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Abstract.  The Strong Perfect Graph Conjecture, suggested by Claude Berge in
1960, had a major impact on the development of graph theory over the last forty
years. It has led to the definitions and study of many new classes of graphs for
which the Strong Perfect Graph Conjecture has been verified. Powerful concepts
and methods have been developed to prove the Strong Perfect Graph Conjecture for
these special cases. In this paper we survey 120 of these classes, list their fundamental
algorithmic properties and present all known relations between them.

1 Introduction

A graph is called perfect if the chromatic number and the clique number have the same
value for each of its induced subgraphs. The notion of perfect graphs was introduced by
Berge [6] in 1960. He also conjectured that a graph is perfect if and only if it contains,
as an induced subgraph, neither an odd cycle of length at least five nor its complement.

This conjecture became known as the Strong Perfect Graph Conjecture and attempts
to prove it contributed much to the developement of graph theory in the past forty years.
The methods developed and the results proved have their uses also outside the area of
perfect graphs. The theory of antiblocking polyhedra developed by Fulkerson [37], and
the theory of modular decomposition (which has its origins in a paper of Gallai [39]) are
two such examples.

The Strong Perfect Graph Conjecture has led to the definitions and study of many new
classes of graphs for which the correctness of this conjecture has been verified. For several
of these classes the Strong Perfect Graph Conjecture has been proved by showing that
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every graph in this class can be obtained from certain simple perfect graphs by repeated
application of perfection preserving operations. By using this approach Chudnovsky,
Robertson, Seymour and Thomas [19] were recently able to prove the Strong Perfect
Graph Conjecture in its full generality. After remaining unsolved for more than forty
years it can now be called the Strong Perfect Graph Theorem.

The aim of this paper is to survey 120 classes of perfect graphs. The criterion we used
to include a class of perfect graphs in this survey is that its study be motivated by making
progress towards a proof of the Strong Perfect Graph Conjecture. This criterion rules
out including classes of perfect graphs that are known to be perfect just by definition,
e.g. classes that are defined as subclasses of graphs already known to be perfect or classes
that are defined as the union of two classes of perfect graphs. Some exceptions are made.
For example we include some very basic classes such as trees or bipartite graphs. We have
also included a few classes which were not known to contain only perfect graphs without
using the Strong Perfect Graph Theorem. On the other hand, there probably exist several
classes of perfect graphs which satisfy our criterion, but which are not included in this
survey. We refer to [12, 13] for further information on graph classes.

A second motivation for studying perfect graphs besides the Strong Perfect Graph
Conjecture are their nice algorithmic properties. While the problems of finding the
clique number or the chromatic number of a graph are NP-hard in general, they can be
solved in polynomial time for perfect graphs. This result is due to Grotschel, Lovész
and Schrijver [47] from 1981. Unfortunately, their algorithms are based on the ellipsoid
method and are therefore mostly of theoretical interest. It is still an open problem to
find a combinatorial polynomial time algorithm to color perfect graphs or to compute
the clique number of a perfect graph. However, for many classes of perfect graphs, such
algorithms are known. In Section 4 we survey results of this kind. Moreover we consider
the recognition complexity of all these classes, i.e. the question of deciding whether a given
graph belongs to the class. Chudnovsky, Cornuejols, Liu, Seymour and Vuskovié¢ [18]
recently proved that there exists a polynomial time algorithm for recognizing perfect
graphs. For several subclasses of perfect graphs such an algorithm is not yet known.

In many cases new classes of perfect graphs that have been introduced were motivated
by generalizing known classes of perfect graphs. Many classes of perfect graphs are,
therefore, subclasses of other classes of perfect graphs. We study the relation between all
the classes of perfect graphs contained in this survey. The relations are given in the form
of a table either stating that class A is contained in a class B or by giving an example
of a graph showing that A is not a subclass of B. The table containing this information
has 14400 entries. For several cases which had been open, the table answers the question
whether a class A is a subclass of a class B.

The paper is organized as follows: Section 2 contains all basic notations used through-
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out this paper. The definitions of the classes of perfect graphs appearing in this paper are
given in Section 3. In Section 4 we survey algorithms for the recognition and for solving
optimization problems on classes of perfect graphs. The number of graphs contained
in each of the classes of perfect graphs considered is given in Section 5. The relations
between the classes of perfect graphs studied in this paper are presented in Section 6.
All counterexamples that are needed to prove that certain classes are not contained in
each other are described in Section 7.

2 Notation

Given a graph G = (V, E) with vertex set V and edge set F we denote by n and m the
cardinality of V and E. The degree of a vertex is the number of edges incident to this
vertex. The mazimum degree A(G) is the largest degree of a vertex of G. A k-coloring
of the vertices of a graph G = (V,E) isamap f:V — {1,...,k} such that f(z) # f(y)
whenever {x,y} is an edge in G. The chromatic number x(G) is the least number k such
that G admits a k-coloring. A clique is a graph containing all possible edges. A clique on
i vertices is denoted by K;. The clique number w(G) of a graph G is the size of a largest
clique contained in G as a subgraph. A stable set in a graph is a set of vertices no two
of which are adjacent. By I; we denote a stable set of size i. The stability number a(Q)
is the size of a largest stable set in G. The complement G of a graph G has the same
vertex set as G and two vertices in G are adjacent if and only if they are not adjacent in

G. Obviously, we have o(G) = w(G), and the clique covering number 0(G) is defined as
x(G).

A graph is called perfect if x(H) = w(H) for every induced subgraph H. A hole is
a chordless cycle of length at least four and an antihole is the complement of a hole.
An odd (respectively even) hole is a hole with an odd (respectively even) number of
vertices. A graph is called Berge if it contains no odd holes and no odd antiholes as
induced subgraphs. A star-cutset in a graph G is a subset C' of vertices such that G \ C
is disconnected and such that some vertex in C is adjacent to all other vertices in C.

A complete bipartite graph, i.e. a bipartite graph with all possible edges between the
vertices of the two color classes of size r and s, respectively, is denoted by K, . A K3
is called a claw. A path on i vertices is denoted by P; and a cycle on ¢ vertices by C;.
The two vertices of degree one in a path are called the endpoints of the path. In a Py
the vertices of degree two are called midpoints of the Py. The two edges of a Py incident
to the endpoints of the Py are called wings. The wing graph W(G) of a graph G has
as its vertices all edges of G and two edges are adjacent in W (QG) if there is an induced
P4 in G that has these two edges as its wings. Given a graph G its k-overlap graph is
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Figure 1: Some small graphs with special names.

defined as the graph whose vertices are all induced Py’s of G and in which two vertices
are adjacent if the corresponding P,’s in G have exactly k vertices in common. Two
vertices x,y in a graph are called partners if there exist vertices u, v, w distinct from z,y
such that {x,u,v,w} and {y,u,v,w} each induce a Py in the graph. The partner graph
of a graph G is the graph whose vertices are the vertices of G and whose edges join pairs
of partners in G.

Two vertices form an even pair if all induced paths between these two vertices have
even length. The line graph L(G) of a graph G is the graph that has the edges of G
as vertices and in which two vertices in L(G) are adjacent if the corresponding edges
of G are adjacent (that is, share a vertex). Some small graphs are given special names.
Figure 1 contains such graphs with the names that are used throughout this paper.

3 Definitions of Graph Classes

In this section we briefly present in alphabetical order the definitions of all classes of
perfect graphs appearing in this paper. For each class we give a reference to a proof that
all graphs in the class are perfect. Note that with the proof of the Strong Perfect Graph
Conjecture it follows immediately for all classes that they contain only perfect graphs.

alternately colorable A graph is called alternately colorable if its edges can be colored
using only two colors in such a way that in every induced cycle of length at least four
no two adjacent edges have the same color. This class of graphs has been defined by
Hoang [61] who also proved the perfectness of these graphs.

alternately orientable A graph is called alternately orientable if it admits an ori-
entation of its edges such that in every induced cycle of length at least four the
orientation of the edges alternates. This class of graphs was defined by Hoang [61]
who also proved the perfectness of these graphs.

AT-free Berge A graph is called AT-free Berge if it is a Berge graph and does not



This paper appeared in: Discrete Mathematics 306 (2006), 2529-2571

contain an asteroidal triple. An asteroidal triple is an independent set of three vertices
such that each pair is joined by a path that avoids the neighborhood of the third.
This class of graphs was introduced in [80]. Perfectness of these graphs was observed
by Maffray [29, page 401]. As his argument is unpublished we briefly state it here. If
an AT-free Berge graph has stability number two then it must be the complement of
a bipartite graph and therefore perfect. If the graph has a stable set of size three, say
{z,y, z}, then since the graph is AT-free it must be that the set of all neighbours of
one of them, say z, separates x from y, i.e., z is the center of a star-cutset. Perfection
follows from [21].

BIP* A graph belongs to the class BIP* if all induced subgraphs H which are not
bipartite have the property that H or H contains a star—cutset. This class of graphs
was defined by Chvdtal [21] who also proved the perfectness of these graphs.

bipartite A graph is called bipartite if its chromatic number is at most two. Perfectness
of bipartite graphs follows from the definition.

brittle A graph is called brittle if every induced subgraph H of G contains a vertex
that is not an endpoint or not a midpoint of a P4 in H. This class of graphs was
introduced by Chvéatal. Perfection follows easily as all brittle graphs are perfectly
orderable [63].

bull-free Berge A bull-free Berge graph is a Berge graph that does not contain a bull
(see Figure 1) as an induced subgraph. Chvéatal and Sbihi [24] proved that these
graphs are perfect.

Cy-free Berge A Cy-free Berge graph is a Berge graph that does not contain a cycle
on four vertices as an induced subgraph. Perfection of these graphs was shown by
Conforti, Cornuéjols, and Vuskovié [28].

chair-free Berge A chair-free Berge graph is a Berge graph that does not contain a
chair (see Figure 1) as an induced subgraph. Perfection of these graphs was shown
by Sassano [107].

chordal see —triangulated.

claw-free Berge A graph is claw-free Berge if it is a Berge graph that does not contain a
K 3 (which is called a claw) as an induced subgraph. Parthasarathy and Ravindra [96]
proved the perfectness of these graphs.

clique-separable A graph is called clique-separable if every induced subgraph that
does not contain a clique-cutset is of one of the following two types. Either it is
a complete multipartite graph or its vertex set can be partitioned into two sets V;
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and Vs such that V; is a connected bipartite graph, V5 is a clique and all vertices
in V; are connected to all vertices in V. This class of graphs appears first in the
paper of Gallai [38]. Gavril [41] invented the name for this class. Perfection follows
immediately from the definition.

co-class Complements of the graphs in — class.
cograph see — Py-free.

cograph contraction A graph G is a cograph contraction if there exists a cograph H
and some pairwise disjoint independent sets in H such that G is obtained from H by
contracting each of the independent sets to a single vertex (resulting multiple edges
are identified) and joining the new vertices pairwise. Hujter and Tuza [73] introduced
this class of graphs and proved that they are perfect. A good characterization of
these graphs is given in [79].

comparability A graph is a comparability graph if there exists a partial order “<”
on its vertices such that two vertices z and y are adjacent in the graph if and only
if # <y or y < x. These graphs are also called transitively orientable. Perfectness
follows from a classical result of Dilworth [33].

A < 6 Berge The class A < 6 Berge contains all Berge graphs in which the maximum
degree is at most 6. Grinstead [46] proved that these graphs are perfect.

dart-free Berge A graph is dart-free Berge if it is a Berge graph that does not contain
a dart (see Figure 1) as an induced subgraph. Sun [114] proved the perfectness of
these graphs.

degenerate Berge A graph is called degenerate Berge if it is a Berge graph and every
induced subgraph H has a vertex of degree at most w(H) + 1. This class of graphs
has been defined by Ait Haddadene and Maffray [1] who also proved the perfectness
of these graphs.

diamond-free Berge A graph is diamond-free Berge if it is a Berge graph that does
not contain a diamond (a K4 with one edge removed, see Figure 1) as an induced
subgraph. Tucker [119] proved the perfectness of these graphs based on earlier results
of Parthasarathy and Ravindra [97].

doc-free Berge The name doc-free Berge is an abbreviation for the class of diamonded
odd cycle-free Berge graphs. These are Berge graphs that do not contain diamonded
odd cycles as induced subgraphs. A diamonded odd cycle on five vertices is a Py
or a Cy4 together with a fifth vertex joined to all the others. An odd cycle C' with
more than five vertices is called a diamonded odd cycle if it has two chords {x,y}
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and {z, z} with {y, z} an edge of C' and there exists a vertex w not on C adjacent to
y and z but not . Moreover no edge of C other than {y, z} is on a triangle induced
by the vertices of C'. Carducci [17] proved the perfectness of doc-free Berge graphs.

elementary A graph is called elementary if its edges can be colored by two colors so that
no monochromatic induced P3 occurs. Equivalently these are graphs whose Gallai-
graph is bipartite. Elementary graphs were introduced by Chvatal and Sbihi [25].
Perfectness of these graphs follows from the fact that they are claw-free Berge. Maf-
fray and Reed [84] give a description of the structure of elementary graphs.

forest A graph is called a forest if it does not contain a cycle. These graphs are perfect
as they are bipartite.

Gallai There exist two different classes of perfect graphs which have been given the
name Gallai. Historically — triangulated graphs were called Gallai graphs [9]. Later,
— i-triangulated graphs were given this name.

gem-free Berge A graph is called gem-free Berge if it is a Berge graph without a gem
(see Figure 1) as an induced subgraph. Perfection of these graphs follows from the
Strong Perfect Graph Theorem [19].

HHD-free A graph is called HHD-free if it does not contain a house (see Figure 1), a
hole of length at least 5 or a domino (see Figure 1) as an induced subgraph. This
class of graphs was introduced in [63]. Perfectness follows easily from the observation
that these graphs are Meyniel.

Hoang A graph is called Hoang if its wing graph (see Section 2) is bipartite. This class
of graphs was introduced in [22]. Perfection of these graphs follows from the Strong
Perfect Graph Theorem [19].

i-triangulated A graph is called i-triangulated if every odd cycle of length at least
five has two non-crossing chords. These graphs are also called — Gallai. Gallai [38]
proved the perfectness of these graphs.

14-free Berge A graph is I4-free Berge if it is Berge and does not contain a stable set
on four vertices. These are complements of — K4-free Berge graphs.

interval A graph is an interval graph if each vertex can be represented by an interval
on the real line in such a way that two vertices are adjacent if and only if their
corresponding intervals intersect. These graphs are — triangulated [43] and therefore
perfect.

K -free Berge A graph is K -free Berge if it is Berge and does not contain a clique on
four vertices. Tucker [118] proved the perfectness of these graphs.
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(K5, Ps)-free Berge A graph is (K35, Ps)-free Berge if it is Berge and does not contain
a K5 or a P5 as an induced subgraph. Perfectness of these graphs was proved by
Maffray and Preissmann [82].

LGBIP The class LGBIP consists of all line graphs (see Section 2) of bipartite graphs.
As noted in [6] perfection of these graphs follows from a classical result of Konig [78].

line perfect A graph is called line perfect if its line graph is perfect. Perfection of
these graphs follows from a characterization of Trotter [116].

locally perfect A graph is called locally perfect if every induced subgraph admits a
coloring of its vertices such that for any vertex the number of colors used in the
neighborhood of this vertex equals the clique number of the neighborhood of the
vertex. This class of graphs was introduced by Preissmann [98] who also proved the
perfection of these graphs.

