show how to
use the algorithm to place larger instances that cannot be solved optimally in reasonable
runtime.
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1 Introduction

In this paper we consider the floorplanning (or facility layout / placement) problem [1, 31], which
asks for optimal positions for a given set of rectangles (the circuits) within a facility (the chip
area), such that the rectangles do not overlap. The objective is to minimize distances, in our
case the weighted half-perimeter wirelength, between some specified subsets of the rectangles.
In the VLSI context the wirelength is a measure for the amount of metal needed to connect the
circuits in a way that ensures the functionality of the chip. In some floorplanning approaches,
the problem instances consist of so-called soft rectangles, i.e., rectangles varying in their height
and width. Then, finding optimal values for the rectangles’ widths and heights is also a part of
the problem. However, in the following we only take hard rectangles into account, i.e., rectangles
having a fixed outline.
Even without the optimization aspect the problem of packing given rectangles in a rectangular
area is NP -complete, and it stays NP -complete under very strong restrictions like requiring the
rectangular region to be larger by any factor than the area covered by the circuits themselves [30].
Thus there is no hope for a polynomial-time algorithm that solves the floorplanning problem
optimally.
As a consequence, approaches looking for exact solutions usually consider the packing problem:
What is the smallest rectangle into which a given set of smaller rectangles can be packed? On the
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other hand, floorplanning algorithms that consider a target function like wirelength are usually
heuristics without provable guarantees on the quality of their solutions.
In this paper, both aspects are combined: We extend the exact packing algorithm by Moffitt
and Pollack [32] so that it optimizes wirelength, resulting in an algorithm that finds provably
optimal solutions to wirelength minimization problems. Moreover, we present a framework that
uses this method as a subroutine to solve larger instances for which no optimal solution can be
found in reasonable runtime.
The remaining paper is organized as follows: After revisiting previous work in Section 2, Sec-
tion 3 provides some basic definitions and notation used throughout this paper. In Section 4,
we review the Containment algorithm from [32], a method to pack a set of rectangles and
which will serve as the basis for our extensions discussed in Section 5. These extensions enable
the algorithm to solve an optimization problem, namely the wirelength minimization problem.
Finally, Section 6 presents computational results on widespread MCNC benchmarks, additional
synthetic benchmarks and real-world instances provided by IBM, and Section 7 summarizes our
contributions.

2 Related Work

The problem of arranging multiple rectangles disjointly into a larger region, usually another
rectangle, is known as rectangle packing. As a fundamental geometric problem, it has been
studied for many decades [33]. Algorithmic advances were made in the context of VLSI design,
where arrangements of rectangles are represented with certain structures, for example sequence
pairs [34], bounded sliceline grids [35], Q-sequences [50] or B*-trees [41], that can be improved
by heuristics like simulated annealing. To compute wirelength optimal placements a floorplan
representation is needed that allows to represent placements of floorplans in general position.
Good surveys on these floorplan representations can be found in [48] and [3].
A series of papers by Korf et al., e.g. [21, 22, 18], present optimal algorithms that find minimum-
area rectangles into which a given set of rectangles can be packed. They present solutions up
to n = 32 for a benchmark problem where n squares of size 1 to n have to be packed into a
smallest possible rectangle. In some cases, for example when most or all of the available area
must be covered by rectangles, even larger instances can be solved [16]. Moffit and Pollack [32]
introduced a branch and bound method for the rectangle packing problem that we extend in
the following chapters to compute wirelength optimal rectangle packings.
Most papers concerned with target functions like wirelength do not present algorithms that
guarantee to find an optimal solution. The approaches used often rely on heuristics similar to the
methods that are also applied for area minimization. For example, Tang and Sebastian [43] use a
genetic algorithm to optimize over O-trees, Fernando and Katkoori [11] use sequence pairs, and
Lin et al. [28] use B*-trees. Yan and Chu [47] use generalized slicing trees in combination with
local operations to optimize the wirelength. Sutanthavibul, Shragowitz, and Rosen [42] present
an approach that allows to bound the length of each net individually. Onodera, Taniguchi, and
Tamaru [36] present an algorithm for computing netlength optimal rectangle placements. Their

branch-and-bound algorithm is based on the enumeration of all 4(
n

2
) possible relations that can

exist between n rectangles. The largest instance that they present in their paper with an optimal
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solution had 6 rectangles.
A more extensive survey on floorplanning literature is presented by Bortfeldt [2].

3 Preliminaries

We start by formalizing the notions used throughout this paper. Unless otherwise noted the
problem instance always consists of n axis-parallel rectangles R = {r1, . . . , rn} having integer
widths wi and heights hi, for 1 ≤ i ≤ n, and two integers W and H representing the size of the
rectangular box in which R must be packed. We always assume that wi ≤ W and hi ≤ H for
1 ≤ i ≤ n and that rotation of the rectangles is not allowed.
We call a rectangle ri placed if there is a location (xi, yi) assigned to it. In this case, the rectangle
is identified with the set [xi, xi + wi] × [yi, yi + hi] such that (xi, yi) can be seen as the lower
left corner of ri. We also write x(ri) instead of xi and y(ri) instead of yi. An assignment of
locations to a subset of R is a placement or, if locations are assigned to all n rectangles, a
complete placement. A placement is legal if both of the following conditions hold:

1. Containment constraints: All placed rectangles lie within the outer box, i.e. 0 ≤ xi ≤
W − wi and 0 ≤ yi ≤ H − hi hold for every index i of a placed rectangle.

2. Non-overlap constraints: The placed rectangles are pairwise interior-disjoint. More for-
mally, for all distinct indices i and j of placed rectangles at least one of the following
inequalities holds: xi + wi ≤ xj, xj + wj ≤ xi, yi + hi ≤ yj, or yj + hj ≤ yi.

To simplify the notation, we will replace the constraints of the second condition by the symbols

iHj (ri is to the left of rj), jHi (ri is to the right of rj), V
j
i (ri is below rj), and V i

j (ri is above
rj).
Since the algorithms presented in the following chapters do not directly look for placements but
rather describe the relative positions of placed rectangles, we introduce the notion of relative
placements. Let ρ be a function that maps pairs of distinct rectangles to relative positions of
these pairs, in other words ρ(ri, rj) ∈ {iHj, jHi, V j

i , V i
j }, then we call ρ a relative placement,

or, if all pairs of distinct rectangles are in its domain, a complete relative placement. We say a
placement satisfies ρ if it satisfies all inequalities in the image of ρ, and a relative placement is
called consistent if there exists a complete placement that satisfies ρ. In the former sections we
start to compute a solution to the containment problem, i.e. the problem of deciding for a set R
of rectangles and numbers W and H if there exists a legal complete placement.
As the aim of this paper is not only to produce placements of rectangles, but also to minimize
wirelength, we move on to definitions that are used in the field of VLSI design.

