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Abstract. Two vertices in a graph are called an even pair (odd
pair) if all induced paths between these two vertices have even (odd)
length. Even and odd pairs have turned out to be of importance in
conjunction with perfect graphs. We will characterize all linegraphs of
bipartite graphs that contain an even resp. odd pair. In general it is a
co-NP-complete problem to decide whether a graph contains an even
pair. For the class of linegraphs of bipartite graphs we will show that
testing for even resp. odd pairs can be done in polynomial time.

1 Introduction

Two vertices in a graph are called an even pair if every induced path between
these two vertices has even length. A graph is called strict quasi parity if
every induced subgraph contains an even pair or is a clique. The class of
strict quasi parity graphs was introduced by Meyniel [11] and is denoted
SQP for short.

A graph is called minimal non strict quasi parity if the graph does not
belong to SQP but every proper induced subgraph does. Meyniel [11] has
posed the problem to characterize all minimal non strict quasi parity graphs.
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To attack this problem we proposed after discussions with Chinh Hoang
the following conjecture [8] which — if true — shows the significance of line-
graphs of bipartite graphs in conjunction with even pairs:

Conjecture 1 Every minimal non strict quasi parity graph is either

i) an odd cycle of length at least five  or
ii) the complement of a cycle of length at least seven  or

iii) the linegraph of a bipartite graph.

For the class of planar graphs this conjecture has been proved recently
by Linhares, Maffray, Preissmann and Reed [10].

The main motivation for studying strict quasi parity graphs is their
connection to perfect graphs. A graph is called perfect if for every induced
subgraph the chromatic number of the subgraph equals its clique number.
A minimal imperfect graph is a graph that itself is not perfect but all its
proper induced subgraphs are.

Meyniel [11] has shown that no minimal imperfect graph can contain an
even pair and thereby proved that the graphs in SQP are perfect.

Many of the known classes of perfect graphs such as bipartite graphs,
comparability graphs, permutation graphs, interval graphs, triangulated
graphs — to mention just the ‘classical’ ones — are a subset of SQP. On
the other hand there are several classes of perfect graphs like strongly per-
fect graphs [2], BIP* [4], alternately orientable graphs 7] and slim graphs
[6] that are supposed to be in SQP, but no one so far has been able to prove
this. Here a better knowledge of minimal non strict quasi parity graphs
would be very helpful.

Another link between perfect graphs and strict quasi parity graphs was
established in [9]. Berge‘s famous Strong Perfect Graph Conjecture [1] states
that a graph is perfect if and only if the graph and its complement do not
contain odd induced cycles of length at least five. In [9] it was shown that
this conjecture is equivalent to the statement that minimal imperfect graphs
are minimal non strict quasi parity.

2 Even Pairs

If Conjecture 1 turns out to be true then the next problem in character-
izing minimal non strict quasi parity graphs is to decide which linegraphs
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of bipartite graphs are minimal non strict quasi parity. The main result of
this section procedes into this direction by giving a characterization of those
linegraphs of bipartite graphs that contain an even pair.

Theorem 1 The linegraph G of a bipartite graph H contains an even pair
if and only if there exist two non-incident edges aiay and biby in H such
that a1 and by Tesp. as and by belong to the same colorclass of the bipartite
graph H and to different components of H — as — by resp. H — a1 — by.

Proof. Let G be the linegraph of a bipartite graph H and let (a,b) be an even
pair in G. By aja2 resp. bibs we denote the edges in H which correspond
to the vertices a resp. b in G. We may assume that a; and b; resp. ag and
b2 belong to the same colorclass of H. Since a and b cannot be adjacent the
edges aias and biby are non-incident. Suppose now there exists a path in H
between a; and b; that uses neither the vertex as nor the vertex by. Then
the length of this path must be even. A shortest such path will result in an
odd induced path between a and b in G (see Figure 1).

Figure 1

This contradicts the fact that (a,b) is an even pair in G. Thus we know
that every path in H connecting a; and b; must contain at least one of
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the two vertices ae and by. This means that a; and b; belong to different
components of H — as — by. Using symmetrical arguments we see that ao
and by belong to different components of H — a; — b;.

We now assume that H has the property stated in the theorem. We
have to show that G contains an even pair. Let a and b be the vertices of
G which correspond to the edges aijas and bi1by in H. Since the edges ajas
and bi1by are non-incident the vertices a and b are non-adjacent. Suppose
now that there exists an odd induced path between g and b in G. This path
corresponds to an even path in H which connects the two edges aja2 and
b1by. Taking a shortest such path and using symmetry we may assume that
this path connects a1 with b; and uses neither as nor b,. But such a path
cannot exist since a1 and by belong to different components of H — ag — bs.
O

Remark Bienstock [3] has shown that deciding whether a graph con-
tains an even pair is a co-NP-complete problem. Restricted to the class
of linegraphs of bipartite graphs the above characterization shows that this
problem can be solved in polynomial time. To this end one has to make
use of the well known fact that a graph can be derived from its linegraph in
polynomial time [14].