Meyniel A graph is called Meyniel if every odd cycle of length at least five has at least
two chords. Meyniel [87, 88| proved the perfectness of these graphs. The same result
was proven independently by Markosian and Karapetian [86].

murky A graph is called murky if it contains no C5, Ps or Pg as an induced subgraph.
Hayward [52] proved that murky graphs are perfect.

1-overlap bipartite A graph belongs to the class 1-overlap bipartite if it is C5-free and
its 1-overlap graph (see Section 2) is bipartite. Hoang, Hougardy and Maffray [62]
proved that these graphs are perfect.

opposition A graph is called opposition if it admits an orientation of its edges such that
in every induced P, the two end edges both either point inwards or outwards. This
class of graphs was introduced by Chvatal [22]. Perfection follows from the Strong
Perfect Graph Theorem [19]. Note that there is another class of perfect graphs called
opposition [92] which additionally requires that the orientation of the edges be acyclic.
Therefore we call this class — strict opposition.

Py-free A graph is called Py-free if it does not contain a P4 as an induced subgraph.
These graphs are also called cographs. Perfection follows from a result of Sein-
sche [110].

Py-lite A graph is called Py-lite if every induced subgraph H with at most six vertices
contains either at most two induced Py’s or H or H is the 3-sun (see Section 2).
These graphs were introduced in [76]. Perfection follows from the fact that they are
— weakly triangulated.

Ps-reducible A graph is called Pj-reducible if every vertex belongs to at most one
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induced P;. These graphs were introduced in [75]. Perfection follows from the fact
that they are — weakly triangulated.

Ps-sparse A graph is called Pj-sparse if no set of five vertices induces more than one
Py. This class of graphs was introduced in [60]. Perfection follows from the fact that
these graphs are — weakly triangulated.

Ps-stable Berge A graph is called Ps-stable Berge if it is a Berge graph containing
a stable set that intersects all induced P4’s. Hoang and Le [64] proved that these
graphs are perfect.

parity A graph is called parity if for every pair of nodes, the lengths of all induced paths
connecting them have the same parity. Burlet and Uhry [16] proved that a graph is
parity if and only if each odd cycle of length at least five has two crossing chords.
Perfection of these graphs was proved by Olaru [94].

partner-graph triangle-free The class partner-graph triangle-free contains all graphs
whose partner graph (see Section 2) is triangle free. Perfection of this class of graphs
was proved by Hayward and Lenhart [54].

paw-free Berge A graph is called paw-free Berge if it is a Berge graph that does not
contain a paw (see Figure 1) as an induced subgraph. Perfection follows from the
observation that these graphs are Meyniel. See [93] for a characterization of paw-free
graphs.

perfectly contractile A graph is called perfectly contractile if for any induced subgraph
H there exists a sequence H = Hg, Hy, ..., Hy, for some k such that H;y is obtained
from H; by contraction of an even pair (see Section 2) and Hy, is a clique. Bertschi [10]
introduced this class of graphs and proved that they are perfect.

perfectly orderable A graph is called perfectly orderable if there exists an acyclic
orientation of the edges such that in no induced P, the two end edges are oriented
inwards. This class of graphs was introduced by Chvatal [20] who also proved that
they are perfect.

permutation A graph is called a permutation graph if it can be represented by a
permutation 7 : {1,...,n} — {1,...,n} in such a way that two vertices i < j
are adjacent if and only if 7(i) > m(j). Perfection of these graphs follows from a
characterization of Dushnik and Miller [35].

planar Berge The class planar Berge contains all Berge graphs that are planar. Per-
fection of these graphs was shown by Tucker [117].

preperfect A vertex x in a graph G is called predominant if there exists another vertex
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y such that every maximum clique of G containing y contains x or every maximum
stable set containing x contains y. A graph is called preperfect if every induced
subgraph has a predominant vertex. Hammer and Maffray [49] introduced this class
of graphs and proved that all preperfect graphs are perfect.

quasi-parity A graph is called quasi-parity if for every induced subgraph H of G either
H or H contains an even pair (see Section 2). Meyniel [89] proved that quasi-parity
graphs are perfect.

Raspail A graph is called Raspail if every odd cycle has a short chord, i.e. a chord
joining two vertices that have distance two on the cycle. See [114] for an explanation
of where the name for this class comes from. Perfection of these graphs follows from
the Strong Perfect Graph Theorem [19].

skeletal A graph is called skeletal if it can be obtained by removing a collection S of
stars in a — parity graph. No two centers of stars in S must be joined by an induced
path of length at most two. Hertz [58] proved that these graphs are perfect.

slender A graph is called slender if it can be obtained from an —i-triangulated graph by
deleting all the edges of an arbitrary matching. Hertz [57] proved that these graphs
are perfect.

slightly triangulated A graph is called slightly triangulated if it contains no hole of
length at least five and every induced subgraph H contains a vertex whose neighbor-
hood in H does not contain a Py. This class of graphs was introduced by Maire [85]
who also proved the perfectness of these graphs.

slim A graph is called slim if it can be obtained from a Meyniel graph by removing all
the edges that are induced by an arbitrary vertex set. Hertz [56] proved that slim
graphs are perfect.

snap A graph is called snap if it is Berge and every induced subgraph contains a vertex
whose neighborhood can be partitioned into a stable set and a clique. Maffray and
Preissmann [83] proved the perfection of snap graphs.

split A graph is called split if its vertex set can be partitioned into two sets V7 and V5
such that V7 induces a stable set and V5 induces a clique. Perfection of split graphs
follows from the fact that they are triangulated.

strict opposition A graph is called strict opposition if it admits an acyclic orientation
of its edges such that in every induced Pj the two end edges both either point inwards
or outwards. Olariu [92] proved that these graphs are perfect.

strict quasi-parity A graph is called strict quasi-parity if every induced subgraph

10
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either contains an even pair (see Section 2) or is a clique. Meyniel [89] proved that
strict quasi-parity graphs are perfect.

strongly perfect A graph is called strongly perfect if every induced subgraph contains
a stable set that intersects all maximal cliques. Berge and Duchet [8] introduced
strongly perfect graphs and proved their perfection.

3-overlap bipartite A graph belongs to the class 3-overlap bipartite if its 3-overlap
graph (see Section 2) is bipartite. Hoang, Hougardy and Maffray [62] proved that
these graphs are perfect.

3-overlap triangle free A graph belongs to the class 3-overlap bipartite if it is Berge
and its 3-overlap graph (see Section 2) is triangle free. Hoang, Hougardy and Maf-
fray [62] proved that these graphs are perfect.

threshold A graph is called a threshold graph if it does not contain a C4, Cy4 and
P, as an induced subgraph. Perfection of these graphs follows easily as they are
triangulated.

totally unimodular see —unimodular.
transitively orientable see —comparability.

tree A connected graph that does not contain a cycle is called a tree. Trees are perfect
as they are bipartite.

triangulated A graph is called triangulated if every cycle of length at least four contains
a chord. These graphs are also called chordal. Perfection of triangulated graphs
follows from results of Hajnal and Surdnyi [48] and Dirac [34].

trivially perfect A graph is called trivially perfect if for each induced subgraph H the
stability number of H equals the number of maximal cliques in H. Golumbic [44]
introduced these graphs and proved their perfection. He also showed that a graph is
trivially perfect if and only if it contains no C'y and no P, as an induced subgraph.

2-overlap bipartite A graph belongs to the class 2-overlap bipartite if it is C5-free and
its 2-overlap graph (see Section 2) is bipartite. Hoang, Hougardy and Maffray [62]
proved that these graphs are perfect.

2-overlap triangle free A graph belongs to the class 2-overlap triangle-free if it is
Berge and its 2-overlap graph (see Section 2) is triangle free. Hoang, Hougardy and
Maffray [62] proved that these graphs are perfect.

2-split Berge A graph is called 2-split Berge if it is a Berge graph and if it can be

11
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partioned into two — split graphs. Hoang and Le [65] proved that 2-split graphs are
perfect.

2Ks-free Berge These are the complements of — Cy-free Berge graphs.

unimodular A graph is called unimodular if its incidence matrix of vertices and maximal
cliques is totally unimodular, i.e. every square submatrix has determinant 0, 1, or —1.
Perfection of these graphs was proved by Berge [7].

weakly chordal see —weakly triangulated.

weakly triangulated A graph is called weakly triangulated if neither the graph nor
its complement contains an induced cycle of length at least five. These graphs are
also called weakly chordal. Hayward [51] proved that weakly triangulated graphs are
perfect.

wing triangulated A graph is called wing triangulated if its wing graph (see Section 2)
is triangulated. Hougardy, Le and Wagler [68] proved that wing triangulated graphs
are perfect.

4 Algorithmic Complexity

The following table lists what is known regarding algorithmic complexity for the 120
classes. Note that we do not include the complements of the classes as they have, except
in the case of linear time recognition, the same algorithmic behavior as the classes them-
selves. The column recognition contains information on polynomial time algorithms to
test whether a given graph is a member of the class. The columns w, Y, «, and 6 con-
tain information on polynomial time combinatorial algorithms to compute a maximum
clique, the chromatic number, the stability number or a clique covering. Note that all
these problems can be solved in polynomial time by the algorithms of Grotschel, Lovész,
and Schrijver [47]. However, their algorithms are based on the ellipsoid method and are
therefore not purely combinatorial.

We use the following notation in the table: P means there exists a polynomial time
algorithm but we do not specify its running time. A polynomial in n and m denotes
the running time of an algorithm. We left out the O-notation to improve readability.
References are usually given following the running time. If not then this means that the
algorithm is trivial. We use the abbreviation NPC for NP-complete problems. A question
mark indicates that a polynomial time algorithm seems not to be known. A question
mark together with a reference indicates that finding a polynomial time algorithm for

12
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this problem is posed as an open problem in the literature.

class H recognition ‘ w X o 0
alternately colorable P [61] ? ? ? ?
alternately orientable P [61] ? ? ? ?
AT-free Berge P [18] ? ? nt [15] ?
BIP* 7 [21] ? ? ? ?
bipartite n+m n+m n+m nm [67] P [40]
brittle 2 [109] nm [55] nm [55] nm [55] nm [55]
bull-free Berge n® [99] P [31] P [31] P [31] P [31]
Cy-free Berge P [18] ? ? ? ?
chair-free Berge P [18] ? ? P [2] ?
claw-free Berge P [25] n'/2 [72] nt [69] | nt [108, 91, 81] | nil/2[72]
clique-separable P [41, 120] | P [41, 120] | P [41, 120] P [115, 120} P [120]
cograph contraction P [79] nm [55] nm [55] nm [55] nm [55]
comparability n? [111] | n? [111, 45] [111, 45] P [45] P [45]
A < 6 Berge P [18] P ? ? ?
dart-free Berge P [23] ? ? ? ?
degenerate Berge 7 [1] ? ? ? ?
diamond-free Berge P [36] ? n3 [119] ? ?
doc-free Berge ? ? ? ? ?
elementary P n'/2 [72] nt [69] | n* [108, 91, 81] H/2172]
forest n n n n P [40]
gem-free Berge P [18] ? ? ? ?
HHD-free n3 [66] | n+m [74] | n+m [74] n+m [74] | n+m [74]
Hoang P ? ? ? ?
i-triangulated nm [103] | P [41, 120] | n + m [101] P [115, 120] P [120]
interval n+m[11] | n+m[11] | n+m [11] n+m [11] | n+m [11]
K,-free Berge P [18] P ? ? ?
(K35, Ps)-free Berge P 182] ? [82] ? [82] ? [82]
LGBIP n+m [105] | n+m [105] | nlogn [27] vnm [67] | n't/2[72]
line perfect P [116] ? ? ? ?
locally perfect 7 [98] ? ? ? ?
Meyniel m? [102] n3 [59] n? [104] ? ?
murky P ? ? ? ?
1-overlap bipartite P ? ? ? ?
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class H recognition ‘ w ‘ X ‘ o ‘ 0
opposition ? ? ? ? ?
Py-free n—+m [30] n+m [5] n+m [5] n+m [5] n+m [5]
Py-lite P | n+4+m [42] n+m[42] | n+m[42] | n+m [42]
Py-reducible P [75] | n+m [42] n+m[42] | n+m [42] | n+m [42]
Py-sparse n—+m [77] n+m [5] n+m [5] n+m [5] n+m [5]
Py-stable Berge NPC [64] ? ? ? ?
parity n + m [26] P [16 P [16 P [16 P [16]
partner-graph A-free P ? ? ? ?
paw-free Berge P [18 n? [59 n? [104 ? ?
perfectly contractile ? ? ? ? ?
perfectly orderable NPC [90] ? ? ? ?
permutation n+m P [45] P [45] P [45] P [45]
planar Berge n3 [70] | n+m [95] | n3/% [71, 113] P [71] ?
preperfect ? ? ? ? ?
quasi-parity [89] ? ? ? ?
Raspail [22] ? ? ? ?
skeletal ? ? ? ? ?
slender ? ? ? ? ?
slightly triangulated P [85] ? 7 [85] ? ?
slim ? ? ? ? ?
snap ? [83] nm [83] 7 [83 ? ?
split n +m [50] P [45] P [45] P [45] P [45]
strict opposition ? ? ? ? ?
strict quasi-parity 7 [89] ? ? ? ?
strongly perfect ? ? ? ? ?
3-overlap bipartite P [62] ? ? ? ?
3-overlap A-free P [18] ? ? ? ?
threshold p n+m [5] n+m [5] n+m [5] n+m [5]
tree n n n n P [40]
triangulated n+m [100] | n+m [100] | n+ m [100] | n+m [100] | n + m [100]
trivially perfect n+ m [44] n+m [5] n+m [5] n+m [5] n+m [5]
2-overlap bipartite P [62] ? ? ? ?
2-overlap A-free P [18] ? ? ? ?
2-split Berge P [65] P [65] ? P [3] ?
unimodular ? ? ? ? ?
weakly triangulated n’m [112] nm [55 nm [55] nm [55 nm [55]
wing triangulated P [68] ? ? ? ?

14
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5 The Number of Perfect Graphs

We have implemented an algorithm to check whether a given graph is perfect and counted
the number of non-isomorphic perfect graphs on up to 12 vertices. Table 1 contains these
numbers and compares them to the number of all non-isomorphic graphs on the same
number of vertices. Note that these numbers include disconnected graphs. It is well
known that the proportion of graphs which are perfect tends to zero (see for example
Proposition 11.3.1 in [32]).