Definition 1. A netlist is an instance (R,W,H) of the containment problem together with a
set P (the pins), an assignment γ : P → R ∪ {�}, pin offsets xoffs : P → Z and yoffs : P → Z,
a partition of the pins N = {N1, . . . , Nk} (the nets), i.e. P = N1∪̇ . . . ∪̇Nk, and net weights
w : N → R+.

Given a netlist and a complete placement of R, the location of a pin p ∈ P is given by x(p) :=
x(γ(p)) + xoffs(p) if γ(p) 6= � and x(p) := xoffs(p) otherwise. Vertical coordinates are defined
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analogously. In VLSI design, the rectangles correspond to circuits that have to be arranged on
the rectangular chip area. Pins are the positions where the circuits have to be connected by
wires, and nets are sets of pins that have to be connected electrically. The goal is to minimize the
expected length of these connections, often modeled by the size of the smallest box containing
all pins of a net.

Definition 2. Let (~x, ~y) be a complete placement of a netlist. Then the weighted half-perimeter
wirelength is defined as

HPWL(~x, ~y) :=
∑

N∈N

w(N) ·

(
max
p∈N

x(p)−min
p∈N

x(p)+

max
p∈N

y(p)−min
p∈N

y(p)

)
.

Here ~x and ~y denote vectors containing the coordinates of the placed rectangles. Using this
notion of wirelength, the (fixed-outline) floorplanning problem, also called placement problem,
is the following: Given a netlist and a legal placement of R, find a legal complete placement
(~x, ~y) extending it that minimizes HPWL(~x, ~y) or decide that no such placement exists. The
rectangles that are already placed in the input are called blockages.
If all rectangle sizes wi and hi and all pin offsets xoffs and yoffs are integers, then we call the
instance of the floorplanning problem nearly integral. When we speak about the floorplanning
problem we only consider nearly integral instances as an input within this paper.
As many of our results are obtained on graphs, some notations of graphs conclude this section.
When we talk about a graph G = (V,E), then we always assume that G is directed. Its node
set is denoted by V and its edge set by E. We also write V (G) to indicate its nodes and E(G)
to indicate its edges instead.

Definition 3. A directed graph G = (V,E) together with capacities u and costs c on its edges,
i.e., u, c : E → R and balances b : V → R on its nodes is called network. A b-flow is a
function f : E → R+, such that 0 ≤ f(e) ≤ u(e) holds for all e ∈ E and the flow conservation∑

(v,w)∈E f(v,w) −
∑

(w,z)∈E f(w, z) = b(w) is satisfied for all w ∈ V .

If a network (G,u, b, c) is given, the Minimum Cost Flow Problem asks for a b-flow of minimum
costs where the cost of a flow f is defined as c(f) :=

∑
e∈E f(e) · c(e).

4 Solving the Containment Problem

In this section, we consider the packing aspect of floorplanning. We present an algorithm
that extends the core routine of BlueBlocker from Moffitt and Pollack [32] and solves the
containment problem. Similar to a method of Taniguchi et al. [36] the Containment algorithm
iteratively generates a relative placement ρ, starting with the trivial mapping that does not
assign any relative positions. In a branch and bound approach, subsequently assigning relations
to pairs without a relation in such a way that ρ remains consistent.
Algorithm 1 shows the recursive formulation of the algorithm. Here ρ[◦] denotes the relative
placement which is obtained from ρ by mapping (ri, rj) to ◦. When extending ρ by, say, mapping
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Input : A finite rectangle set R, positive numbers W and H, and a consistent relative
placement ρ.

Output: SUCCESS, if there exists a legal complete placement of R that satisfies the
assignments of ρ, FAILURE otherwise.

1 if ρ is complete then

2 Return SUCCESS;
3 end

4 Choose pair (ri, rj) with i 6= j which is not in the domain of ρ;

5 for ◦ ∈ {iHj, jHi, V j
i , V i

j } do

6 if ρ[◦] is consistent then

7 if Containment(R,W,H, ρ[◦]) then

8 return SUCCESS;
9 end

10 end

11 end

12 return FAILURE;

Algorithm 1: Containment algorithm

the pair (ri, rj) to iHj, it is always possible to implicitly map (rj , ri) to jHi, too. This is a simple
consequence from the symmetry of the inequalities.
As soon as this approach leads to a complete relative placement which is consistent, the algorithm
stops. Observe that in this case, by definition, a legal placement exists. If on the other hand
the algorithm fails, no legal placement exists.

4.1 The Consistency Check

In every step the Containment algorithm needs to check whether the extended relative place-
ment is still consistent. In order to do so, two so-called distance graphs Ghor and Gver—one
for each direction—are used. Ghor contains n vertices v1, . . . , vn and a directed arc (vj , vi) of
weight −wi if ρ(ri, rj) = iHj. We also include nodes v0 and vn+1 representing the lower left and
upper right corners of the placement box. Then Ghor contains arcs (vi, v0) of weight 0 and arcs
(vn+1, vi) of weight −wi for 1 ≤ i ≤ n. It also contains a special arc e� = (v0, vn+1) of weight
W . Analogously, Gver is defined on the same vertex set and has an arc (vj , vi) of weight −hi if

ρ(ri, rj) = V j
i , arcs (vi, v0) of weight 0 and (vn+1, vi) of weight −hi for 1 ≤ i ≤ n, and an arc

e� = (v0, vn+1) of weight H.
Shostak [40], Liao and Wong [26] and Leiserson and Saxe [25] showed that these graphs can be
used to determine the consistency of a placement.

Lemma 4. A relative placement ρ is consistent if and only if Ghor and Gver have no negative
cycles.

Using this lemma we can check in polynomial time whether a given relative placement is con-
sistent.
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Lemma 5. Given distance graphs Ghor and Gver, it can be checked in time O(n2) whether the
associated relative placement is consistent.

Proof. First we can check in linear time whether Ghor − e� and Gver − e� are acyclic. If one of
them contains a cycle, Lemma 4 implies that the relative placement is not consistent. Otherwise,
we have to check if the distance from vn+1 to v0 is less than −W respective −H. This can be
done in linear time in an acyclic graph. The lemma follows from the observation that Ghor and
Gver have O(n2) edges.