We can also give a characterization of complements of linegraphs of bi-
partite graphs that contain an even pair. It is well known that a linegraph
of a bipartite graph cannot contain a diamond [5] (a diamond is the graph
that is obtained from the complete graph on four vertices by removing one
edge). Thus the desired characterization can easily be obtained from the
following observation:

Lemma 1 The complement of a diamond-free graph contains an even pair
if and only if there exist two non-adjacent vertices which are not connected
by an induced path of length three.

Proof. The necessity of the above condition is obvious. The sufficiency fol-
lows from the simple fact that the complement of an odd path of length at
least five contains a diamond. O
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Corollary 1 The complement of a linegraph of a bipartite graph contains
an even pair if and only if there exist two non-adjacent vertices which are
not connected by an induced path of length three.

Remark Again this characterization yields a polynomial time algorithm
to detect even pairs in complements of linegraphs of bipartite graphs.

Obviously Theorem 1 together with Corollary 1 gives a characterization
of linegraphs of bipartite graphs such that the graph and its complement
are even pair free. Unfortunately these conditions are rather technical. We
therefore want to give a simpler condition guaranteeing that a linegraph of
a bipartite graph and its complement do not contain an even pair. To this
end, we first prove the following lemma:

Lemma 2 Let H be a bipartite graph of minimum degree at least three.
Then the complement of its linegraph does not contain an even pair.

Proof. Let G denote the linegraph of H. We have to prove that any two
non-adjacent vertices a and b in G are connected by an odd induced path.
Let ajas and b1bs be the edges in H corresponding to the vertices ¢ and
b in G. Since a and b are non-adjacent in G they are adjacent in G and
therefore the edges ai1as and b1bs in H are incident. Thus we may assume
that a; = by. Since H is bipartite the vertices as and by cannot be adjacent.
Since by assumption these vertices have degree at least three there must
exist two non-incident edges asv and bow such that v # w. (Take as v any
neighbor of a different from a; and as w any neighbor of by different from
ay and v). Let x resp. y denote the vertices in G corresponding to the edges
aov and byw in H. Then ayzb is an induced Py in G. O

Now we can easily give a sufficient condition for a linegraph of a bipartite
graph such that the graph and its complement are even pair free.

Lemma 3 Let H be a 3-connected bipartite graph. Then its linegraph and
the complement of its linegraph do not contain an even pair.
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Proof. Since H is 3-connected each vertex of H has degree at least three and
therefore by Lemma 2 the complement of the linegraph of H is even pair
free.

From Theorem 1 follows that also the linegraph of H cannot contain an
even pair. O

Remark From Lemma 2 it also follows that the complement of a linegraph
of a 3-edge-connected bipartite graph is even pair free. In contrast to this
there exist arbitrarily high edge-connected bipartite graphs whose linegraphs
contain an even pair. This is shown by the example in Figure 2.

Figure 2: A bipartite graph and its linegraph.

The bipartite graph consists of four copies of the K3 3 that are identified
as shown in the figure. It is easy to see that this graph is 3-edge-connected.
But two opposite vertices of the inner quadrilateral of its linegraph form an
even pair.

By taking a K, instead of the K33 one gets in an analogous way ar-
bitrarily high edge connected bipartite graphs whose linegraphs contain an
even pair.
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3 0Odd Pairs

In this section we will show that nearly the same results as shown in the
last section are valid for odd pairs. First we give a counterpart to Theorem
1 by giving a characterization of linegraphs of bipartite graphs that contain
an odd pair.

Theorem 2 The linegraph G of a bipartite graph H contains an odd pair
if and only if there exist two non-incident edges aias and biby in H such
that a1 and by resp. as and bo belong to different colorclasses of the bipartite
graph H and to different components of H — as — by resp. H — a1 — by.

Proof. The proof is similar to the proof of Theorem 1. Instead of looking at
paths between a; and b; resp. as and by one has to look at paths between
a1 and by resp. as and b;. Then the proof is essentially the same as for
Theorem 1 and therefore omitted. O

We will now show that a counterpart of Lemma 3 also holds for odd pairs:

Lemma 4 Let H be a 3-connected bipartite graph. Then its linegraph and
the complement of its linegraph do not contain an odd pair.

Proof. From Theorem 2 it follows that the linegraph of H cannot contain
an odd pair.

We will now show that also G, the complement of the linegraph of H,
does not contain an odd pair. Let a and b be any two non-adjacent vertices
of G. These vertices are adjacent in G and therefore there correspond two
incident edges of H to these two vertices. Since H is 3-connected and bi-
partite there must exist an edge in H that is not incident with any of these
two edges. But this means that a and b are connected by a path of length
2 in G. Therefore a and b do not form an odd pair. O

Remark As mentioned in the introduction Meyniel has shown that no
minimal imperfect graph can contain an even pair. Whether an analogous
statement holds for odd pairs is still an open question [12]. Nevertheless
one could think of defining a class of graphs similar to the class SQP, but in
terms of odd pairs. But since a diamond does not contain an odd pair and
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diamond-free Berge graphs are known to be perfect [13] this would not give
an interesting new class of perfect graphs.
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