Table 1: The number of all non-isomorphic graphs and the number of all non-isomorphic

perfect graphs on exactly n vertices for n =5,...,12.
| 5] 6] 7] 8 | 9 | 10 | 11 | 12 |
all graphs || 34 | 156 | 1044 | 12346 | 274668 | 12005168 | 1018997864 | 165091172592
perfect 33 | 148 | 906 | 8887 | 136756 | 3269264 | 115811998 5855499195

We also implemented for each of the 120 classes of perfect graphs an algorithm for
recognizing these graphs. We ran these 120 algorithms on all graphs with up to 10 ver-
tices. The following table contains the number of graphs contained in each class for a
given number of vertices. These numbers give some impression of how large the classes
are. Note that we did not include the complements of the classes in the table, as the
complement of a class contains the same number of graphs as the class itself.

class [2]3] 4] 5] 6] 7| 8] 9 10
perfect 24|11 |33 148 | 906 | 8887 | 136756 | 3269264
alternately colorable || 2 |4 |11 | 32 | 136 | 749 | 6142 | 71759 | 1174550
alternately orientable || 2 | 4 | 11 | 33 | 147 | 896 | 8673 | 130683 | 3012745
AT-free Berge 21411 |33| 144 | 826 | 6836 | 76322 | 1126575
BIP* 2141|1133 147 | 896 | 8683 | 131332 | 3065093
bipartite 23| 7(13| 35| 8| 303 1119 5479
brittle 24|11 |33 146 | 886 | 8472 | 125262 | 2799594
bull-free Berge 2 14|11 132 130|592 | 3275 | 19546 | 126842
Cy-free Berge 21411027 | 951|398 | 2164 | 14945 | 131562
chair-free Berge 2141132126 | 546 | 2766 | 15014 88460
claw-free Berge 214110 25| 80| 262 | 1003 4044 17983
clique-separable 21411132129 | 630 | 4118 | 34375 | 364004
cograph contraction 2 (4|11 33| 139 | 737 | 5220 | 47299 | 542268
comparability 24|11 33| 144 | 824 | 6793 | 75400 | 1107853
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class [2]3] 4] 5] 6] 7| 8] 9 | 10

A < 6 Berge 21411133148 | 906 | 7981 | 84637 | 922648

dart-free Berge 11 | 32 | 124 | 512 | 2495 | 13245 79734

degenerate Berge 11 | 33 | 148 | 906 | 8884 | 136682 | 3265152

diamond-free Berge 10 |24 | 75| 249 | 1033 4918 28077

doc-free Berge 11 | 31 | 122 | 560 | 3395 | 24891 | 215455

elementary 10 | 25| 79 | 253 | 936 3601 15486

forest, 6|10 20 37 76 153 329

gem-free Berge 11 | 32 | 130 | 625 | 3964 | 30929 | 297142

HHD-free 11 | 32 | 128 | 608 | 3689 | 27238 | 244922

Hoang 11 | 33 | 145 | 848 | 7111 | 77067 | 1007506

i-triangulated 11 | 31 | 117 | 504 | 2772 | 18738 | 158931

interval 10 | 27| 92 | 369 | 1807 | 10344 67659

K4-free Berge 10 | 28 | 112 | 568 | 4184 | 42450 | 576926

(K5, Ps)-free Berge 11 | 31 | 124 | 565 | 3162 | 19531 | 132566

LGBIP 9117 | 39| 84| 200 484 1263

line perfect 11 | 26 | 80 | 248 | 899 3441 15081

locally perfect 11 | 33 | 148 | 901 | 8664 | 126954 | 2769696

Meyniel 11 | 32 | 130 | 622 | 3839 | 28614 | 258660

murky 11 | 33 | 146 | 850 | 7069 | 77493 | 1072620

1-overlap bipartite 11 | 33 | 148 | 902 | 6349 | 38037 | 210384

opposition 11 | 33 | 146 | 848 | 6880 | 68743 | 778449
Py-free 10 | 24 | 66 | 180 | 522 1532 4624
Py-lite 11 133 | 94| 278 | 841 2613 8314
Py-reducible 11 27| 76 | 212 | 631 1893 5846
Py-sparse 11 | 27| 78 | 218 | 653 1963 6088
Py-stable Berge 11 | 33 | 147 | 894 | 8515 | 120263 | 2363930
parity 11 | 31 | 116 | 466 | 2207 | 11258 63098

partner-graph A-free 11 | 33 | 132 | 494 | 1603 5038 16334

paw-free Berge 10 | 21| 54 | 130 | 395 1323 5946

perfectly contractile 11 | 33 | 147 | 896 | 8683 | 131333 | 3065118

perfectly orderable 11 | 33 | 147 | 896 | 8682 | 131299 | 3062755

permutation 11 | 33 | 142 | 776 | 5699 | 50723 | 524572

planar Berge 11 | 32 | 134 | 711 | 5229 | 48736 | 543955

preperfect 11 | 33 | 148 | 906 | 8887 | 136755 | 3269254

quasi-parity 11 | 33 | 148 | 906 | 8886 | 136735 | 3268600

DI NN NN NN NN NN NN NN NN NN
NS TN VY VNG [N [N SN V) [V [V (V'S (NG U S T (Y (V'S (Y'Y NG (S Y S [V [V (TN (Y Y Y VY [T TS [N (Y Y T

11 | 33 | 148 | 901 | 8690 | 127853 | 2803340

Raspail
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class 23] 4] 5] 6] 7] 8] 9 10
skeletal 11 ]33] 145 [ 826 | 6266 | 54401 | 504200
slender 11 [ 33| 148 [ 875 [ 7675 | 93735 | 1557742
slightly triangulated 11 [ 33 | 147 [ 896 | 8682 | 131293 | 3059990
slim 11 [ 33 ] 147 [ 892 | 8335 [ 109568 | 1845372
snap 11 [ 33 ] 147 [ 896 | 8677 | 130114 | 2951360
split 9|21 ] 56164 | 557 | 2223 | 10766

11 | 33 | 145 | 840 | 6757 | 66677 | 742244
11 | 33 | 147 | 896 | 8684 | 131363 | 3066504
11 | 33 | 147 | 896 | 8682 | 131303 | 3063185
11 | 33 | 134 | 492 | 1634 5127 16624
11 | 33 | 136 | 532 | 1783 5549 17906

strict opposition

strict quasi-parity

strongly perfect

3-overlap bipartite

3-overlap A-free

threshold 8|16 | 32| 64| 128 256 512
tree 2| 3 6| 11 23 47 106
triangulated 10 | 27 | 94| 393 | 2119 | 14524 | 126758
trivially perfect 9120 | 48| 115 | 286 719 1842

11 | 33 | 138 | 582 | 2367 9421 37916
11 | 33 | 140 | 586 | 2379 9495 38436
11 | 33 | 148 | 906 | 8887 | 136750 | 3268816
11 | 33 | 144 | 822 | 6744 | 73147 | 1006995
11 | 33 | 146 | 886 | 8483 | 126029 | 2866876
11 | 33 | 133 | 598 | 2836 | 13304 62243

2-overlap bipartite

2-overlap A-free
2-split Berge
unimodular

weakly triangulated
wing triangulated

NN NN NN NN (NN NN NN NN NN NN
NN I [NVQ [NV (VIS (S TS VS PSS VG (V.Y (S0 (S TS VS [NV [V [N (Y I I | Y

6 Relations Between Classes of Perfect Graphs

This section contains a table of all known relations between the 120 classes of perfect
graphs covered in this paper. The table contains 14400 entries. There exist 150 cases
in which the relation between two classes are not known. Several of these undetermined
relations are well known open problems. This table contains two entries that have been
open problems before. We show that the class of strict quasi-parity graphs is not con-
tained in the class of perfectly contractile graphs as was asked in [10], and we show that
(K5, Ps)-free Berge graphs are not quasi-parity, as was asked in [82].

In the following we list the undetermined relations which have been posed as open
problems in the literature and give references.

alternately orientable € quasi-parity [89, 61]
alternately orientable € strict quasi-parity [61, 22]
BIP* € quasi-parity [89]
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BIP* € strict quasi-parity [22]

1-overlap bipartite € quasi-parity [62]
quasi parity € preperfect [49]

slim € BIP* [56]

slim € strict quasi-parity [56]

slender € quasi-parity [57]

strongly perfecte perfectly contractile [10]
strongly perfect € quasi-parity [89]
strongly perfect € strict quasi-parity [22]

The table is split over several pages. Here is a short description on how to use the
table. In the upper left corner you find a small map helping you to find out which part of
the table you are currently looking at. If you are interested in knowing whether a class
C; is a subclass of Cs, find the cell in the intersection of the row containing class C; and
the column containing class Cs. If the cell contains a “=" then the two classes are the
same. If the cell contains a “<” or a “<” then C; is a proper subclass of Co. Here, “<”
denotes inclusions that belong to the transitive reduction of the inclusion-order. If the
cell is empty (gray) then it is not known whether C; is a subclass of Co. In all other cases
class Cy is not a subclass of Cs. In this case you will find some letters and numbers in the
cell, which describe an example of a graph which is contained in C; but not in Cy and
have the following meaning:

K; clique of size 7

I; stable set of size i

P path with ¢ vertices

C; cycle with i vertices

K, .m a complete bipartite graph with n respectively m vertices on each side
nG n disjoint copies of the graph G

G the complement of G

F; this graph is described in Section 7

Almost all of the counterexamples appearing in this table were found by a computer
program by “simply” scanning all 3416012 perfect graphs on up to 10 vertices. For each
of these graphs it was checked to which of the 120 classes it belongs. As several of these
membership tests require exponential time the total running time was about two month
on a 1.3GHz PC.

All counterexamples given in the table which have at most 10 vertices are smallest
possible with respect to the number of vertices.

Only the (currently 9) graphs on more than 10 vertices had to be found by hand.
Clearly the inclusions cannot be proven by a computer. However, only the transitive
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reduction of the inclusion-order has to be typed in by hand, the transitive closure of the
relations is generated automatically (including consistency checks). Thus in total out of
the currently 14400 entries only 237 had to be made by hand.
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Inclusions between < |Z -
classes of perfect o |2 <= S
graphs = 5|3 ABEIE
IR IR %OEDE%O{E%%E @?3%%8
—— — 2 28 Al 2T IRE155 8| |2|&|8]1%|2
lz\f)l()llllggo g omog%gia*gé%%d
B B RE B E N B E E P EE R EE
gle| | SlE2|F|2lel2F | |<|(ml2|S|T|D]|C