4.2 The Bounding Strategies

In general, Algorithm 1 solves the containment problem in O(4(
n

2
) ·n2) steps. Jerrum [19] showed

how to encode all complete relative placements that are consistent for W = H = ∞ with two
permutations of the set {1, 2, . . . , n}, therefore bounding their number by n!2. His attempt leads
to an algorithm that can solve the containment problem in O(n!2 · n2) ≈ O((n

e
)2n · n2), which

seems to be much faster than the technique we use.
However, in this section we will mention and extend some of the powerful bounding strategies
from [32] that enable the Containment algorithm to outperform Jerrum’s method in practice.

4.2.1 Transitive closure

Dechter et al. showed in [10] that for given all-pairs shortest path matrices of the distance graphs
Ghor and Gver one can easily extract a complete placement satisfying ρ. But those matrices are
also useful for another reason: When extending the relative placement within the Containment

algorithm, more relations might be implied directly. For example, if ri is to the left of rj and
we add the relation that rj is to the left of rk, then we also know that ri has to be to the left
of rk. When maintaining all-pairs shortest path matrices, these implied relations are available
immediately:

Lemma 6. The implied relations can be directly deduced from the all-pairs shortest path matri-
ces:

distGhor
(vj , vi) ≤ −wi ⇔

iHj holds in every placement satisfying ρ

distGver
(vj , vi) ≤ −hi ⇔

V j
i holds in every placement satisfying ρ

Here we use distG(v,w) to denote the length of the shortest path from v to w in G, with
distG(v,w) = ∞ if no such path exists. Consequently, we can add those implied relations to ρ
directly after computing the new all-pairs shortest path matrices of Ghor and Gver, which can
be obtained in runtime O(n3) with the algorithm of Floyd and Warshall [12, 46, 17], leading
to a much smaller depth of the branch and bound tree. For this reason we compute all-pairs
shortest path matrices instead of using the algorithm suggested by Lemma 5. If we want to
check consistency of a given relative placement we only have to look for negative entries on the
diagonal of those matrices.
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4.2.2 Semantic Branching

An important technique to speed up Algorithm 1 is called semantic branching. Assume that
the algorithm chose (ri, rj) as the current rectangle pair and started by extending ρ with iHj,
i.e. xi + wi ≤ xj . Further assume that the algorithm fails to find a legal complete placement
using this assignment. Then we know that in all solutions that might be found in the current
branch of the branch and bound tree, the rectangle ri is not to the left of rj, or xi + wi > xj.
The following lemma enables us to slightly strengthen this constraint.

Lemma 7. If all widths and heights in the instance are integral and a complete legal placement
exists, there also exists a complete legal placement where all xi and yi are integral.

Proof. Starting with a complete legal placement, the process of iteratively moving rectangles to
the lower left as far as possible will end in a placement with the required property.

Since we assume all numbers in the instance to be integral, we can restrict the search to place-
ments where all rectangles have integer coordinates. Thus the condition “ri is not to the left
of rj” can be written as xi + wi ≥ xj + 1, which translates to an edge (vi, vj) of weight wi − 1
in Ghor. By introducing such edges, the algorithm always stores the negation of an inequality
when failing to find a legal complete placement satisfying this constraint.
In the following, we call distance graphs which have been extended by arcs representing such
negations extended distance graphs and denote them by G̃hor and G̃ver. Observe that Lemma 4
still holds for extended distance graphs and that by computing all-pairs shortest path matrices
one can verify the consistency of their underlying relative placements. One should also note that
because the weights of the arcs of the negated relations are positive, we cannot use Lemma 5
anymore.
When the negation of a constraint is added to the distance graphs, other constraints might be
implied in the same way as before. Fortunately, those can also be deduced from the all-pairs
shortest path matrices immediately.

Lemma 8. Let G̃hor and G̃ver be the extended distance graphs, then:

dist
G̃hor

(vj , vi) < wi ⇔

iHj does not hold in any placement satisfying ρ

dist
G̃ver

(vj , vi) < hi ⇔

V j
i does not hold in any placement satisfying ρ

A third way to determine implied relations uses the outer placement box. For example, if iHj

would require that a set of rectangles have to lie next to each other, but the sum of the widths
of these rectangles is larger than W , then the negation of iHj can be assumed in the current
branch. This can also be checked in constant time for each rectangle pair when all-pairs shortest
path matrices are available.
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Lemma 9. Let G̃hor and G̃ver be extended distance graphs, then:

dist
G̃hor

(vn+1, vj)− wi + dist
G̃hor

(vi, v0) < −W ⇔

iHj does not hold in any placement satisfying ρ

dist
G̃ver

(vn+1, vj)− hi + dist
G̃ver

(vi, v0) < −H ⇔

V j
i does not hold in any placement satisfying ρ

4.2.3 Sorting the Rectangle Pairs

The branching rule, i.e. the order in which the rectangle pairs in step 4 in Algorithm 1 are
chosen, can have a big impact on the algorithm’s runtime in practice. If one assigns relations
between huge rectangles first, arrangements between those and others can become impossible.
Thus Moffitt and Pollack [32] propose an ordering of the rectangles that considers their size. As
the areas of both rectangles should be relevant for the branching rule, the algorithm processes
the pairs in descending order according to the maxmin function of their volumes

max
i6=j

min{wihi, wjhj}.

This function determines the base ordering of the rectangle pairs. However, if at any point in
the algorithm there exists a rectangle pair (ri, rj) ∈ R2 that already has three negated relations
assigned to it, the next branching step adds the unique missing relation to ρ(ri, rj).

5 Finding Optimal Floorplans

In the previous chapter we described a powerful tool to enumerate all legal complete placements,
mainly due to Moffitt and Pollack [32]. Now we want to apply this tool to optimally solve the
floorplanning problem, a task originating in VLSI design which adds an optimization component
to the packing aspect discussed so far.

5.1 Basic Algorithm

When we talk about the floorplanning problem, we only consider nearly integral instances.
During the course of this section, it will be pointed out why we take this restriction into account.
We use the notation B ⊂ R for the blockages, i.e. the rectangles that have already fixed positions
in the input.
Algorithm 2 outlines the structure of our method, called Spark, to solve the floorplanning
problem. A preliminary version of the method is described in [13]. Besides a nearly integral
placement instance and a relative placement, it expects a legal placement f and a value s ∈
R ∪ {∞} as input parameters. When Spark is called for the first time, f should contain a
legal complete placement of B and s should be set to ∞. The return values constitute of these
two parameters: While f is extended to obtain a legal complete placement of R with minimum
wirelength, without changing the locations of B, and s should be equal to its weighted half-
perimeter wirelength. If no legal complete placement exists, f and s will not be modified.
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Input : A nearly integral floorplanning problem instance I, a consistent relative
placement ρ of R∪ B, a legal placement f of R∪ B and a value s ∈ R ∪ {∞}.

