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Abstract.  We will characterize all graphs that have the property that the graph and
its complement are minimal even pair free. This characterization allows a new formulation
of the Strong Perfect Graph Conjecture.

The reader is assumed to be familiar with perfect graphs (see for example [2]). A hole is a cycle
of length at least five. An odd hole is a hole that has an odd number of vertices. An (odd)
anti-hole is the complement of an (odd) hole. Berge’s famous Strong Perfect Graph Conjecture

may be formulated as follows [1]:

Strong Perfect Graph Conjecture The only minimal imperfect graphs are the odd holes

and the odd anti-holes.

Two vertices in a graph are called an even pair if all induced paths between these two ver-
tices have even length. Meyniel [6] has shown that minimal imperfect graphs are even pair
free. A graph is called minimal even pair free if the graph does not contain an even pair but
every induced subgraph contains an even pair or is a clique. We will show that proving that
minimal imperfect graphs are minimal even pair free already implies the Strong Perfect Graph

Conjecture.

Proposition 1 Odd holes are minimal even pair free.

Proof. Obviously odd holes do not contain an even pair. Every proper induced subgraph of an
odd hole is either disconnected or a path of length at least two or a clique. Thus every proper

induced subgraph of an odd hole contains an even pair or is a clique.

Proposition 2 Anti-holes are minimal even pair free.

Proof. Let G be an anti-hole. Then every two non-adjacent vertices of G are connected by an

induced path of length three and thus G does not contain an even pair.

Let H be a proper induced subgraph of G that is not a clique. Then H contains a vertex
of degree one and therefore H contains a vertex x that is connected to all but one vertex in
H. All induced paths between z and its non-neighbor have length two and thus H contains an

even pair.

We are now able to give a characterization of all the graphs G such that G’ and G are minimal

even pair free:
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Lemma 1 G and G are minimal even pair free if and only if G is an odd hole or an odd
anti-hole.

Proof. As shown in Proposition 1 and Proposition 2 odd holes and odd anti-holes are minimal
even pair free.

To prove the other direction let G be a graph such that G and G are minimal even pair free.
Suppose that G is neither an odd hole nor an odd anti-hole. Then by Proposition 2 neither G
nor G contains an anti-hole as an induced subgraph. Therefore neither G nor G can contain an
induced cycle of length at least five. Graphs with this property are called weakly triangulated
[3]. Hayward, Hoang and Maffray [4] have shown that every weakly triangulated graph contains
an even pair or is a clique. This contradicts the assumption that G is minimal even pair free.
O

Using Lemma 1 one can easily derive a new equivalent formulation of the Strong Perfect Graph
Conjecture in terms of minimal even pair free graphs:

Lemma 2 The following conjecture is equivalent to the Strong Perfect Graph Conjecture:
Minimal imperfect graphs are minimal even pair free.

Proof. Let G be a minimal imperfect graph. The Perfect Graph Theorem [5] implies that the
complement of G is again minimal imperfect. Thus if the above stated conjecture holds then
by Lemma 1 G is an odd hole or an odd anti-hole. This proves the Strong Perfect Graph

Conjecture.

If the Strong Perfect Graph Conjecture holds then the only minimal imperfect graphs are
the odd holes and the odd anti-holes thus Lemma 1 implies the above conjecture. O
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