R e e R - A R S ] R R T EY R
alternately colorable = |Cs|Cs|Cs | K3|C| F5|Cy EKLg E@CG Cs|Cs| I3 | F~ mE; Py
alternately orientable Koq = |Cs| < | K3|Cs| F5|Cy F?Km E@CG Fi5|Csl I3 F7H,3F4 P
AT-free Berge K>,4Cs| = |Co | K3|Cs| F5 | Ca| Fr Ky 3 Em@ <|I3 |F7[Ki 4 Fy| Ps
BIP* Ko 4Fn|Cs| = | K3 |Co| Fi | Ca| Fr Ko 4 Fu o d Cs|Fis|Cs | I3 | Fr [Ko 4 Fu | P
bipartite Kod < |Co| < |=|Cs| < |Cu|FrKid < | < |Cs| < |Ce| Iz | < | < |F4|Ps
brittle Ko 3Fui|Fis| < | Kz | = | F5|Ca| Fr K0 d Fa Ko qFui|Fis| < | I3 | F7 [Ki 4 Fiu | Ps
bull-free Berge K>,4Cs|Cs|Co| K3|Co| = |Cu| Fr [l 4 Fu 2 Cs|Co | Cs | Is | F7 [0 4 Fu | P
Cy-free Berge Fy3Fs5| Co|Fis| K |Co | Fs | = | Fr [Ki AF2olFo { Cs [Fi5| Cs| I3 | F7 [ 4 Fi | Ps
chair-free Berge K4 Cs|Cs |Co | K3 |Co | F5 | Ca| = K1 { Fu K24 Cs|Cs| Cs | Is | Fr [Ki 4 Fi | Po
claw-free Berge [F54Cs|C|Cs | K3|Cs | F5 | Cy| < | = | FulKad Cs|Cs | Co | Is | F7 [ A Fiy | Pe
clique-separable Koo < |Co| < |K3|Cs| Fs|Cu| Fr K1 d = Ko d O |F15|Co | I3 | F7 [ A Fy | Pe
co-alternately colorable [(273?6 Cs|Cs| K3|Cs| F5|Cy F?KmE =1Cs|Cs|Cs| I3 F7H,3F4 Py
co-alternately orientable [(273?6F15C_6 K3|Cs| F5|Cy F?Km EE =|Cs| < | I F7H,3F4 P
co-AT-free Berge KQ,B.ICG < |K3|Cs| Fs|Ca| Fr K1 d Fu[Ko 4 Cs| = |Co| I | Fr [Ko d Fu | Ps
co-BIP* Ko,4 C |F15|C | K3 | Co | Fi5 | Ca| Fr |l 4 Fu o dF 41| Cs | = | Is | F7 [0 4 Fu | P
co-bipartite <|Cs| < |Cs|K3|Cs| < |Cu| < | < |FulKad < |Cs| < | = |F7[Kid < |Cs
co-chair-free Berge K24 Cs|Cs|Cs| K3 |Cs| Fi | Ca| Fr Ko d Fu Ko Cs|Cs | Co | I3 | = [K1  Fu | Po
co-claw-free Berge [{273?6 Cs|Cs| K3|Cs| F5|C, EKMEFM Cs|Cs|Csl I3 | < | = | Fu| Ps
co-clique-separable K>,4Cs |F15|Co | K3 | Co | F5 | Co | Fr K1 d Fu Ko d < |Cs| < | I3 | Fr Ko d = |Cs
co-cograph contraction Ko AF56|F15| < | K3 Fug F5|Cy F?Km Fy G A0\ Fys| < | I3 F7T,3F4 =
co-comparability Ko A Cs| < |Cs| K3|Cs| Fs |Cu| Fr K1 d FulKad < |Co| < | I3 | F7 Ky 4 Fy| Pe
co-A < 6 Berge K>,4C6|Cs|Co | K3 |Co| F5 | Ca| Fr |1 4 Fu 2 Cs|C | Cs | Is | F7 [0 4 Fu | P
co-dart-free Berge [{273?6 Cs|Cs| K3|Cs| F5|C, ﬁKLg Fi K 4Cs|Cs|Cs| I | Fr EEL Py
co-degenerate Berge [{273?6 Cs|Cs| K3|Cs| F5|Cy EKLg F, K54 Cs|Cs|Cs| Is | Fr EF4 Py
co-diamond-free Berge Kgga Cs|Cs| K3 |Cs| F5|Cy| < K1 4 E@CG CoslCsl I3 F7H,306 Cs
co-doc-free Berge K24 Cs|Cs|Cs| K3 |Cs| F5 | Cu| Fr Ko d FulKa { Cs|Cs | Co | Is | Fr K1 4 Fiu | Co
co-elementary K>,4Cs|Cs|Co | K3 |Co| F5 | Ca| Fr o 4 Fu| < |Cs|Co|Co| I3 | < | < | Fu|Pe
co-forest <[Fa| <|<|Ks| < |<|Cu| < | <|Fs| <|<|Fod < | < |F7[K0d < |P7
co-gem-free Berge K>,4Cs|Cs |Co | K3 |Co | F5 | Ca | Fr K { Fu K24 Cs|Cs | Cs | Is | Fr K14 F1 | Co
co-HHD-free Ko 4FselFis| < | Kz | << | F5|Ca| Fr Ky A Fu Ko 4FselFus| < | I3 | F7 Ko 4 Fu [Fu
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Inclusions between
classes of perfect o] & &
graphs > E{o %DCE & & o) 5 23] go
, . —— 2| 512|325 |4 - ER-I P
I N N N = -4 el G Y i O e A AR - 1
AR R S At Rt =t bl E A R 1 R R e
1:;11131(;171&§V'§§.§$§§§@'g5§§%%§§éi
S|z |z Bz |T|E|oE|E| L] B2 Al =2 |=] 0|~
o [oo oo [oson]| §) | §| | 5| 5| 8] 8] &) 8] 8| %] 8] 53]8[3]% 8|4
alternately colorable Co| Is | Fo WK Iy | F3 Ky I3 | F3| Ps |Co | P |Cu| Is Ky 4 I5 | P7| P |Cs | Cis
alternately orientable Cs| I | Fs UKy Fy F3m I | F5 | Ps|Fus| Py | Oy | Is G A I | Pr | Ps [Fid Cs
AT-free Berge Fon| Is | Fo UK Fy F3m I | F5 | Ps|Cs| Ps | Cy| I m I5 | P, | P5 |Cg|Fas
BIP* Cs| Is | Fo BKY Fy | F5[K1 4 Is | F3 | Ps [Fis| Ps | Ca| Is [Kad I5 | Pr| Ps [F14|Co
bipartite ColIs | < UKy Fy | F3| < | I3 | F5| Ps| < | Ps C, Is | P | I5 | Pr | Ps [Fos Cg
brittle Fis| Is | Fo pKy Fy | F3 Ky Is | Fs | Ps [Fus| Ps | Ca| Is [ 4 Is | Pr | Ps [FralFor
bull-free Berge Cs| I | Fs WKy Fy | Fs K14 13 | F3| Ps|Ce| Ps Cy| Is K14 Is | Pr| Ps Cs|Cs
Cy-free Berge Cs| Is | Fs UKy Fy F3m I | B | Ps|Fus| P | Oy | I m I5 | Pr | Ps [F1d Cs
chair-free Berge Ceo| Is | Fs WK Fy | F3 |0 A I3 | F3| Ps|Cs| Ps | Cy| Is K14 Is | P | Ps |Cs | Cs
claw-free Berge Ceo| Is | Fs WK Fy | F3 |0 4 I3 | F3| Ps|Cs| Ps | Cy| Is K14 Is | P | Ps |Cs | Cs
clique-separable Co| Is | Fo WK Py | F3 Ky I3 | F3 | Ps [Fus| P | Cu| Is Ky 4 Is | Pr| Ps [Fi4| Cs
co-alternately colorable Cs| I | Fs WKy Fy | Fs K14 13 | F3| Ps|Ce| Ps Cy| Is K14 Is | Pr| Ps Cs|Cs
co-alternately orientable  |[Fy5| I3 FoUKy Fy F3m I | F5 | Ps|Cs| Ps | Cy| I m Is | P, | P5 |Cg|Far
co-AT-free Berge Ceo| Is | Fs WK Fy | F3 |0 4 I3 | F3| Ps |Fid Ps |Cy| Is K14 Is | Pr | Ps [F14) Cs
co-BIP* Fis| Is | Fo p Ky Fy | F3 Ko 4 I3 | Fs | Ps|Cs| Ps |Ca| I5 Ko d Is | Pr | Ps |Cs [Far
co-bipartite <K <Kd<|<KdCi| < |Cs|Cs| < |Ca|PsIKid < | < | < |Cs| <
co-chair-free Berge Ce| Is | Fs WKy Iy F3m I3 |F3| Ps|Cs| Ps | Cy| I5 K14 Is | Pr| Ps Cs|Cs
co-claw-free Berge Csl Is | < WKY Fy | F5|Fis| Is | F3| Ps|Cs| Ps|Ca| Is | Fy | Is | Pz | P5|Cs| Cs
co-clique-separable Fis| I | Fo bRy Fy | F3 |04 I3 | F3 | Ps|Co| Ps |Ca| I5 K04 Is | < | Ps|Cs|Far
co-cograph contraction Fis| Is | Fs WK Fy | F m I3 |F3| Py |Fis| Ps | Cy| I5 m I5 |Fyo| Ps [FLalFa7
co-comparability = | Is | Fo WK Py | F3 Ky d I3 | F3| Ps |Co | P |Cu| I5 Ky 4 I5 | Pr| Ps | Cg |Fas
co-A < 6 Berge Cs| = | Fs WKy I F3m I3 |F3| Ps|Cs| Ps | Cy| I5 K14 Is | Pr| Ps Cs|Cs
co-dart-free Berge Col I | = WKY Fy | F3Kq 4 I | F3 | Ps |Cs| Ps | Ca| Is Ko d Is | P7| P |Cs | Cs
co-degenerate Berge Co|Is | Fo| = | F1 | F3 Ky d I3 | F3| Ps |Co | Ps | Cu| Is Ko 4 I5 | P7| P5|Cs | Css
co-diamond-free Berge Collg| < KTA =|< m I | < | Ps|Cs| Ps | Cy| I5 m I5 |FsA P5 | C6 | Cs
co-doc-free Berge Cs| I | Fs[Kud F1 | = m Is| < |Ps|Cs| Ps|Cy| I5 m I5 |Fao| P5 | Cs|Cs
co-elementary ColIs| < WKy 1 |F5| = | I | F5| Ps|Cs| Ps |Ca| I | Fi | Is | P7 | P5|Cg | Cs
co-forest <K< <|<Kd=|<|<|F < |[Fod B[4 < | < | < |F38] <
co-gem-free Berge Co| Is | Fs WK F1 | F3 K1 4 Is | = | Ps|Cs| Ps | Cu| I5 [Ki 4 I5 |Fao| P5|Cs | Cs
co-HHD-free Fis| Is | Fo Ko Fy | F3 [y I3 | Fy | = [Fus| Fu|Cu| I ]G 4 Is | < | < [FralFor
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Inclusions between © -
classes of perfect T2 £ |z 9| 4
graphs o| E|E < el = (2]
AHHE, AR EEE IR EE-INEE
1231576 I I E el I ETELE
P : PR o= 23| == o T = 22| ElS
1r\f)H)ll12§€§§§§§§ESQ§§§Q§T§§?0%
“““"“”1‘*iaii%é%%%"a%%é%%%%iég
wloj2ij2|s2figlg|g|elsle|s]elg|2]|s|ele|s|elsele|c|gls
alternately colorable P5| F3|Cs|Cs | I5 |F31| Cs |F10|Cs | Cs BEA C | Cs | Cs | Ko | Cs | C4BEY C | C
alternately orientable Py | Fy|Cs|Co| Is |F31| Cs [F192 Py Cs BEA Cs | Cs | Cs | Ko | Cy | Cy BEA C | Cs
AT-free Berge P F2.-| Is [F51[Fi6)F19| Cs [F31P K4 C K> |Cy|C4BE4F10|Co
BIP* Ps| F»|Cs|Cs| I [F31|C |F19R P Cs BKa Cs | C | Cs | Kz | Ca | C4BE4 C| C
bipartite P5|F5|Cs|Cs| I5 | < |Cs|F1oR P Cs BEA Cs | Cs | C | Ko |C4 | C1BEA C | C
brittle Ps|Fy| < | < | I5 |Fs1|Fis|FLoR PAFs 1 BEAF 4| < | < | Ko |Cu|CaBEAF 10| Ps
bull-free Berge Ps | Fy|Cs|Co | Is |Fag| Cs|F10| Cs | Co BEA Cs | Cs | Cs | Ko | Cy | Cy BEA C | Cs
Cy-free Berge Ps | Fy|Cs|Co | Is |Fag| Co |F1oR2 P Cs BEH Cs | Cs | Cs | Ko | Cy | Cy BEA C | Cs
chair-free Berge P5| Fy|Cs|Cs| I5 |F31| Cs|F19| Cs | Cs BE4 C | O | Cs | Ko | C4 | C4BES Cs | C
claw-free Berge P5| Fy|Cs|Cs| I5 |F31| Cs|Fa9| Cs | Cs BE4 C | O | Cs | Ko | C4 | C4BES Cs | C
clique-separable P5| F3|Cs|Cs | Is [Fag| Cs |[FLoR P Cs BEA Cs | Cs | Cs | Ko | C4 | C4BEY C | C
co-alternately colorable Py | Fy|Cs|Co| I |F31| Cs [F19| Cs | Cs BEA Cs | Cs | Cs | Ko | Cy | Cy BEA C | Cs
co-alternately orientable | Ps| F» [ Fyo I [F31|F1o| 1o Cs [ i Cs B Fuo] Ko [ C| Ca B EgF1 C
co-AT-free Berge P5| 3| Cs| Co| I5 |F31| Cs [Fuop P Cs B Cs| Cs | Cs | 1o [ Ca [ CaB I 5| Cs
co-BIP* Ps | Fy F42 Is |Fs51|Fi5\F19| Cs [F31P K3 C F42 K> |Cy|C4BEAF10|Co
co-bipartite <|<|<|<Kd<|<|<|Cs|<|<|Cs| <|<|Ka|Cs|Cy| < |F10|Cs
co-chair-free Berge Py | Fy|Cs|Co| Is |Fag| Cs [F19| Cs | Cs BEA Cs | Cs | Cs | Ko | Cy | Cy BEA C | Cs
co-claw-free Berge Py | Fy|Cs|Cy| I |F54 Cs [F19| Cs | Cs BEA Cs | Cs | Co | K | C | C4 BES Cs | Cs
co-clique-separable Ps| By | < |Fao| Is |F51|F15Fa6| C [FosBEA Cs| < [Fuo| Ko |Cy|CaBEAF 0| Cy
co-cograph contraction Py | By | < |Fyo| I5 |Fsa|Fy 5| FioR PAFsuBEAF 4| < |Fuo| Ko |Cy|CiBEKaF 0| Ps
co-comparability Ps|Fy| < | < |I5 | < |FiglFho|Cs[F31BEY Cs| < | < | Ko |Cy|CaBEAF10|Cs
co-A < 6 Berge Ps | Fy|Cs|Co | Is |F51| C [F10| C | Cs BEA Cs | Cs | Cs | Ko | Cy | Cy BEA C | Cs
co-dart-free Berge Py | Fy|Cs|Cy| I5 |F51| Cs [F19| Cs | Cs BEA Cs | Cs | Co | K | C | C BEA Cs | Cs
co-degenerate Berge Ps | F5|Cs|Cs| Is |F31| Cs [F10| Cs | Cs B4 Co | Cs | Cs | Ko | C4 | CBEA Ce | Cs
co-diamond-free Berge Py | Fy|Cs|Co| Is |F31| Cs [Fag| Cs | Cs Vo0l Cs | Cs | Cs | Ko | Cu | Cy |Fs 4| Cs | Cs
co-doc-free Berge Py | Fy|Cs|Co| I |F31| Cs [F19| Cs | Cs BCUA Cs | Cs | Cs | Ko | Cu | Cy [Faol Cs | Cs
co-elementary P | Fy|Cs|Co| Is | < |Cs|F19|Cs| Cs BEA Cs | Cs | Cs | Ko | Cy | Cy BEA C | Cs
co-forest <|l<|<|<|<|<|<|<|<|<]|<|F38 < | < |Ka| < |Py| < |Fio|Ps
co-gem-free Berge Ps | F5|Cs|Cs| Is |F31| Cs [F10| Cs | Cs B4 Co | Cs | Cs | Ko | C4 | CLBEA Ce | C
co-HHD-free F3|By| < | < | I5 [FselFis|FLoRPd| < BEJF 4 < | < | Ko |Cy|CaBEAF 0| Ps
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alternately colorable Ce K174 Fs BK3 Fy | F3 K 4 K| Fs | Ps |Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
alternately orientable F15K 7 Fo KLLAE EKLgKg F3|Ps|Cs|P5| Iy |Ca| Ka | Ps [(173F5 P | Ps
AT-free Berge Coll1.7 Fo [Ku g F1 | F3 Ko A K3 | F3 | Ps |F1a| Ps | 1o |Ca | Ka | Ps i A P5 | Pr | Ps
BIP* F1i51 4 Fo [Ku g F1 | F3 Ko 4 K3 | F5 | Ps |Co | Ps | 1y |Cy | Ky | Ps i 4 Ps | Pr | Ps
bipartite <IKiq < Bad <| <K 3Cs| <|Cs|Cs| <|14|Cs| <|Psiq<|<|<
brittle 5l 4 F Ko g Fy | Fs K4 K| Fs | Ps |Fis| Ps | 1y |Ca | Ky | Ps Ko 4 Ps | Pr | Ps
bull-free Berge CoK 4 Fo [Kad Fi | F3 Ko 4 K3 | F5 | P5|Co| Ps | 1y |Ca| Ku| Ps Ky 4 Ps | P | Ps
Cy-free Berge P15\ 7 Fo \Fro| iy | F3 K04 K3 | F5 | Co | Co [Fao| 14 |Co | Ka | Ps [Kq A K5 [FosFas
chair-free Berge Cs K4 Fo Ko d Fy | F3 K1 4 K3 | F | P |Co| P | I |Ca| Ka | Ps Ko A Ps | Py | Ps
claw-free Berge Cs| Ks| < WK) F1 | F5|F15| K3 | F5| P5|C6| Ps | 1y |Cy | Ky | Ps | Fy | Ps | P7 | Ps
clique-separable P15l 4 F [Ka g Py | Fs K4 K| Fs | Ps | Co| Ps | Iy |Ca | Ky | Ps K1 4 Ps | < | Ps
co-alternately colorable C_ﬁlﬁ; Fg KL;AE E[(Lg[(g F3|Ps|Cs|P5| Iy |Ca| Ka | Ps [(173F5 P | Ps
co-alternately orientable 0_6[(1; Fg KLLAE EKLgKg Fy| Ps|Fus| P5 | I |Cu| Ko | Ps [(173F5 P | Ps
co-AT-free Berge ForlKo 4 Fo [Kad Fiy | F5 K04 B3| Fs | Ps |Co| Ps | 1u | Ca| Ko | P5 [0 4 Ps | Pr | Ps
co-BIP* Coll1.7 Fo [Ku g F1 | F3 Ko A K3 | F3 | Ps |Fis| Ps | 1o |Ca | Ku | Ps i A P5 | Pr | Ps
co-bipartite Cs| Ks| < WK) F1 | F5| < | K3|F3| Ps| < | Ps| < |C4|Ky| K5 | Fy | P | P7 | Ps
co-chair-free Berge Coll1.7 Fo[Ku g F1 | F3 Ko A K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A P5 | P7 | Ps
co-claw-free Berge Coll1 7 Fo [Ku g F1 | F3 Ko { K3 | F5 | Ps |Co | Ps | 14 |Cy | Ky | Ps i 4 Ps | Pr | Ps
co-clique-separable Co KA Fs [Kug F1 | F3 K 4 K| Fs | Ps |Fus| Ps | 1y |Ca | Ky | Ps K1 4 Ps | Pr | Ps
co-cograph contraction  |F15/Ki 4 Fg Ky F1 | F3 Ko A K3 | F3 | Ps |Fis| Ps | 1o |Ca| Ka | Ps Ko A Ps [Foo| Ps
co-comparability Co K4 Fo Ko d Fy | F3 K1 4 K3 | F | Ps [F1a| Ps | 1 |Ca| Ko | Ps Ko A Ps | Py | Ps
co-A < 6 Berge Coll1.7 Fo[Ku g F1 | F3 Ko A K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A P5 | Pr | Ps
co-dart-free Berge Co[l14 Fo [Ku g F1 | F3 Ko d K3 | F3 | Ps |Co | Ps | 14 |Cy | Ky | Ps i 4 P5 | Pr | Ps
co-degenerate Berge Ce K17 Fs [Kug F1 | F3 K 4 K| Fs | Ps |Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
co-diamond-free Berge 0_6[(17" Fg KLLAE EKLgKg F5|Ps|Cs| P5| Iy |Ca| Ka | Ps [(173F5 P | Ps
co-doc-free Berge Coll17 Fo[Ku g F1 | F3 Ko A K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A P5 | Pr | Ps
co-elementary Coll17 Fo[Ku g F1 | F3 Ko { K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A P5 | P7 | Ps
co-forest Fou| Ks| < WK F1 | Fs| < | K3|F3| Ps| < |P5| <|Cy|Ky|Ks | Fy| Ps | Pr | Ps
co-gem-free Berge Co K17 Fs [Ku g F1 | F3 K 4 K| F3 | Ps |Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
co-HHD-free P15 7 Fo [Ku g F1y | F3 Ko A K3 | Fs | Ps |Fis| Ps | 1o |Ca | Ko | K5 i A Ps | Pr | Ps
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alternately colorable Ps|F51|Cs| Py | Ps| Ps| Ps |Cs | Ps | Cs| Fx | Cs | Cs | Cs | Ks \FsolFaelF51| Cs [Figl
alternately orientable Py |F31|Cg| Py | Ps| Ps | Ps [Foq| P5 | Cs | Fo Cs| K5 IF15F19
AT-free Berge Ps|F31|F14| Py | Ps | Ps| Ps|Cs| Ps | Co | Fa Cs| Ks Cs|Fi9
BIP* Py |F31|C| Py | Ps | Ps | Ps [Far| Ps | Co | F2 Cs| K5 F15iF19
bipartite Ps|F34Cs| Py | Po | Ps | Ps| < | <|Cs]l<|<|<|Csllzd <|<|<|<|<
brittle Ps|F51|Fi4| Py | Ps| Ps | Ps [For| Ps | Fo| Fo | < | < |Fis| K5 | <
bull-free Berge P |F3 Co| Ps| Ps | P5 | P [ Cs| P5| Co| 72| G| Cs | O | 165 [T
Cy-free Berge Ps [For Co | Py | Ps| Ps | Ps [Far| F3| C| Fa |FoolFss| Co | Ko |FralFos|FoelF15/F29
chair-free Berge Pg|F31|C| Py| Ps | Ps | Ps|Cs| Ps |Cs| F2| Cs | Cs | C | K [Foo|Fae[Fae| Cs |Fiof
claw-free Berge P;|F31|Cs| Py | Ps | P5 | Ps | Cs | Ps | Cs| F2| Cs | Cs | Cs| Ks |Foo[Fae|F54 Cs [Fig
clique-separable Ps|F31|Cs| Py | Ps | Ps | Ps [Far| Ps | Co | Fo | < [Fag|Co | K5 | < | < [F31|Fis|Fae
co-alternately colorable Py |F31|Cs| Py | Ps| Ps| Py |Cs | Ps | Cs | Fs | Cs | Cs | Co | Ks |FsolFaelF31| Cs [Figl
co-alternately orientable | Pg|F51|Fi4| Ps| Ps|Ps| Ps|Cs| Ps |Cs| F5 |Cs|Cs|Cs | Ks 51| Cs [Fhof
co-AT-free Berge Ps|F31| Co| Py | Ps | P3| Ps [Fos| Ps | C | F IR Cs | 5 Fr[FreFio
co-BIP* Ps |Fs1|F1a| Py | Ps| P5 | P5|Cs | Ps | Cs| F2 | C| Cs| Cs | K5 F151|C6 [F
co-bipartite P [F34F24| P2 |Cs| Ps| P5 | Cs | Ps | Cs| F2 | Cs| Cs | Cs | K5 | < | < | < |Ce|F1g
co-chair-free Berge Ps[F|Cs | Py | Ps| Ps | Py | Cs | Ps | Cs | F2 | Cs | Cs | Cs | K |Fs0\FadlFs1| Cs |Fig)
co-claw-free Berge Ps[F51|Cs | Pa| Ps| Ps | Py | Cs | Ps | Cs | F | Cs | Cs | Cs | K |Fs0\Fae Fa1) Cs [Fagl
co-clique-separable P |F31/F14) P1|Cs| Ps| P5|Cs | Ps | Cs| F2 | C| C6 | Cs | K5 | < | < [Fag| C|[Fig
co-cograph contraction P |F51|F1a| Py | Ps | Ps | Ps| < | Ps | Fo| Fa| < | < |Fus| K3 < |F56|F151F19
co-comparability Ps|[Fs31{F14| Py | Ps | Ps | P5|Cs | P5 |Co | F2|C6 | C6 | C KBI < [F51|C6 [Fi|
co-A < 6 Berge Ps|F31|Cs| Py | Ps| Ps| P5 |Cs| Ps | Co| F» | Cs | Cs | Co | Ks [Foo|FaglF31| Co [Frg)
co-dart-free Berge Ps|F31|Cs| Py | Ps| Ps | Ps | Cs| Ps | Cs | F2 | Cs | Cs | Cs | Ks |Fso|FalF31|Cs [F19)
co-degenerate Berge Ps|F51|Cs| Py | Ps| Ps | Ps | Cs| Ps | Cs | F» | Cs | Cs | O | K |FoolFaelF31| Cs |1
co-diamond-free Berge Ps|F31|Cs| Py |Cs| Ps | P5 | Cs| Ps | Cs | Fa | Cs| Cs | Cs | K5 |Fisol FaslFas| Cs [Fig
co-doc-free Berge Ps|F31|Cs| Py |Cs| Ps | Ps | Cs| Ps | Cs | Fa | Cs | Cs | Cs | K5 |Fisol FaslFaol Cs [Fhg
co-elementary Ps|F31|Cs| Py | Ps| Ps | P5 |Cs| Ps | Co| F» | Cs | Cs | Co | Ks [Foo|FaglF31| Co [Fo)
co-forest Py |FuglFoa| Py | Ps | Ps | Ps RPA Ps | Fo | Fo| < | < [Fod Ks| < | < | < | Ps|Fig
co-gem-free Berge Py |F51|Cs| Py |Cs| Ps | P5| Cs | Ps | Cs | 2| Cs | Co | Cs | K |FsolFaelFaol Cs [Figl
co-HHD-free P |[ForF14| Py | Ps | Ps | Ps [Fa3| Ps | Fo | Fa| < | < [F15| K5 | < | < |FselFi5|F19