Output: A pair (f∗, s∗) with f∗ is a legal complete placement of R∪ B and s∗ is the
minimal weighted half-perimeter wirelength of I induced by f∗, if such a
placement of I exists and s = ∞ otherwise.

1 if ρ is complete then

2 if HPWL(ρ) < s then

3 Update (f, s);
4 end

5 return (f, s);

6 end

7 Choose pair (ri, rj) with i 6= j which is not in the domain of ρ;

8 for ◦ ∈ {iHj, jHi, V j
i , V i

j } do

9 if ρ[◦] is consistent then

10 if HPWL(ρ) < s then

11 Set (f, s) to Spark(I, ρ, f, s);

12 end

13 end

14 end

15 return (f, s);

Algorithm 2: Spark Algorithm

Compared to Algorithm 1, Spark is changed regarding two main aspects: On the one hand,
it does not abort in line 11, when the first solution is found – instead the whole branch and
bound tree is traversed in order to find a global optimum. On the other hand, a new bounding
rule is integrated, measuring the wirelength of the current relative placement ρ. Within Spark,
HPWL(ρ) denotes the minimal weighted half-perimeter wirelength of the netlist satisfying the
relations of ρ. In other words, whenever a consistent relative placement is computed, s and
f are updated in line 3 to HPWL(ρ) and a placement obtaining HPWL(ρ) that satisfies the
relations of ρ, if HPWL(ρ) is better than the best known value for the wirelength. In line 10
those branches are bounded, the current relative placement includes a larger wirelength than
the best known wirelength.
Only small changes are needed to modify Spark such that it is able to prove the optimality of a
given complete legal placement. A further deduction is that there might be large improvements in
terms of the practical runtime of Spark if s is set to the wirelength of a known legal complete
placement, e.g. a placement obtained by heuristics. The subsequent content of this section
explains how to extend Algorithm 1 that it is able to deal with blockages and a netlist.

5.2 Handling of Blockages

From now on, we distinguish between two sets of rectangles: placed rectangles B (also called
blockages) and non-placed rectangles R. Due to Section 3, a blockage bi ∈ B has assigned a
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location (xi, yi), while a rectangle in R has not and thus there is a need of optimization: The aim
of this section is to compute a complete legal placement of R within the outer box, additionally
satisfying the non-overlap constraints of R ∪ B. In other words, we are only interested in the
region that is not covered by blockages, not in the blockages themselves. We can assume that
blockages are pairwise interior-disjoint because overlaps could not be resolved by the algorithm.

Lemma 10. Let ρ be a relative placement of R ∪ B, we can check whether ρ is consistent in
O(n2) time, where still n = |R| holds.

Proof. We consider the weighted distance graphs (Ghor, whor) and (Gver, wver) for the instance
(R,W,H). In the following, we only define new weight functions w′

hor/w
′
ver on the arcs of

Ghor/Gver , while the set of nodes and arcs stay the same. By doing that, we obtain weighted
distance graphs (Ghor, w

′
hor)/(Gver , w

′
ver), in which the handling of blockages is included. The

remaining proof is restricted to Ghor only, but it can be applied to Gver analogously. We define
weights according to

∀w′
hor((i, j)) :=





−Ri, j = 0, i 6= n+ 1
Lj −W, j 6= 0, i = n+ 1,

whor(i, j), otherwise.
(1)

for all (i, j) ∈ E(Ghor), whereby

Ri := max{xj + wj | bj ∈ B, ρ((ri, bj)) = jHi},

Lj := min{xi | bi ∈ B, ρ((rj , bi)) = jHi} −wj ,

with min ∅ := W and max ∅ := 0.
These weights are achieved, by eliminating redundancies of constraints referring to one of the
two borders first and building arcs following Equation (1) afterwards. The constraints related
to the left border are the following:

∀ri ∈ R : x0 ≤ xi

∀ri ∈ R,∀bj ∈ B : ρ((ri, bj)) = jHi : x0 + (xj + wj) ≤ xi

While the former set of constraints refer to the containment constraints, the latter refers to the
non-overlap constraints of rectangles with blockages. These constraints are set in relation to the
left border of the outer box represented by x0. Obviously it holds, that a rectangle that is placed
to the right of the right most blockage is also placed to the right of the other blockages and
additionally, it is placed to the right of the left corner of the outer box. The second implication
follows as we assume that all blockages are placed legally within the outer box.
The constraints related to the right border of the outer box are the following (again, by elimi-
nating redundancies w′ is obtained):

∀ri ∈ R : xi + wi ≤ xn+1

∀bi ∈ B,∀rj ∈ R : ρ((rj , bi)) = jHi :

xj + wj + (W − xi) ≤ xn+1
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As the constants of the left-hand side of all constraints have non-negative values and the number
of the arcs of the distance graphs does not change, the proof for the runtime follows by the proof
of Lemma 5.

To achieve good practical runtimes, it is important to enable Spark to use the bounding strate-
gies from [32]. First, we will show that it is possible to obtain transitive relations regarding
relations between rectangles and blockages. As we compute shortest paths originating at vn+1

within the proof of Lemma 10, we obtain a placement, in which the rectangles are placed as
right/high as possible satisfying all constraints. The current placement of a rectangle ri ∈ R
can be deduced by considering the distance of vn+1 to vi:

xi = W + distGhor
(vn+1, vi), yi = H + distGver

(vn+1, vi)

Thus, we can draw conclusions regarding the transitive closure, if a rectangle ri ∈ R is placed
to the left/below of a blockage bj ∈ B within the current placement that is oriented towards the
right/top:

W + distGhor
(vn+1, vi) ≤ xj ⇔

iHj holds in every placement satisfying ρ

H + distGver
(vn+1, vi) ≤ yj ⇔

V j
i holds in every placement satisfying ρ

W + dist
G̃hor

(vn+1, vi) < xj + wj ⇔

jHi does not hold in any placement satisfying ρ

H + dist
G̃ver

(vn+1, vi) < yj + hj ⇔

V i
j does not hold in any placement satisfying ρ

The missing relations are obtained by reversing the arcs of the distance graphs. Meaning we
want to create a placement of the rectangles, in which they are placed as left/below as possible
satisfying all constraints by computing the shortest paths originating at v0.

