Even pairs and the Strong Perfect Graph Conjecture

STEFAN HOUGARDY

hougardy@unitas.or.uni-bonn.de Forschungsinstitut für Diskrete Mathematik Universität Bonn Nassestr. 2, 53113 Bonn Germany

Abstract. We will characterize all graphs that have the property that the graph and its complement are minimal even pair free. This characterization allows a new formulation of the Strong Perfect Graph Conjecture.

The reader is assumed to be familiar with perfect graphs (see for example [2]). A *hole* is a cycle of length at least five. An *odd hole* is a hole that has an odd number of vertices. An (odd) *anti-hole* is the complement of an (odd) hole. Berge's famous Strong Perfect Graph Conjecture may be formulated as follows [1]:

Strong Perfect Graph Conjecture The only minimal imperfect graphs are the odd holes and the odd anti-holes.

Two vertices in a graph are called an *even pair* if all induced paths between these two vertices have even length. Meyniel [6] has shown that minimal imperfect graphs are even pair free. A graph is called *minimal even pair free* if the graph does not contain an even pair but every induced subgraph contains an even pair or is a clique. We will show that proving that minimal imperfect graphs are *minimal* even pair free already implies the Strong Perfect Graph Conjecture.

Proposition 1 Odd holes are minimal even pair free.

Proof. Obviously odd holes do not contain an even pair. Every proper induced subgraph of an odd hole is either disconnected or a path of length at least two or a clique. Thus every proper induced subgraph of an odd hole contains an even pair or is a clique. \Box

Proposition 2 Anti-holes are minimal even pair free.

Proof. Let G be an anti-hole. Then every two non-adjacent vertices of G are connected by an induced path of length three and thus G does not contain an even pair.

Let H be a proper induced subgraph of G that is not a clique. Then \overline{H} contains a vertex of degree one and therefore H contains a vertex x that is connected to all but one vertex in H. All induced paths between x and its non-neighbor have length two and thus H contains an even pair.

We are now able to give a characterization of all the graphs G such that G and \overline{G} are minimal even pair free:

Lemma 1 G and \overline{G} are minimal even pair free if and only if G is an odd hole or an odd anti-hole.

Proof. As shown in Proposition 1 and Proposition 2 odd holes and odd anti-holes are minimal even pair free.

To prove the other direction let G be a graph such that G and \overline{G} are minimal even pair free. Suppose that G is neither an odd hole nor an odd anti-hole. Then by Proposition 2 neither G nor \overline{G} contains an anti-hole as an induced subgraph. Therefore neither G nor \overline{G} can contain an induced cycle of length at least five. Graphs with this property are called *weakly triangulated* [3]. Hayward, Hoàng and Maffray [4] have shown that every weakly triangulated graph contains an even pair or is a clique. This contradicts the assumption that G is minimal even pair free. \Box

Using Lemma 1 one can easily derive a new equivalent formulation of the Strong Perfect Graph Conjecture in terms of minimal even pair free graphs:

Lemma 2 The following conjecture is equivalent to the Strong Perfect Graph Conjecture:

Minimal imperfect graphs are minimal even pair free.

Proof. Let G be a minimal imperfect graph. The Perfect Graph Theorem [5] implies that the complement of G is again minimal imperfect. Thus if the above stated conjecture holds then by Lemma 1 G is an odd hole or an odd anti-hole. This proves the Strong Perfect Graph Conjecture.

If the Strong Perfect Graph Conjecture holds then the only minimal imperfect graphs are the odd holes and the odd anti-holes thus Lemma 1 implies the above conjecture. \Box

References

- C.BERGE, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe (1961), 114–115
- [2] C.BERGE, V.CHVÁTAL, Topics on Perfect Graphs, Ann. Discrete Math. 21, North-Holland, Amsterdam 1984
- [3] R.B.HAYWARD, Weakly triangulated graphs, J. Combin. Theory Ser. B 39 (1985), 200–209
- [4] R.B.HAYWARD, C.T.HOÀNG, F.MAFFRAY, Optimizing weakly triangulated graphs, Graphs Combin. 5 (1989), 339–349
- [5] L.LOVÁSZ, A characterization of perfect graphs, J. Combin. Theory Ser. B 13 (1972), 95–98
- [6] H.MEYNIEL, A new property of critical imperfect graphs and some consequences, European J. Combin. 8 (1987), 313–316