24



This paper appeared in: Discrete Mathematics 306 (2006), 2529-2571

Inclusions between
classes of perfect

2 e
graphs 3 - 2 3 Sl

: HHEEE SEHE|RERELE
e || [EREER | RIEE) g8 2
T|slojojujigs %gggg% égggggg;_g
B R R - N M E E R REETEE E R EIEDR
BEIEEER R EE HEE EE R B R R

D|lwm|B|la|B|B | Bl |EB|lE|E|lE|la|a|a|la|El2E
alternately colorable Cs|CsBEACL|Cs|Cs|Cs| Fo | Fo |C4| I | C4| Py |Cs| Cs BE{C4 BEY Cs| Cs
alternately orientable Cs|F3:1BEK3Cy Cul I |Cy| Py | Cs | Cs BEH CL BEY Css [Fig
AT-free Berge Cs|CeBKACy Cy| I2|Cu| Py |Cs|Co BEKH{C4BKY C5| Co
BIP* Co|F31BK4Cy Cy| 12 |Cy| Py |Cs|Co BE{C4 BKY Cs|Fio
bipartite Csl<|<|Cy Cyl I |Cy| Py |Cs|Cs| < |Cyul| < |Cs|F1o
brittle PP|F31BK Cy Cy| I |Co| Py |F1s5|F15PE3 C4BKY < [Fig
bull-free Berge Cs|CsBEICYy Cul I |Cy| Py |Cs | Cs BEACLBES Cs | Cr
Cy-free Berge Ce|F5|Feo| Ct Cy| I> |Cs| Py |Cs | Co BK{ Cy [Fi5|Cs [F10
chair-free Berge Cs|CeBKICy Cy| 12 |C4| Py |Cs|Cs BE{C4BKACs | Cs
claw-free Berge Cs|CsBK3Cy Cyu| I |Cy| Py |Cs|Co BKA C4 BEY Cs | Cy
clique-separable Cs|FosBKYCy Cy| I |Cy| Py |Cs | Cs BK4 C4BEY C |F10
co-alternately colorable Cs|CsBEICYy Cul I |Cy| Py |Cs | Cs BEACLBEY Cs | Cr
co-alternately orientable Cs|CsBKYC, Cul I |Cy| Py |Cs | Cs BEKACLBES Cs | Cr
co-AT-free Berge Cs|F51BK3 Cy Cy| I |Cy| Py |Cs | Cs BK4 Cy BKY Cs|F1o
co-BIP* CeBKICy Cy| I2|Cu| Py |Cs|Co BEKH{C4BKY C5| Co
co-bipartite c, Cil I |0y Py C_G ?6 < ?43_1(2?6 ?6
co-chair-free Berge Cy Cul I |Cy| Py |Cs | Cs BEACLBES Cs | Cr
co-claw-free Berge Cy Cul I, |C4| Py |Cs | Cs BKAC4 BEY Cs | Cs
co-clique-separable C, Cyu| I |Cy| P4 |Cs|Co BK4 C4 BEY C | Cy
co-cograph contraction Cy Cul I |Cy| Py [Py 5| FisBEA CL B < [Fig
co-comparability Cy Cy| L2 |Cy| Py |Cs|Cs BK{C1BKAC5| Cs
co-A < 6 Berge c, Cul I |Cy| Py |Cs | Cs BEACLBES Cs | Cr
co-dart-free Berge Cy Cul I |C4| Py |Cs | Cs BKA C4 BEKY Cs | Cy
co-degenerate Berge C, Cyu| I |Cy| Py |Cs|Cs BKA C4 BEY Cs | Cy
co-diamond-free Berge Cy Cul I |Cy| Py |Cs | Cs BEACLBEY Cs | Cr
co-doc-free Berge Cy Cul L |Cy| Py |Cs | Cs BEACLBEY Cs | Cr
co-elementary Cy Cul I |Cy| Py |Cs | Cs BEACLBEY Cs | Cr
co-forest DPIFoBE Cy[Fod| < | < |Fo|Fo | Py| Ir |Cu| Py [FadFod| < | < BEKY < [Fig]
co-gem-free Berge Cs|CsBE4Cy|Cs|Cs|Cs | Fy | Fy |Cu| I | Cy | Py |C6 | Cs BK{C4 BKA C5| C
co-HHD-free DPAFoBEACy[Fra| < | < | Fo|Fy|Cy| I |Ca| Py |FisF1sBE4 C1BEKY < |Fio
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co-Hoang K>4Cs|Co |Cs | K3 |Co | F5 | Ca | Fr Ky { Fu Ko d C |Fus| Cs | Is | Fr [Ko 4 Fia | Po
co-i-triangulated Ko A Cs|F15|Cs | K3 | Cs | Fi | Ca| Fr Ko d Fulkad < |Cs| < | I3 | F7[Kid < |Cs
co-interval KA < |For| < |K3| < | F5|Cy F?KmE < <|<|I3 F7H,3 P
co-(K5, Ps)-free Berge Ko 4F 56| Co |Fss| K3 | Co | Fs | Ca | Fr Ky d Fi Ko 4 Co|Fus| Cs | I3 | Fr [ 4 Fi | Ps
co-LGBIP > A C| Cs|Co | K3 | Co| F5 | Cu | < [K14Cs| < |Cs|Cs|Co| I3 | < | < |C6|Cs
coTine perfect GGG R G R R AR < G < | LRl < G
co-locally perfect K24 Cs|Cs|Cs | K3 | Cs | Fi | Ca| Fr Ko d Fiu Ko C|Cs | Co | Is | Fr K1 Fiu | Po
co-Meyniel K>,4Cs|Fi5|Co | K3 |Co| Fs | Ca | Fr Ko A Fi Ko 4F56| C | < | I3 | F7 [K1 4 Fiu | Co
co-opposition K>,4Cs |Cs |Cs | K3 |Co | F5 | Ca | Fr Ky { Fu Ko d Co |Fus| Cs | Is | Fr [Ki 4 Fia | Po
co- Py-stable Berge K>,4Cs |F15|Ce | K3 | Co | 5 | Ca | Fr Ky  Fa Ko, 4Fu1| C [Fua| Is | Fr [Ko 4 Fia | Po
co-parity K>,4Cs [F15|Co | K3 | Co | Fs | C | Fr [Ko A Fu Ko 4F56| Cs | < | I3 | F7 [Ki 4 Fu |Co
co-paw-free Berge K24 Cs| < |Cs|K3|Cs| < |Cu| < Kid Fulkad < |Cs| < | I3 | F7[Kid < |Cs
co-perfectly contractile [(273?6F15C_6 K3|Cs| F5|Cy F?Km EKggFéﬂ ColFssl I | Py @FLL P
co-perfectly orderable Ko A Cs|F15|Cs | K3 | Cs | Fi | Ca| Fr [K0 A Fu Ko dFu1|Cs | < | I3 | F7 Ky Fy | Pe
co-planar Berge >4 Cs|C|Co | K3 |Cs| Fs | Ca| Fr K1 4 Fiu Ko { Cs|Cs | Cs | I3 | F7 [Ki 4 Fiu | Ps
co-Raspail K>4Cs|C|Co | K3 |Co| Fs | Ca| Fr K1 4 Fiu Ko 4 Cs|Cs| Cs | I3 | F7 [Ki 4 Fiu | Ps
co-skeletal Ko,4 Ce [F15|C | K3 | C | F5 | Ca| Fr | A Fu [Fo AF 1 C_G.I I3 | Fr K 4 Fy | P
co-slender K24 Cs|C|Co | K3 |Cs| F5 | Ca | Fr K1 4 Fi Ko 4 Cs|Cs| Cs | I3 | F7 [ 4 Fi | Ps
co-slightly triangulated o 4Fu1|Co|Fua| K3 |Co | F5 | Ca | F7 Ko d Fu o Cs [F15|Co | I3 | Fr [i  Fu | Po
co-slim Ko,4 Ce |F15|C | K3 | C | F5 | Ca| Fr | A Fu [Fo AF 1 C_G.I I3 | Fr K 4 Fy | P
co-snap K>4Cs|Cs |Co | K3 |Co | F5 | Ca | Fr Ky { Fu K24 C| Cs| Cs | Is | Fr [Ki 4 Fia | Po
co-strict opposition Ko,4 Cs \F15|Cs | K3 | Cs | F5 | Ca| Fr [l Fu [Fo dFua|Fius| < | Is | F7 [Ko 4 Fu | P
co-strict quasi-parity 2,4 C|Fi5|Co | K3 |Co | Fs | Ca | Fr Ky d Fi Ko 4F 4| Co[Fua I3 | F7 [ 4 Fi | Ps
co-strongly perfect K54 Cs |F15|Co | K3 | Co | 5 | Ca | Fr Ky  Fa Ko 4Fu1| Cs [Fss| Is | Fr [Ko 4 Fia | Po
co-tree <[Fa|<|<d<|<|Ps|<|<|Ps|<|<|Fod <|<|FKid<|Pr
co-triangulated Ko AF56/F15| < | B3| < | F5|Cy F?KmE < | < |Fys < | I3 F7H,3 <|P;
co-trivially perfect Kod < | < |<|K3|<|<|Cu|<KdFi|<|<|<|<|L|<Kd<]|<
co-unimodular >4 Cs|Cs | Co | K3 |Cs | Fs | Ca | Fr7 [y A Fis Ko 4 Cs | Cs | Cs | I3 | F7 [K14 Fiy | Ps
co-wing triangulated Ko A Cs|F15|Cs | K3 | Cs | Fi | Ca| Fr [K0 A Fiy [Ko AFus|C [Fss| I3 | F7 [ A Fy | Pe
cograph contraction [(273F_39F15 < |K3|Fuo| F5|C4 F?Km E[(Q73F56F15 <|I3 F7H,3F4 Ps
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co-Hoang Co| Is | Fo WK Py | F3 Ky d I3 | F3 | Ps | = | P |Cu| Is Ky 4 I5 | Pr| Ps |Fo4| Cs
co-i-triangulated Fis| Is | Fo WBo Fy | F3 [y A 13 | F3|Co|Cs| = |Ca| I [ 4 Is | < | < |C6 |Far
co-interval For Is | Fs| < |FL | F3[K0d I3 | Fs | < |3 < | = | I5 K0 d 15 | < | < [F3slFar
co-(K35, Ps)-free Berge ColKi 4 Fs WK F1 | F3 Ko 4 I3 | F3| Ps [F1s| Ps | Cy| = [Kid Ps | Pr | Ps [F14 Cs
co-LGBIP Cs|Is| < |Pr| < | <| <|Is| < |Ps|Cs| P5|Cy| Is | = | I5 |[F57| P5|Cs | Css
co-line perfect Fyslf A FolKaq Fi| < Eglg < |Cs|Cs| < |C4|Ps K d = | < | < |Cs|F54
co-locally perfect Ce| Is | Fs WKy Iy F3m I3 |F3| Ps|Cs| Ps | Cy| I5 _13 Is| =|Ps|Cs|Cs
co-Meyniel Fis| Is | Fo WKo Fy | F3 [y 13 | F3|Co|Cs| Fu|Ca| Is G4 Is | < | = |C6 |Far
co-opposition Co| I | Fs WK F1 | F3 K1 4 I | F3 | Ps |Fus| Ps |Cu| I K0 4 Is | P | Ps| = |Cs
co-Py-stable Berge Fis| I | F WKy Fy | F3 Ko d Is | Fs| Ps|Co | Ps |Cu| Is G4 I5 | P7| P5 |Cs| =
co-parity Pl Is | Fo WKA Fy | Fs Ko 4 Is | < |C|Co| Fu|Ca| Is K1 d I5 | < | < |Cs|Fs6
co-paw-free Berge <|Ig| < UKy I Em I3 | < |Cs|Cs| < |Cy| I5 Kidls| <|< Cs| <
co-perfectly contractile Fus| Is | Fg WK Fy F3m I3 |F3| Ps|Cs| Ps | Cy| I5 m Is | P, | P5 |Cg|Far
co-perfectly orderable Fis| I | Fo bRy Fy | F3 [0 4 I3 | Fs | Ps|Cs| Ps |Ca| I5 K04 Is | Pr | Ps |Cs [Fay
co-planar Berge Co i Fo |00 Fu | P [Kid I | s | P |G| 5 [ Ca s [l | P [R5 [ | G
co-Raspail Co| Is | Fo WK Iy | F3 Ky I3 | F3 | Ps |Co | P |Cu| Is Ky 4 I5 | P7| P5|Cs | Css
co-skeletal 5| Is | Fo WK Fy F3m I3 |F3| Ps|Cs| Ps | Cy| I5 KidqIs | Pr| Ps Cs|Fs4
co-slender Co| Is | Fo WK Iy | P3[Ry d I3 | F3| Ps |Cs | P |Cu| Is Ky 4 Is | Pr| P5|Cs | Css
co-slightly triangulated Co| I | Fs WK F1 | F3 K1 4 I | F3 | Ps |Fis| Ps | Cu| I5 K0 4 I5 | Py | Ps|F14| Cs
co-slim Fis| Is | Fo WKy Fy | F3 Ko d I3 | F3 | Ps |Cs | P5 |Cy| Is [0 4 Is | Pr | Ps |Co [For
co-snap Co| Is | Fs[Kad F1 | F3 K4 I3 | F3 | P5|Co| Ps | Ca| I5 [Ko 4 Is | Pr| P5 |Cs |Cs
co-strict opposition sl Is | Fo WY Fy F3m I | B | Ps|Fus| P | Oy | I m Is | P7| Ps| < |Foy
co-strict quasi-parity Fis| Is | F bRy Fy | F3 K0 q I3 | Fs | Ps|Cs | Ps |Ca| I5 K14 Is | Pr | Ps |Cs [Fay
co-strongly perfect Fis| Is | Fo WKy Fy | F3 | d I3 | F3 | Ps|Cs| Ps |Cy| I K A Is | Pr | Ps |Cg [Far
co-tree <Kif<|<|<|<Kd<|<|<|B <[P P4 < | <| < |F3 <
co-triangulated Fis| Is | Fg| < | Fy F3m I3 | F3| < [Fis| < [Fus| I5 m Is| < | < [F35lFyy
co-trivially perfect <|Is|Fs| < |Fy <E73[3 < <|<|<|<|BKg | <|<|<]|<
co-unimodular Co| Is | Fo Ko F1 | P3[Ry d I3 | F3 | Ps |Cs | Ps | Cu| I Ky 4 Is [Fag P5|Cs|Cs
co-wing triangulated Fis| Is | Fo bRy Fy | F3 |0 4 I3 | Fs | Ps|Co| Ps|Cy| Is [0 4 Is | Pr | Ps|Co 2Py