Definition 11. Let G = (V,E) be a digraph. Then G∗ := (V,E∗), with E∗ := {(u, v) | (v, u) ∈
E} is called its reverse. We define weights w∗ : E∗ → R by w∗(u, v) := c(v, u).

As G∗
hor and G∗

ver contain all relations of ρ in form of arcs, a placement satisfying ρ is obtained
when computing shortest paths in the reverse order than within Ghor and Gver. Then, the
current placement of a rectangle ri ∈ R can be deduced by considering the distance of v0 to vi:

xi = |distG∗

hor
(v0, vi)|, yi = |distG∗

ver
(v0, vi)|

11
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The missing relations can be extracted from the current placement as follows:

xj + wj ≤ |distG∗

hor
(v0, vi)| ⇔

jHi holds in every placement satisfying ρ

yj + hj ≤ |distG∗

ver
(v0, vi)| ⇔

V i
j holds in every placement satisfying ρ

xj < |dist
G̃∗

hor

(v0, vi)| ⇔

iHj does not hold in any placement satisfying ρ

yj < |dist
G̃∗

ver

(v0, vi)| ⇔

V j
i does not hold in any placement satisfying ρ

As semantic branching only means to include the negation of a constraint, that will not hold
for any placement within the current branch, to the set of constraints, it is no problem to apply
this technique to a setting containing blockages.
Thus, the last thing that is missing concerning the handling of blockages within Spark is the
sequence of rectangle pairs, in which they are processed in line 8 of Spark. We keep the order
of the non-placed rectangle pairs as it is introduced in Section 4.2.3. But, whenever a pair
(ri, rj) ∈ R2 is chosen, Spark continues by processing all blockages and the rectangle of the
pair that has the larger volume. Afterwards, (ri, rj) is chosen to get assigned relations. And, at
the end the smaller rectangle gets assigned relations to all blockages. Then, it is proceeded like
in Section 4.2.3 with choosing the next rectangle pair non-overlap constraints should be applied
to. The rectangle pair is treated as mentioned before by also including relations with blockages
to it.

5.3 Minimizing Wirelength

Vygen [45] demonstrates how to extract from a given consistent relative placement ρ a place-
ment having minimum wirelength that satisfies all relations indicated by ρ. To achieve this, he
formulates the problem as a linear program. In the following, we use his results to implement
HPWL(ρ) that is called in lines 3 and 10 of Spark.
We are given an instance I of the floorplanning problem together with a legal relative placement
ρ, then two decision variables xi and yi are introduced for each rectangle ri ∈ R. These decision
variables correspond to the lower left corner of ri. Additionally, each net N ∈ N induces
four decision variables x+N , x−N , y+N and y−N representing the smallest axis-parallel rectangle

[x−N , x+N ]× [y−N , y+N ] that covers all pins of N . The following formulation arises:

min
∑

N∈N

w(N) · (x+
N − x−

N + y+N − y−N) (2)

12
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∀N ∈ N , P ∈ N, γ(P ) 6= � :

x−
N ≤ xγ(P ) + x(P ), xγ(P ) + x(P ) ≤ x+

N ,

y−N ≤ yγ(P ) + y(P ), yγ(P ) + y(P ) ≤ y+N ,

∀N ∈ N , P ∈ N, γ(P ) = � :

x−
N ≤ x(P ), x(P ) ≤ x+

N ,

y−N ≤ y(P ), y(P ) ≤ y+N ,

∀ri ∈ R :

0 ≤ xi, xi + wi ≤ W,

0 ≤ yi, yi + hi ≤ H.

∀ri, rj ∈ R ∪ B, ri 6= rj :

xi + wi ≤ xj if ρ(ri, rj) = iHj ,

xj + wj ≤ xi if ρ(ri, rj) = jHi,

yi + hi ≤ yj if ρ(ri, rj) = V j
i ,

yj + hj ≤ yi if ρ(ri, rj) = V i
j ).

While the objective is to minimize the weighted wirelength, the former two sets of constraints
model the bounding boxes of the pins of the nets and the last two sets of constraints are restricted
to observe the containment, as well as non-overlap constraints.
By introducing an auxiliary variable v0, whose value should be equal to zero, all constraints can
be written in the form vj − vi ≥ aij, where aij is a constant and vi, vj are variables. The dual
of this linear program is of the form

max
∑

i,j

aijfij (3)

∀j :
∑

i

fij −
∑

k

fjk =





w(N), vj ∈ {x−(N), y−(N)}
−w(N), vj ∈ {x+(N), y+(N)}

0, otherwise.

As this linear program models a Maximum Cost Flow Problem in a digraph [45], it can be solved
in polynomial time. Anyway, due to practical reasons, we chose the Network Simplex Algorithm
to obtain solutions to it. In Section 5.5.2 it is discussed how to time saving do that. As in
literature the term Minimum Cost Flow Problem is used more frequently than Maximum Cost
Flow Problem, in the following we also say that a Minimum Cost Flow Problem has to be solved
to compute a wirelength optimal placement out of the relations of a relative placement. Such
an instance can be obtained by negating the weights of the instance.

5.4 Optimality

The results of Section 5.3 directly imply an important lemma.

Lemma 12. Every feasible, nearly integral instance of the floorplanning problem has an optimum
solution where all coordinates are integral.

Proof. As the dual of the linear program that minimizes wirelength for a given relative placement
is a Minimum Cost Flow Problem, it exists an integral optimum solution, if the input is integral
[9].
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This lemma also is reason to the fact, why we restrict the instances of Spark to be nearly
integral, now we can proof Spark’s optimality:

Corollary 13. Spark computes an optimal solution of the floorplanning problem.

Proof. The former lemma proves that we can restrict the solution space of Spark to only include
integral placements. Thus, it is shown that the constraints that are included in Section 4.2.2
for branching are really the negations of the non-overlap constraints. As these constraints are
again of the form vj − vi ≥ aij , with aij is a constant and vi, vj are decision variables, the dual
of the linear program definition stays a Minimum Cost Flow Problem.

5.5 Runtime

While Spark is not a polynomial-time algorithm, it can be shown that it stops after a finite
number of steps, whereby each step can be implemented to run in polynomial time.

Theorem 14. Spark terminates after 4(
n

2
) · 4|B|n steps and a single step can be implemented

with runtime O(p logm(m+ p log p)), where p = O(|N |+ n) and m = O(n2 + |P|).

Proof. The branch and bound approach branches at most 4(
n

2
) · 4|B|n times. A single step of the

algorithm refers to one of the three operations:

• The consistency check that can be implemented with the algorithm of Floyd and Warshall
[12, 46, 17] to run in O(n3),

• The computation of the transitive closure, which again is implemented with a runtime of
O(n3) using the algorithm of Floyd and Warshall,

• The determination of the wirelength optimal placement satisfying the current relative
placement, i.e., solving a Minimum Cost Flow Problem. This can be done with the algo-
rithm of Orlin [37] in a runtime of O(p logm(m+ p log p)).

The rest of this section is dedicated to techniques that will speed up the runtime of single steps.

5.5.1 Simplification of the Netlist

By Theorem 14 the runtime of Spark depends on both the number of pins and the number of
nets. Decreasing these numbers will lead to a reduced runtime of the algorithm in practice.
When Spark is called within the framework of our placement tool, usually small sections of the
whole chip area are processed. Section 6.4 provides an overview over such a flow. As a result,
many pins of the netlist are located outside of these regions and therefore contribute the same
amount to the wirelength no matter how the placement within this section changes and thus do
not have an impact on the wirelength optimal solution. This motivates the simplification of the
netlist as it is done in the following. First of all, two definitions are needed.
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Definition 15. For a net N ∈ N we define its core IO(N) to be the bounding box of the IO
pins of N , and R(N) := IO(N) ∩ C, where C := [0,W ] × [0,H] denotes the section of the chip
area a placement should be computed for.

Definition 16. Given a netlist N , we define the reduced netlist N ’ as the netlist obtained from
N by iterating each of the following three steps until no step can be applied anymore:

• If a net N ∈ N consists of more than two IO pins, then replace its IO pins by two pins in
the lower left and upper right corners of R(N).

• If there exists a net N ∈ N with R(N) = C, then remove N from the netlist.

• If there exist two nets N1, N2 ∈ N and a bijection σ : N1 → N2 with γ(p) = γ(σ(p)),
x(p) = x(σ(p)), y(p) = y(σ(p)), and R(N1) = R(N2), then remove N2 from the netlist and
set the weight from N1 to c(N1) + c(N2).

Obviously it holds:

Lemma 17. Let I and I ′ be instances of the floorplanning problem such that I ′ results from I
by replacing the netlist by the reduced netlist. Then I and I ′ have got the same sets of optimum
solutions.

As replacing the netlist of an instance of the floorplanning problem by its reduced netlist does
not influence the optimum solution of Spark, the steps of Definition 16 are implemented in a
preprocessing step that is executed before calling Spark.

5.5.2 Integration of the Network Simplex Algorithm

This section focuses on the function HPWL(ρ) that is called in lines 3 and 10 of Spark. In
this step, a Minimum Cost Flow Problem has to be solved. Although the algorithm of Orlin
[37] achieves the best known theoretical runtime, we prefer for practical reasons the Network

Simplex Algorithm of Cunningham and Dantzig [7], [8] in our implementation. Within
Spark, the Network Simplex Algorithm should be incrementally invoked, such that the
special structure of our instances resulting from the underlying branch and bound method is
combined with the properties of the Network Simplex Algorithm. Experimental results
have proved that the approach to incrementally invoke the Network Simplex Algorithm

compared to a normal call of it improves the runtime of Spark on instances consisting of many
rectangles about a factor of 16 and more. We first repeat some important definitions following
the notations of [23] that are needed afterwards to show how the output of the Network

Simplex Algorithm can be reused as an input for the next time it is invoked within Spark.
Throughout this section, we assume that each graph is connected. This property is included in
the following definitions.

Definition 18. Let (G,u, b, a) be an instance of the Minimum Cost Flow Problem. A b-flow f
in (G,u, b, a) is called spanning tree solution, if

H := (V (G), {e ∈ E(G) : 0 < f(e) < u(e)})

does not contain any cycle. A triple (r, T, f) is called feasible spanning tree solution, if:
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• r ∈ V (G),

• T ⊆ E(G) such that (V (G), T ) is a spanning tree,

• f is a b-flow.

An edge e = (v,w) ∈ E(T ) is said to be a downward edge, if v belongs to the undirected r-w-
path in T . Otherwise we say e is an upward edge. A feasible spanning tree solution is called
strongly feasible, if:

• 0 < f(e) holds for downward edges,

• f(e) < u(e) holds for upward edges.

The recursive defined function π : V (G) → R

π(w) :=





0, for w = r,
π(v) + c((v,w)), for (v,w) ∈ E(T ),
π(v)− c((w, v)), for (w, v) ∈ E(T ).

is called potential associated with the spanning tree structure (r, T, f).

Besides an instance of a Minimum Cost Flow Problem, the Network Simplex Algorithm

expects a strongly feasible spanning tree structure as an input. Then, its output comprises of a
strongly feasible spanning tree structure (r, T, f), with f is an optimum b-flow. In the following,
it is shown how to incrementally invoke the Network Simplex Algorithm for a network
(G,u, b, a) that is obtained by considering the dual of the linear program formulation of the
floorplanning problem given in Section 5.3.
Thus, we first recall the structure of the network (G,u, b, a). It contains a node v̄0 associated to
the auxiliary variable v0 of the Linear Program 3, and four nodes x−N , x+N , y−N and y+N associated
to the left, right, lower and upper border of a net N ∈ N , each rectangle ri ∈ R induces two
nodes xri , yri referring to its lower left corner. While the capacity is unrestricted, i.e., u ≡ ∞,
the balance value of a node v ∈ V is set according to:

b(v) :=





w(N), v ∈ {x−(N), y−(N)}
−w(N), v ∈ {x+(N), y+(N)}

0, otherwise.

Let us come back to the input the Network Simplex Algorithm expects, i.e., how to obtain
a strongly feasible spanning tree structure for a network (G,u, b, a). It is well-known, that
every graph G can easily be modified such that an initial spanning tree structure is obtained
by inserting |V (G)| auxiliary edges and one auxiliary node. The following Lemma demonstrates
how such a spanning tree structure can be obtained for our specific network without inserting
nodes or edges.