cograph contraction Fis| Is | Fg WK Fy F3m I | B | Ps|Fus| Ps | Oy | I m I5 |Fao Ps [Fh4| <
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co-Hoang Ps| F»|Cg|Cg | I5 [Fao| Cs|F1oRPA Ce BE4 Cs| C| C | Kz [ Ca | C4 BKa Cs| Cs
co-i-triangulated By Byl < [Fosl Is | < |[Fus| < |Cs| < BKACs| < | < | K |Cy|CuBESF 0| Co
co-interval F| B <|<|]|<|Pord <|<|<|<[F5 <| < K| < |Ps| < |Fro| Ps
co-(K5, Ps)-free Berge Ps| F»|C|Co RPYFs0| C|F20R Py Cs K4 C| C| C | Kz [ Ca | C4 BE3 Cs| Cs
co-LGBIP P | F5|Cs|Cs| Is | < |Cs F_QSC_G CslFs0|Cs | Cs | Co | Ko ?4?4 < |C4|Cq
co-line perfect < |By| < [Frliad < | < | <|Cs| <|<|Cs| < | < |Ka|Cs|CsfillF10|Co
co—locally perfect P5 F2 CG CG 15 F31 Cﬁ F190_6 Cﬁ 3[(2 Cﬁ CG CG I(Q ?4 ?43[(2 CG Cﬁ
co-Meyniel Fs| Fy| < [Foq Is [FselFus|F19|Cs| < BEKACs| < | < |Ka|Cu|CyBEKaF10|Co
CO—OppOSitiOn P5 FQ C(; C(; 15 F29 06 F192P4 06 I{QCS C(; C(; I(Q ?4 ?43[(2 C(; 06
co-Py-stable Berge P5 | Fy [Fy|Fuo| I |F31|F15|F10| Ce [F31p Ko C[FrolFao Ko | Ci| Cu BEGF 10| C
co-parity = | Fa| < [Frg| I [Fre| < |F19|Cs| < BE4Cs| < | < |K2|Cy|CaBK3F10/Cs
co-paw-free Berge <|=|<|<|]|<|<|<|Cs| < BKHCs| < | < |Ka|CL|CyBEAF10|Co
co—perfectly contractile P5 F2 = F42 15 F31F15F19 C_GF_?JSI(QﬁG < F42 I(Q ?4 ?43[(2F10?6
co—perfectly orderable Ps|Fy| < I5 |F31|F15/F19 C_(;F_gl K9 ?4 EBKQFl()?S
co—planar Berge P5 F2 CG CG = F31 Cﬁ FggC_G Cﬁ 3[(2 ?4 ?43[(2 CG Cﬁ
co-Raspail Ps|F»|C|Cs| I5 | = |Cs|F19|Cs | Cs BKY C4|C4BEKACs|Cs
co-skeletal i Cs BKAC C,4|CLBEAF 0| Cs
co-slender Ko C4|C4BKACs|Cs
co-slightly triangulated | Ps|Fy|Cs|Cs| Is |F31|Cs |Fio| = |Cs BK: C4|C4BEKHCs|Cs
co-slim F10|Cs| = PE3 C4|CyBEAF10/Co
CO-snap F19/Cs|Cs| = C4|C4|F15C5|Cg
co-strict opposition FioRPyF31BKY C4|CLBEYF 0| Ps
co-strict quasi-parity F19|Cs [F51BEH C4|CLBEAF0|Cs
co-strongly perfect F1o|Cs |[F51BEY C,4|CyBEAF10/Ce
co-tree <|I<|I<|< <|Py| < [Fo| Ps
co-triangulated <|<| <] < = | Py |Fy5|Fi0| Ps
co-trivially perfect <|<l<]< <|=|<|<|<
co-unimodular F10/Cs|CsRCY C4|Cy| = |Cs|Cs
co-wing triangulated F1o|Co |F52BEY C| < C4|C4BKY = |Cq
cograph contraction Flg.,F‘iglsl(QF_M < | < | K |CL|CyBEAF | =
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classes of perfect
graphs o 0 0
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co-Hoang P15l 4 F [Ku g Fy | F3 K4 K| Fs | Ps | Co| Ps | Iy |Ca | Ky | Ps K1 4 Ps | Pr | Ps
co-i-triangulated CsK 4 Fo [Kad i | F3 Ko 4 K3 | Fs | Ps |Fhs| Ps | 1y |Ca| Ko | K5 |Ki 4 Ps | P | Ps
co-interval < K14 Fo [Kid By | F3 Ky A K3 | F3 | Ps |F1d| Ps | 1y |Cy | Ky | K5 Ko 4 Ps | Pr | Ps
co-(K5, Ps)-free Berge Fi5| Ks| Fo [Ku 4 F1 [ F3 [ 4 Ks| F5|Cs|Co | Fi | 1y |Ca| Ky | Ps Ko A K [Fos|Fae
co-LGBIP Co K17 F [Ku g F1 | F3 K 4 K| Fs | Ps |Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
co-line perfect Co|Ks | F [Ku g F1 | F3 Ky 4 K| Fs | Ps [Fag| Ps | Iy |Ca | K | K5 [ 4 Ps | Pr | Ps
co-locally perfect CsK1 4 Fo [Kad Fi | F3 Ko 4 K3 | F5 | P5|Co| Ps | 1y |Ca| Ku| Ps Ky Ps | P | Ps
co-Meyniel Cs K14 Fo [Kad iy | F3 Ko 4 K3 | Fs | Ps |Fus| Ps | 1y |Ca| Ko | K5 |Ki 4 Ps | P | Ps
co-opposition P15l 4 F [Ka g F1y | F3 K4 K| Fs | Ps |Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
co-Py-stable Berge ColK17 Fo[Kud F1 | F3 Ko { K3 | Fs | Ps |Fus| Ps | 1o |Ca | Ku | Ps o A P5 | P7 | Ps
co-parity Co K4 Fo Ko d Fy | F3 K0 4 K3 | Fs | Ps [Fuo| Ps | I | Ca| Ka | K5 K1 A Ps | Py | Ps
co-paw-free Berge Coll1 7 < [Kid F1 | F3 Ko A K3 | F3 | Ps | < | Ps | 14 |Cy | Ku | K5 i A P5 | P7 | Ps
co-perfectly contractile Coll17 Fo [Ku g F1 | F3 Ko A K3 | F3 | Ps |Fis| Ps | 1o |Ca | Ka | Ps i A P5 | Pr | Ps
co-perfectly orderable Co K7 F [Ku g F1 | F3 K 4 K| Fs | Ps |Fus| Ps | 1y |Ca | Ky | Ps K1 4 Ps | Pr | Ps
co-planar Berge Co| Ks | Fo[Ku g F1 | F3 Ko A K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A P5 | P7 | Ps
co-Raspail Co K7 F [Ku g F1 | F3 K 4 K| Fs | Ps |Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
co-skeletal Coll17 Fo [Ku g F1 | F3 [0 A K3 | F3 | Ps |F1a| Ps | 1o |Ca | Ku | Ps i A P5 | P7 | Ps
co-slender Col17 Fo [Ku g F1 | F3 [ { K3 | F5 | Ps |Co | Ps | 14 |Cy | Ky | Ps [y 4 P5 | Pr | Ps
co-slightly triangulated  |F15lKi A Fg [Kuq F1 | F3 [ 4 K3 | Fs| Ps |Co| Ps| Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
co-slim Coll1.7 Fo [Ku g F1 | F3 [ A K3 | F3 | Ps |Fis| Ps | 1o |Ca | Ko | Ps i A P5 | Pr | Ps
co-snap Co K17 F [Ku g F1 | F3 K 4 K| Fs | Ps |Co| Ps | Iy |Ca | Ky | Ps K1 4 Ps | Pr | Ps
co-strict opposition P15 7 Fo [Ku g F1 | F3 [0 A K3 | Fs | Ps |Fis| Ps | 1o |Ca | Ky | Ps i A Ps | Pr | Ps
co-strict quasi-parity Coll17 Fo [Ku g F1 | F3 [0 d K3 | F3 | Ps |Fis| Ps | 1s |Cy | Ky | Ps i 4 Ps | Pr | Ps
co-strongly perfect Co K17 Fo [Ku g F1 | F3 K 4 K| Fs | Ps |Fus| Ps | 1y |Ca | Ky | Ps K1 4 Ps | Pr | Ps
co-tree Fou| Po| < [Fus| Fr | Ps| < [K14 Ps| Ps | < | Ps| < | Ps K140 4 F7 | Ps| Pr| Ps
co-triangulated P15 7 Fo [Ku g F1y | F3 Ko 4 K3 | Fs | Ps |Fis| Ps | 1o |Ca | Ko | K i A Ps | Pr | Ps
co-trivially perfect < K4 Fs KLLAE K 4K <|<|< Fi| I, |Cy| Ky KKK | <| <
co-unimodular Col17 Fo [Ku g F1 | F3 Ko { K3 | F5 | Ps |Co | Ps | 14 |Cy | Ky | Ps i 4 Ps | Pr | Ps
co-wing triangulated Co K17 F [Ku g F1 | F3 K 4 K| Fs | Ps |Fus| Ps | 1o |Ca | Ky | Ps K1 4 Ps | Pr | Ps
cograph contraction P15 7 Fo [Ku g F1y | F3 Ko A K3 | F3 | Ps |Fis| Ps | 1o |Ca | Ky | Ps |y A Ps [Foo| Ps
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co-Hoang Ps|F51|Co| Py | Ps | P5 | P5 [Fas| Ps | Cs| F2 | Cs| Cs | C K5.-|F31F16F19
co-i-triangulated P |FordF14| Py |Co| Ps | Ps | Cg| Ps | Cg | F2 |Co|Co | Co | K5 | < | < [F56/Cs [Fig
co-interval Py |\ForF1a| Py | Ps | Ps | Ps RPA Ps | Fo | Fo | < | < [Far K| < | < | < [Fos|Fig
co-(K5, Ps)-free Berge Ps|For| Co | Py | Ps | Ps | Ps [Far| F5| Co | F2 [FooFs5| Cs f%.IF68F56F15F19
co-LGBIP Ps|Fu6|Cs | P1|Cs| Ps | Ps| Co | P5 | Cs | F2| Cs| Cs | Co | K [Foo[FaelF26| Co |F30
co-line perfect Py [F34F24| P2 |Cs| Ps| P5 | Cs | Ps | Cs| F2 | Cs| C6 | Cs | K5 | < | < | < |Ci|Fig
co-locally perfect Ps|Fs1|Cs | Py | Ps| Ps | Py | Cs | Ps | Cs | F2 | Cs | Cs | Cs | K |Fs0\FadlFs1) Cs |Fig)
co-Meyniel P |FoqF14| P4 | Cs | Ps | Ps | Cs | P5 | Cs| F2 | C6 | Cs | Cs | Ks [T < [F29|Cs|Fhg
co-opposition Ps|Fs51|Cs | Py | Ps | P5 | P5 [Fas| Ps | Cs | F2 | Cs| Cs | Cs | Ks |FralFos{Fs1[F15/F1o
co- Py-stable Berge Ps|F51|F14| Py | Ps | P5 | P5 |Cs | Ps | Cs | F2 | Cs| C | Cs | Ks R F50[F31| Cs [Fgf
co-parity Py [F34F24| P2 |Cs| Ps| P5 | Cs | Ps | Cs| F2 | Cs| C6 | Cs | K5 | < | < [Fao| C|[Fig
co-paw-free Berge Pg |F34F24| Py |Co| P5 | P5|Cs | P5 |C | F2|Cs | Cs | Cs | K5 | < | < 80| Cs [F19|
co-perfectly contractile Py |Fsa|F14 Py | Ps| Ps | Ps | Cs | P | Cs| F2 | Cs | Cs | Cs | K < [F51|Cs il
co-perfectly orderable Py |F31|F14 Py | Ps| Ps| Ps |Cs | P5s | Cs| F» | Cs | Cs | Cs | K < |F31|Cs|F1
co-planar Berge Py |Fs1|Cs | Py | Ps| Ps | Py | Cs | Ps | Cs | F2 | Cs | Cs | Cs | K [FrolFudl Fs1| Cs |Fig)
co-Raspail Ps|[F51|Cs | Py | Ps| P5 | P5|Cs | Ps | Cs| F» | C| Cs| Cs | K5 F31|Cs [F19)
co-skeletal Ps|ForF14| Py | Ps | Ps| Ps|Cs| Ps | Co | F» | Cs | Cs | Cs | Ks Cs|F19)
co-slender Ps|F31|Cs| Py | Ps| Ps| Ps |Cs | Ps | Co | F» | Cs | Cs | Cs | Ks Cs |F9)
co-slightly triangulated Py |F51|Cs| Py | Ps| Ps | Ps [Far| Ps | Co | Fo [Fud Fiuo| Cs | K Fi5F 1o
co-slim Ps|F31|F14| Py | Ps | Ps| Ps |Cs| Ps | Co | F»|Cs | Cs | Cs | Ks Cs|F19)
co-snap Ps|F31|Cs | Py | Ps| Ps | P5|Cs | Ps | Cs| F» | Cs| Cs| Cs | K5 Cs [Fiy|
co-strict opposition Py |F31|Fi4| Py | Ps| Ps| Py [Fas| Ps | Fo | F5 | Cs|Cs |Fis| K FislFYg
co-strict quasi-parity Py |Fsa|F1a| Pi| Ps| Ps | P5 | Cs | P |Cs| F2 | Cs | Cs | Cs | K5 CslFid
co-strongly perfect Py |F31|F14 Pi| Ps| Ps| Ps |Cs | P5s | Cs| F» | Cs| Cs | Cs | K CslFig
co-tree Py |FuyrlFos| Py | Ps | Ps| Ps| Py | P5 | Fo | Ps| < | < P2l 4 Pg |[Faf
co-triangulated Py |For|F1a| Py | Ps | Ps | Ps 2Py Ps | Fo | Fo| < | < |Fus| K FisF19