Lemma 19. Let I be an instance of the floorplanning problem and let (G,u, b, a) denote the
appropriate Minimum Cost Flow Problem instance, i.e., the dual of the floorplanning problem
formulation. A strongly feasible spanning tree structure for G can be computed with a runtime
of O(n+ |P|).
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Proof. The problem decomposes for horizontal and vertical dimensions. This proof is restricted
to the horizontal dimension, but it can be applied analogously to the vertical dimension. Let
(Ghor, u, b, a) be the network containing only horizontal relations. Then, the set T ⊆ E(Ghor)
is defined as follows:

T := T1 ∪ T2 with

T1 := { (xri , v̄0) | ri ∈ R}

T2 :={(xγ(P ), x
−
N ), (x+N , xγ(P ))|

N ∈ N : ∃P ∈ N : γ(P ) ∈ R}

Furthermore we define a function f : E(Ghor) → R
+ according to:

f((v,w)) :=

{
w(N), if w = x−N or v = x+N for N ∈ N

0, otherwise.

Claim 20. (v̄0, T, f) is a strongly feasible spanning tree structure.

Proof. First we show that T is a spanning tree. This statement follows as (V (G), T ) is connected
and |T | = n+ 2|N | = |V (G)| − 1.
The function f is chosen in such a way that it is a b-flow. Thus, it has to be shown that

1. 0 < f(e) holds for downward edges,

2. f(e) < u(e) holds for upward edges.

Because u ≡ ∞ and f(e) > 0 for e ∈ T2, f satisfies this properties on T2. As per definition T1

is chosen such that it only contains upward edges. The claim follows as f
∣∣
T1

≡ 0. (Claim)�

The set T can be computed in a runtime of O(n+ |P|) and f can be computed in a runtime of
O(n+ |N |). (Lemma)�

xr1

x+N1

x−N1

xr2

xr3

x+N2

x−N2

v̄0

Figure 1: The strongly feasible spanning tree structure that is constructed in Lemma 19.
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Figure 1 shows an initial tree solution due to Lemma 19 for an instance containing three rect-
angles r1, r2, r3 and two nets N1, N2, whereby N1 contains a pin located on r1 and N2 a pin
located on r3. While f on the consistent lines equals zero, the dashed lines are related to arcs
having a positive, non-zero flow.
Due to Lemma 19 an initial spanning tree solution is obtained for the first time the Network

Simplex Algorithm is called. Afterwards, we can incrementally invoke the Network Sim-

plex Algorithm within Spark by using the output of a former step as an input for the next
branching step. As every branching step only adds more constraints to the instance, what creates
more edges and thus does not destroy the property of the former output to be a strongly fea-
sible spanning tree structure. Only if it is backtraced within Spark, edges are deleted through
removing constraints. Thus, only in case of a backtrack, in which an edge is deleted that is part
of the former spanning tree solution, it has to be thrown away and a new initial spanning tree
structure has to be computed (as it is shown by Lemma 19) to call the Network Simplex

Algorithm in the next step.
A placement for I can be extracted out of the solution of the Network Simplex Algorithm

as follows:

Remark 21. Let (v̄0, T, f) be the output of a call of the Network Simplex Algorithm and
let π denote the potential associated with the spanning tree structure. If all rectangles ri ∈ R
are assigned to locations (π(xri), π(yri)), this leads to a wirelength optimal placement.

A further simple conclusion can be drawn regarding instances all pins have the same offsets:

Corollary 22. Let (v̄0, T, f) be the strongly feasible spanning tree structure as it is constructed
in Lemma 19. f is optimal, if all pin offsets are equal.

Proof. The solution of Lemma 19 places the rectangles on the lower left corner of C. The
wirelength of this solution equals zero and therefore is minimal. We get the statement by the
duality theorem of [44, 15].

6 Experimental Results

6.1 MCNC Benchmarks

The most common benchmark instances for floorplanning problems are the MCNC block packing
instances [24]. The set contains five block packing instances, the details of which are given in
Table 1.
Three of these instances are sufficiently small so that our algorithm computes provably optimal
solutions in reasonable time. Figure 2 shows wirelength optimal packings of the three smallest
instances apte, xerox, and hp, optimal wirelengths and runtimes are given in Table 2. The table
also includes the results of a second version of the same instances for which rescaling of the die
sizes is allowed. In this version, one looks for the scaled die, which includes scaled positions of
the IO pads, for which the minimum wirelength is as small as possible. We were able to find
optimal solutions to this problem as well, details are given in [14]. Rotation or flipping of blocks
is not allowed in these benchmarks.
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instance number of die area block area whitespace

blocks IO-pads pins nets

apte 9 73 214 97 10,500 × 10,500 46,561,628 57.77%
xerox 10 2 696 203 5,831 × 6,412 19,350,296 48.25%
hp 11 45 264 83 4,928 × 4,200 8,830,584 57.34%
ami33 33 42 480 123 2,058 × 1,463 1,156,449 61.59%
ami49 49 22 931 408 7,672 × 7,840 35,445,424 41.07%

Table 1: Characteristics of the MCNC block instances. Areas are given in µm2.

cc_11 cc_12

cc_13

cc_14

cc_21

cc_22

cc_23

cc_24
clk

BLKB BLKD

BLKLL BLKLR

BLKP

BLKRC

BLKRS

BLKT

BLKUL BLKUR

clkc

clkd

cmp1
cmp2

cmp3

cntd

cntu

npd

nps

ppd

pps

apte xerox hp

Figure 2: Wirelength optimal block packings of apte, xerox, and hp with placement area, pin
locations (green dots), and IO-pad locations (red dots) as defined in the original yal files.
Rotation or flipping of blocks is not allowed.

Our experiments show that often wirelengths are reported in the literature which are either
much larger or even smaller than the optimum. Reasons for the inconsistencies in these reports
include contradictory numbers in the original data as well as problems with the conversion of
the original data into more recent file formats. An extensive analysis of these benchmarks is
given in [14].

6.2 Synthetic Benchmarks

While we are not aware of any synthetic benchmarks used in the literature to test exact floor-
planning tools, we generated a class of instances based on the square benchmarks regularly used
to evaluate rectangle packing methods. The instance SQn consists of the n squares with edge
lengths 1, . . . , n and n−1 nets connecting the lower left corners of the squares with edge lengths
w and w + 1 for 1 ≤ w < n. The regions available for the placement are the minimum-area
boxes reported in [32]. The runtimes needed to find optimal solutions for these instances are
stated in Table 3.
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Instance fixed outline rescaling allowed

original size wirelength runtime optimal size wirelength runtime

apte 10,500 × 10,500 513,061 13 s 6,372 × 7,608 404,510 2 s
xerox 5,831 × 6,412 370,993 48 s 3,808 × 6,139 370,930 2 s
hp 4,928 × 4,200 153,328 102 s 4,263 × 3,108 143,302 100 s

Table 2: Optimal wirelengths for apte, xerox, and hp for the original die size and when rescaling
of the die is allowed. Runtimes were measured on an Intel X5680 CPU at 3.33GHz and refer to
the instances with the given die sizes.

Instance SQ11 SQ12 SQ13 SQ14 SQ15 SQ16 SQ17 SQ18 SQ19 SQ20

Box size 19× 27 23× 29 22× 38 23× 45 23× 55 27× 56 39× 46 31× 69 47× 53 34× 85
Runtime 0 s 0 s 0 s 1 s 1 s 25 s 15 s 521 s 1,392 s 7,669 s

Table 3: Runtimes to find optimal floorplans using Spark for the synthetic SQn benchmarks.
Runtimes were measured on an Intel X5680 CPU at 3.33GHz and refer to the instances with
the given die sizes.

6.3 Industrial Testcase

The largest real-life instance that has been solved with our algorithm is depicted in Figure 3. It
is an actual VLSI instance provided by our industry partners at IBM and contains 27 rectangles,
6 of which are fixed (dark gray), with 8837 pins and 3661 nets. However, to find an optimal
solution additional information was used on the instance’s structure. In particular, the bin-like
structure of the blockages were exploited by enumerating assignments of movable blocks to the
five regions between the blockages. The depicted floorplan provably optimizes the half-perimeter
wirelength.

Figure 3: Optimal floorplan for an IBM core macro with 27 circuits, including 6 blockages.
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Paper apte xerox hp ami33 ami49 Remarks

this 513,061 370,993 153,328 58,627 640,509 Packings for apte, xerox, and hp are optimal
[29] 614,602 404,278 253,366 96,205 1,070,010 –
[38] 545,136 755,410 155,463 63,125 871,128 Packings for hp, ami33, and ami49 have overlaps

Table 4: Wirelengths for MCNC benchmark instances.

6.4 Larger Floorplans

As Spark is designed to find optimal solutions, it is unable to find solutions for large instances
in reasonable runtime. While it is possible to specify a runtime limit and return the best
solution that is encountered until the limit is reached, not much can be said about the quality of
the output in this case. For large instances—and thus for most of the applications occurring in
practical VLSI design—we therefore propose a flow, called BonnMacro, that uses the presented
algorithm as a subroutine to place local groups of circuits optimally.
The first step of BonnMacro is to generate a wirelength-optimal placement that ignores the
non-overlap constraints, for example by solving a linear program. After this step, overlaps will
occur that have to be resolved. To do so, a routine Place(R) is called for every R ∈ R and set F
of fixed circuits is maintained that is initially empty. Place chooses a group of circuits including
R and some additional circuits in R in its proximity. This group is then placed using Spark

presented above, but in addition to the blockages specified in the input, all fixed circuits are also
considered as blockages. Furthermore, the region available for the placement is restricted to a
local neighborhood of R so that the number of blockages is restricted. Then, R is added to the
set of fixed circuits. In cases where Spark fails, a fallback mechanism moves single rectangles
to the closest available position.
After Place has been called for every R ∈ R, the circuits have been legalized in the sense
that no pair of circuits overlaps with their interiors (unless the algorithm failed in some step).
Afterwards, a post-optimization phase chooses local groups of circuits and finds optimal solutions
with Spark, treating all non-chosen circuits as blockages. This procedure does not introduce
overlaps and might improve the wirelength. An example of a unit processed by BonnMacro

is shown in Figure 4.
While in theory no statements can be made about the quality of the algorithm’s output, and it
may even fail in cases where feasible solutions exist, it performs very well in practice. On real-
life instances provided by our industry partner IBM, the method almost always finds solutions
which are very competitive. The tool is in regular use during the design of ASICs and server
chips at IBM. Details of an earlier version of BonnMacro are provided in [39].

6.5 ami33 and ami49

The two MCNC benchmarks that are too large to be solved optimally with our algorithm are
ami33 and ami49. To test the applicability of Spark in such cases, we processed them with the
tool described in the previous section. Even though the MCNC instances are frequently used
by the rectangle packing and floorplanning community, we only found two papers, [29] and [38],
that contained comparable wirelengths—and one of them included solutions with overlaps. The
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Figure 4: Floorplan for a real-life IBM core macro with 210 circuits, including 21 blockages.

BonnMacro placements are depicted in Figure 5, wirelength comparisons are given in Table 4.
The runtime required to generate these placements was 13 seconds for ami33 and 73 seconds
for ami49 on an Intel E5-2667 CPU at 3.30GHz.
The small number of comparisons has several reasons. Many works present packing algorithms
and do not discuss wirelength minimization. Moreover, works that do address wirelength most
often do not use the original die area but scale or completely change it in order to reduce
whitespace [4, 5, 6, 11, 20, 28, 43, 49]. In these cases it is usually not clear how the locations
of the original IO pads are adjusted or if they are included at all. Among the few papers that
do use the fixed outline from the original MCNC files, one allowed rotation of the blocks and
is thus incomparable, too [27]. In some cases, placement objects are considered soft, meaning
that their aspect ratio may be altered from the original shape, and, lastly, some authors only
consider slicing floorplans—a restriction that we do not impose.

7 Conclusion

In this paper, we present a powerful algorithm to compute wirelength-optimal floorplans. This
approach differs from most available literature in the sense that existing approaches either try to
solve the rectangle packing problem optimally, leaving out the wirelength optimization aspect,
or use heuristics to solve large instances without finding optimal solutions (or giving bounds for
the quality of their solutions at all). The largest reported result for a provably optimal solution
of the floorplanning problem that we are aware of has only 6 rectangles [36].
Our algorithm, however, is able to solve synthetic floorplanning instances with up to 20 rectangles
in roughly 2 hours and, with some instance-specific tuning, a real-world chip with 27 rectangles,
6 of which are blockages, and thousands of nets. Moreover, we were able to generate the first
provably netlength optimal floorplans for 3 of the 5 MCNC block packing instances that are
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Figure 5: Block packings of ami33 and ami49. Rotation or flipping of blocks is not allowed.

frequently discussed in the related literature.
Finally, we propose a framework in which our optimal algorithm can be used to find solutions to
instances which are too large to be solved optimally. This framework is in constant use at our
industry partner IBM and generates good solutions in practice. It is able to generate placements
for the 2 large MCNC instances that have shorter wirelengths than any previous comparable
result.
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