co-trivially perfect <l<l<|<|<|<|<|<|<|<|Bl<|<|<|K|<|<|<|<|Fy
co-unimodular Pg|F31|Cs| Py| Ps | Ps| P5s|Cs| Ps | Co| F2 | Cs | Cs | Cs | K5 |Foo|Fae|F31| Cs [Fiof
co-wing triangulated Ps|FdF14 Py | Ps| Ps| Ps |Cs | Ps | Cs | F» | Cs | Cs | Cs | K < [Fa9|Cs[F19
cograph contraction Py |F31|F14| Py | Ps| Ps| Py [For| Ps | Fo | Fo | < [FuolFis| K < |F31|F5/F19
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co-Hoang Co|F24BK)Cy|Cs|Cs|Cs| Fo | Fy |Cu| I | Ca| Ps|C | Co PR3 C1BEA Cg|Fio
co-i-triangulated Cs|Cs BE4 Cy|Cs|Cs|C| Fy | Fy|Cu| I |C4| Pa|Cs | Cs R4 CaBE4 Cs | Cs
co-interval DPIFsBEICy|Fia| < | < |Fy|Fo|Py| I |Cy| Py |Fi4F14BEY < BEY < |Fio
co-(K5, Ps)-free Berge Ce|F553 K Cy|Cs |FoslFoo| Fo | Fo |Cu| I |Cy| Py |Cs | Cs BK{C1BEY Cs [F10
co-LGBIP Cs|Ce BKYC1|Cs|Cs| Co|FrofF1o| Ci| 1o | Ca| Pa|Cs | Co BK3 CaBEI C | Co
co-line perfect Cs|CsBKYC4|Cs|Cs|Cs | Fo| Fo |Ca| I | Ca| Py |Cs | Cs BE{C1 BKI Cs | Cs
co-locally perfect Cs|CeBEACy|Cs|Cs|Cs| Fo | Fo|Cy| I | Cy| Py |Cs| Cs BE{ C.BEY Cs|Cs
co-Meyniel Cs|Cs BE4Cy|Cs|Cs|C| Fo | Fy|Cu| I |C4| P4 | Cs | Cs BE4 CaBE4 Cs | Cs
co-opposition Co|[FouBE4 Ca|Cs|Cs | Cs | Fo | Fy | Cy| I | Ca| Pa| C| Cs B3 Ca BEY Cs [F1o
co-Py-stable Berge Cs|Cs BKAC4| Cs|Co| Cs| Fy | Fy | Ca| I | Ca| Py |Cs | Cs BE4 CaBE4 Cs| C
co-parity Cs|Cs BKAC4| Cs|Co| Cs| Fy | Foy | Ca| I | Ca| P4 |Cs | Cs pE4 CaBE4 Cs| C
co-paw-free Berge Cs|Cs BE4 Cy|Cs|Cs|C| Fo | Fy|Cu| I |C4| P4 | Cs | Cs R4 CaBE4 Cs | Cs
co-perfectly contractile Cs|CsBEYCL|Cs|Cs|Cs| Fo | Fo |Cu| I |C4| P4 |C | Cs BEHCLBEL C5 | Cs
co-perfectly orderable Cs|CeBEYCL|Cs|Cs|Co| Fo | Fo |Cal I |Cu| Py |Cs | Cs BKA C4 BEY Cs| Co
co-planar Berge Cs|CeBEACy|Cs|Cs|Cs| Fo | Fo|Cy| I | Cy| Py |Cs| Cs BEACLBEA Cs|Cs
co-Raspail Cs|CeBKC1|Cs|Cs|Co| Fo | Fy |Ci| I | Ca| Pa|Cs | Co BE3 CaBEIC | Co
co-skeletal Cs|C6BKAC4|C|Cs|Co| Fy | Fy|Ca| 12 |Ca| P4 |Cs| Co K3 C4 BE4 C5| Co
co-slender Cs|Cs BKIC1|Cs|Cs|Cs| Fo | Fy |Cu| I |Cy| Py |Cs | Cs BE{C1BEY Cs | C
co-slightly triangulated  |Cg|F31BKd Cy|Co|FoalFao| Fo | Fo |Cy| Io |Cy| Py|Cs|Co BE3 Cy BE Cs |F1o
co-slim Cs|Cs BE4 Cy|Cs|Cs|C| Fy | Fy|Cu| I |C4| Pa|Cs | Cs R4 CaBE4 Cs | Cs
CO-snap Cs|CeBKC1|Cs|Cs|Co| Fo | Fy |Ci| I | Ca| Pa|C | Co BK3 CaBEI C | Co
co-strict opposition Cs|FoBEYCL |F1a| Cs|Cs | Fo | Fo |Cy| I | Cy | Py |Fys|FisBEA Cy BEY Cs |[Fig
co-strict quasi-parity Cs|CsBKYCy|C|Cs|Cs| Fo | Fy|Ca| 12 |Ca| P4 |Cs| Co PE3 C1 BE4 Cs| Co
co-strongly perfect Cs|Cs BRI C4| Cs|Co| Cs| Fy | Fy | Ca| I | Ca| P4 |Cs | Cs pE4 CaBE4 Cs| C
co-tree Py [FoiFod| Ps [Fos| < | < |Fo|Fo|Py| s | Ps| Py |FodFod| < | < [Fha| < [F1g
co-triangulated DPIFoBEICy|Fi| < | < | Fy|Fo|Py| I |Cy| Py |FislF1sBEY < BEY < |Fho
co-trivially perfect <|<BEKICy| < |<|<|<|<|Cu| 2 |Cs|Cy| < | < BK{ < BK] < | <
co-unimodular Cs|CsBEACy|Cs|Cs|Cs| Fo | Fo|Cu| I |Cu| Py |Cs| Cs B C4BES Cs|Css
co-wing triangulated PP CsBEAC4|Cs|Cs|Cs| Fo | Fo|Cy| I |Ca| Py |Cs|Cs BE{CLBEL Cs|Co
cograph contraction DP\F5BEACy\F1 4| < [Fugl Fo| Fo|Cy| I |Cy| Py |Fys\FisBEA CLBEY < |Fyg
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comparability Koo < |Co| < |K3|Cs| Fs|Cu| Fr K1 d FulKad Cs| < |Co| I3 | Fr K Fy | Pe
A <6 Berge K>,4Cs|Cs|Co | K3 |Co| F5 | Ca| Fr |1 4 Fu 2 Cs|C | Co | I3 | F7 [0 4 Fu | P
dart-free Berge KVQ,B?G CG C_G [(E; Cﬁ F5 04 EKLg EE,BOG C_G Cﬁ F7 F4
degenerate Berge 2,4 Cs|Co|Co | K3 |Cs| F5 | Ca | Fr K1 d Fi [ 4 Cs|Cs| Cs | I3 | F7 [ 4 Fy
diamond-free Berge K54 Cs|C|Cs | K3 |C | F5 | Cy| Fr [0 4 Cs Ko 4 C | C | Cs | I3 | < Ky A Fy
doc-free Berge K>4Cs|Co |Co | K3 | Co | 5 | Ca | Fr K1 { Fu K2 4 Cs| Cs | Cs | I | F7 [ 4 Fy
elementary < ?6 Cs C_G K3|Ce| F5|Cy| < | < EE,BCG C_G Cs F; Fy
forest < <P <|<|<|<|<|FKd<|<|Fal<|< <|<|Fy
gem-free Berge K>4C6|Cs |Co | K3 |Co | F5 | Ca | Fr Ky { Fu K24 C| Cs| Cis Fr K4 Fy
HHD-free Ko AFs5olF1s| < | Kz | < | F5 |Ca| Fr Ky A Fa [Fo qF56lF 5| < FrlKi3Fy
Hoang >4 Cs [F15|Co | K3 | Co | 5 | Ca | Fr K1 d Fu K2 4 Cs| Cs | Cs | Is | F7 [ 4 Fy
i-triangulated Kég < |Cg| < |K3|Cg| F5|Cy EKLg < @CG F15Cs F; Fy
I4-free Berge K>,4C6|Co|Co | K3|Co| F5 | Ca| Fr [ 4 Fu K2 Cs|Cs | Co Fr K4 Fy
interval <|<|<|<|Ks| <|Fs| < |FrlKid < [/ad < [For] < Fr K4 Fy
Ky-free Berge K>,4Cs|Co|Co | K3|Co| F5 | Ca| Fr [ 4 Fu K2 Cs|Cs | Co Fr K4 Fy
(K, Ps)-free Berge Ko,4 Co |F15| O | K3 | C | F5 | Ca | Fr [y 4 Fy Ko 4F 56| Co [Fs5| I3 | Fr K14 Fy
LGBIP < ?6 Cs C_G K3|Ce| F5|Cy| < | < |Cs Kég Cs1Cs|C6 < Ps
line perfect [(273 <|Cg| < | K3|Cg| F5|Cy E[ﬁyg < @Cﬁ F15Cs F , Fy
locally perfect K>4Cs|C|Co | K3 | Cs| Fs | Ca| Fr K1 4 Fi 2 4 Cs| Cs| Cis Fr K4 Fy
Meyniel Ko AFs56| Co | < | K3|Cs| F5|Cy| Fr [Ko d Fi [Ko 4 Cs|F15|Cs F; Fy
murky Ko,4C6|Cs|Cs | K3 |Co | F5 | Ca| Fr [ 4 Fu K2 Cs|Cs | Co Fr K Fy
1—overlap bipartite [(273?6 CG C_G [(E; Cﬁ F5 04 EKLg EE,BOG C_G Cﬁ F7 F4
opposition 2,4 Cs|Fi5|Co | K3 | Co | Fs | Ca | Fr Ky d Fiu [ 4 Cs| Cs | Cs | I3 | F7 [ 4 Fy
Py-free Kod < | <|<|Ks|<|<|Cy| < KidFiled <|<|< < [Ki4F,
Py-lite K2,.|F15 < |K3| < |F5|Cy| Fr | 4 EWFH) < F Fy
Pj-reducible Kod < | <|<|Ks|<|F5|Cu| < 4 Fullad < | < | < <[K4F,
P4-sparse Kég < |Fi5| < | K3| < | F5 Cy| < KLg EKS < |F15 < < Fy
P,-stable Berge Ko 4AF 41| Co [Fua| K3 | Cs | F5 | Cy | Fr |G d Fiy Ko { Cs|F15|Cis 7K 3y
parity Ko 4F56| Cs | < | K3|Cs| Fs | Ca| Fr K1 4 Fiu Ko 4 Cs|Fis| Co Fr K4 Fy
partner-graph NA-free [(273?8F15C_8 [(3 Cg F5 04 E[(l,?z E@Cg F15 Cg F7 F4
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R ENEHEEHBEHEE P EE R EEEE
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comparability Co| Is | Fo bRy F1 | F3 [y I3 | F3| Ps |[F1a| Ps | Ca | Is Ko Is | Pr| Ps [F14 Co
A <6 Berge Co|Is | Fo WK F1 | F3|Ki 4 Is | F3 | Ps|Cs | Ps|Ca| Is K0 d I5 | P7| P5 |Cs | Cos
dart-free Berge Cﬁ I8 Fﬁfll(gFl F3m[3 F3 P5 ?6 P5 0_4 15 m 15 P7 P5 C_G Cﬁ
degenerate Berge CG Ig FS4[(2F1 Fgﬁg[g Fg P5 ?6 P5 0_4 15 m 15 P7 P5 C_G 06
diamond-free Berge Co| I | Fs WK F1 | F3 K1 4 I | F3 | Ps|Cs | Ps | Cu| I5 K0 4 I5 | Py | P5 | Cs | Cs
doc-free Berge Co| Is | Fo WK Py | F3 Ky I3 | F3| Ps |Co | P |Cu| Is Ky 4 I5 | Pr| P5|Cs | Cs
elementary Cﬁ I8 Fﬁfll(gFl F3m[3 F3 P5 ?GP5 0_4 I5E73]5 P7 P5 C_GCG
forest Foul Ig | < UKy Fy | F3| < | I3 | F5|Ps| < | Ps 0_4 Is | F1| I5 | Pr | Ps [FouR Py
gem-free Berge Cs| Is | Fo WKy ' | F3 [ d I3 | F3 | P5 |Co | P5 |Ca | I5 Ko d Is | Pr| Ps | Cs| Cis
HHD-free Fis| Is | Fo WKy Fy | F3 Ky q Is | Fs | Ps [Fus| Ps | Ca| Is [ 4 15 | Pr | Ps [FralFas
Hoang Pl Is | Fo WKA Fy | F5 K1 4 Is | Fs | Ps|Co| Ps |Ca| I5 K1 d I5 | Pr | P5 | Cs |Fos
i-triangulated Cﬁ I8 Fﬁfll(gFl F3m[3 F3 P5 F‘_15P5 0_4 15 m 15 P7 P5F_1406
I4-free Berge CGIG7PF6[Q,4F1 F3m[3 F3| Ps ?6P5 C_4F5m Ps| < |Ps C_GCG
interval < | Is | Fo UKy Fy | F3 [ d I3 | F5 | Ps [F1a| Ps | Ca | Is Ko 4 Is | Pr | Ps [F1aR Py
K4—freeBerge Cﬁ I8 Fﬁfll(gFl F3m[3 F3 P5 ?GP5 0_4 I5E73]5 P7 P5 C_GCG
(K, Ps)-free Berge Fis| Is | Fo WKa Fy | F3[Ko d I3 | F3|C|Co | Fy |Cu| I5 [0 4 Is |Fos|Fao| Co [For
LGBIP Co|Is | Fo WK F1 | F3|Ki 4 Is | F3 | Ps|Cs | Ps|Ca| Is [0 d I5 | Pr| P5 |Cs | Cos
line perfect CG Ig FS4[(2F1 Fgﬁg[g Fg P5 F49 P5 0_4 15 m 15 P7 P5 F2405
locally perfect Cs| I | Fs WK F1 | F3 K1 4 I | F3 | Ps|Cs | Ps | Cu| I5 K0 4 I5 | Py | P | Cs | Cs
Meyniel Co|Is | Fs WKy F | F3[Ki A I3 | F3 | Ps [Fus| Ps | Ca| I5 [ Is | Pr| Ps [F14|Cs
murky Co| Is | Fo WKy P | F3 [ I3 | F3 | P5 | Cs | P5|Cy
1—over1ap bipartite Cﬁ I8 FGZLI(Q F1 F3E73 I3 F3 P5 ?6 P5 0_4
opposition Fis5| Is | Fo LKy Fiy | F3 [ 4 Is | F5| Ps |Co | P5|Cy
Py-free < || Fs UKy Fi | FslKGd Is | < | < | < |Fy|Cy
Py-lite Fis| Is | Fo WKy Fy | F3 [0 4 Is | Fs | Ps [Fis| P5 |Ca
Ps-reducible <|Ig Fﬁfll(gFl F3m[3 Fil<|<|Fy 0_4
Py-sparse Fis| Is | Fo WKy Fy | Fs K d I3 | Fs | < [Fig| Fu|Cy
P4—stable Berge CG Ig FS4[(2F1 Fgﬁg[g Fg P5 F'_15P5 0_4
parity Co| Is | Fo WKy P | F3 |1 I3 | B3 | Ps [Fuo P5 |Cy
partner-graph A-free Fus| Is | Fg WKy Fy F3E73 I | B | Ps|Fis| P | Cy

33



This paper appeared in: Discrete Mathematics 306 (2006), 2529-2571
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comparability Ps| Fy|Cs|Cs| I5 |F31|Cs [F1oR Py Cs BKA C | Cs | Cs | Ko | C4 | C4 BEA Cs | Cs
A < 6 Berge Ps| F»|Cs|Cs| I |F31|Co |F19| Cs| Cs BEa2 C6 | C | C | Kz | Ca | C4 B4 C | Co
dart-free Berge Ps | Fy|Cs|Co | Is |F51| Cs [F190| C | Cs BEA Cs | Cs | C | Ko | Cy | Cy BEA C | Cs
degenerate Berge Py | Fy|Cs|Cy| I5 |F51| Cs [F19| Cs | Cs BEA Cs | Cs | Co | K | C | C4 BES Cs | Cs
diamond-free Berge P5| Fy|Cs|Cs| I5 |Fag| Cs|F19| Cs | Cs BE4 C | O | Cs | Ko | C4 | C4BES Cs | C
doc-free Berge Ps5| Fy|Cs|Cs| I5 |Fag| Cs|F19| Cs | Cs BE4 C | O | Cs | Ko | C4 | C4BES Cs | C
elementary Ps| F»|Cs|Cs| I |F31| Ce |Fag| Cs | Cs BKa Cs | C | C | Kz | Ca | C4 B4 C | Co
forest Ps|Fy| < | < | I5 | < RPAF1oR PAFs . BEAFo4| < | < | Ko |Cy|CaBEAF | Py
gem-free Berge Ps5| Fy|C|Cs| I5 |Fag| Cs|F19| Cs | Cs BE4 C | O | Cs | Ko | C4 | C4BES Cs | C
HHD-free Ps| | < | < | I5 [FsdlFis|FLoR PAFs BEAF 4| < | < | Ko |Cu|CaBEAF o[F 11
Hoang P5 | F5|Cs|Cs | Is |F3|F16F19| C [F24pKa C| Cs | Cs | K2 | Ca | Ca BE4F10| C
i-triangulated Ps | Fy|Cs|Co | Is [Fsl Co |F1oR2 P Cs BES Cs | Cs | Cs | Ko | Cy | Cy BEA C | Cs
I4-free Berge Ps| F»|Cs|Cs K3 4F 31| Co |Fa9| Cs | Cs BEa C6 | C | C | Kz | Ca | C4 B4 C | Co
interval Ps| | < | < | Is | < |Fos|FLoR PAFs-BEAF 4| < | < | Ko |Cy|CABEAF | Py
K y-free Berge Ps| F»|Cs|Cs| I |F31|Ce |F19| Cs | Cs BKa C6 | C | C | Kz | Ca | C4 B4 C | Co
(K5, Ps)-free Berge Fy| Fy [FoolFss| I5 [F56lF15|F10| Co [F5sB K Co |Fos|Fo2| K2 | Ca| CaPE3F10/Co
LGBIP Ps| F»|Cs|Cs| I [Fae| C |F30| Cs | Cs BEa2 Cs | C | Cs | Kz | Ca | C4 B4 C | Co
line perfect Ps| F5|Cs|Cs| 15 | < | CsFroR PA Cs BEA Cs | O | O | K [T [ CaB K Cs | O
locally perfect P5| F3|Cs|Cs | I5 |F31| Cs |F10|Cs | Cs BEA C | Cs | Cs | Ko | | C4BEY C | C
Meyniel P5| F5|Cs|Cs| I5 [Fao| Cs |F1oR PY Cs BEA Cs | Cs | C | Kz | C4 | C4 BEA Cs | Cs
murky P5| F»|Cg|Cg| Is [Fag| Cs|F19| Cs| Cs KA Cs | Cs | Cs | Ko | Ca | C4 B4 Cs | Cs
1-overlap bipartite Py | Fy|Cs|Co| Is |Fag| Cs [F19| Cs | Co BEA Cs | Cs | Cs | Ko | Cy | Cy BEA C | Cs
opposition B | Fy Cs|Cs| K |Cy|CyBEAF 0| Co
Py-free < |Fy < | < |K|Cy|CiBKy < | <
Py-lite Ps|F; < | < |Kz|Cs|CiBEA 2P
Py-reducible F3|Fy < | < |Kz|Cs|CiBEA 2P
P,-sparse F3| < | < |K|Cy|CiBK: Py
Py-stable Berge Py | Fy|Cs|Cy| I |F51| Cs [F192 Py Cs BEA Cs | Cs | Co | K | C | C4 BES Cs | Cs
parity P5 | F5|Cq|Cg | I |F2o| C |F19RPA Cs BK3 C| C| Cs | K2 | Ca| C4 BE4 Cs | C
partner-graph A-free Py | Fy|Cs|Cs | Is |Fsa|Fy 5 FioR PAFs1BEAF 4| Cs | Cs | Kz | Cy | C BEKaFyo| Ps
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graphs o 0 0
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comparability = K14 F6|Kid F1 | F3 K1 4 K3 | F3 | P5|Co| Ps | 1y |Ca | Ky | P5 [ A Ps | Pr | Ps
A < 6 Berge Cs| = | Fo[Kad Fi | F3 K01 4 K3 | F5 | P5|Co| Ps | 1y |Ca| Ku| Ps Ky Ps | P7 | Ps
dart-free Berge Cs\Ki 4 = Kad Fi | F3 K04 K3 | F5 | P5|Co| Ps | 1y |Ca| Ku| Ps Ky Ps | P | Ps
degenerate Berge Ce K17 Fs| = | F1| F3|K1 4 Ks| F5| P |Ce| Ps| Iy |Cy| Ky | Ps [l 4 Ps | Pr | Ps
diamond-free Berge CslK1q < K = | < K14 K3 | < | P5|Cs| Ps | 11 |Ca| Ka| Ps |1 A P5 [Fi7] Ps
doc-free Berge Co|KiA Fo [Kug F1 | = K14 K| < | Ps|Co| Ps| 1o |Ca | Ky | Ps [ 4 Ps [Fao| Ps
elementary Cs|Ks| < WK F1 | Fs| = | K3|F5| P5|Cs| Ps| 1, |Cy| Ky | Ps| F1 | P5 | P7 | Ps
forest, <K <|<|<|<|Kg=|<| <3| <|IsFoa <|PsKiq<|<|<
gem-free Berge Co[Kiq Fo Ko d Iy | Fs K14 K3 | = | Ps|Co| Ps | L |Ca| Ka| Ps Ko 4 Ps [Fag| Ps
HHD-free P15 7 Fo [Kud P | F3 Ko 4 K| Fs | = |Fis| Fa| 1o |Ca | Ka | P i A K5 | < | <<
Hoang Co|Ki A Fo [Ku g F1 | F3 K4 K3 | Fs | Ps | = | Ps| 1o |Ca | Ky | Ps K1 4 Ps | Pr | Ps
i-triangulated FisllG 7 Fo [Kad i | F3 K4 Ka | F5 |Co|Co| = | 1o |Ca| Ku | Ps K1 K5 | < | <
I;-free Berge Cs| K3 | Fo bRy Fy | F3 K1 4 K3 | F3 | P5|Cs | Ps | = |Ca| Ku| Ps Ky 4 Ps | P | Ps
interval Forli A Fo | < |Fu | Fs o4 K3 | Fs| < |Fas| < | Is| = | Ka| Ps K14 K5 | < | <
Ky-free Berge CoKi 4 Fo [Kad Fi | F3 Ko 4 K3 | F5 | P5|Co| Ps | 14 |Ca| = | Ps|Ki 4 Ps| < | Ps
(K5, Ps)-free Berge Co K17 Fs [Kug F1 | F3 K 4 K| Fs | Ps |Fus| Ps | 1o |Ca | K| = K1 4 P5 | Pr | Ps
LGBIP Cs|Ks| < |Frp| < | < | < |K3| < | P5|Cs| Ps| 14 |Ca| Ka| Ps| = | Ps [F57| Ps5
line perfect Fislo A Fo K4 1| < Kig Ka| < |Cs|Co| < | It |Cu| Ky | Ps K4 = | < | <
locally perfect Co KA Fs [Ku g F1 | F3 K4 K| F3 | Ps |Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | = | Ps
Meyniel F151 7 Fo [Kud Fiy | F3 [ 4 K3 | Fs | Co|Co | Fu | 1o |Ca| Ka| Ps Ko A K5 | < | =
murky Co K174 F [Ku g F1 | F3 K 4 K| Fs | Ps | Co| Ps | Iy |Ca | K | Ps [ 4 Ps [Foo| Ps
1-overlap bipartite CsK1 4 Fo [Kad Fi | F3 Ko 4 K3 | F5 | P5|Co| Ps | 1y |Ca| Ku| Ps Ky 4 Ps | P | Ps
opposition Co[17 Fo [Ku g F1 | F3 [0 { K3 | F5 | Ps |Fis| Ps | 1y |Cy | Ky | Ps i 4 Ps | Pr | Ps
Py-free <A Fs oA By | Fs o4 K| < | < | < |Fa| Iy |Ca| Ko | Ks Ko 4 K5 | < | <
Py-lite FisfFi A Fo Ko 7y | P o | s [ T | P [P P | I |G| K| P i P T )|
Py-reducible <KiAFsKud By | P34 K | Fa | < | < |Fa| Iy |Ca| Ky | K Ko 4 K5 | < | <
Py-sparse FislKi A Fo Ko d Fi | F KA Ks | Fs | < [Fus| Fa| 1o |Ca | K| K5 G K5 | < | <
Py-stable Berge F151 7 Fo [Ku g F1 | F3 Ko 4 K3 | F5 | Ps |Co | Ps | 1y |Cy | Ky | Ps [y 4 Ps | Pr | Ps
parity P51 7 Fo[Kud P | Fe Ko 4 K3 | << |Cs|Co| Fa| 1y |Ca| Ka | P i A K5 | < | <<
partner-graph A-free P15 7 Fo [Ku g F1y | F3 Ko 4 K3 | Fs | Ps |Fis| Ps | 1o |Ca | Ky | Ps i A Ps | Pr | Ps
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comparability Pg|F351|Cg | Py | Ps| Ps | Ps |Fa3| Ps | Cs| Fa| < | < |Cé KB.I <| < |FglF19
A < 6 Berge Ps|F31|Cs| Py | Ps| Ps| P5|Cs| Ps | Co | F» | Cs | Cs | Co | Ks [Foo|FaglF31| Co [Fig)
dart-free Berge Ps|F31|Cs| Py | Ps| Ps| P5 |Cs| Ps | Co| F2 | Cs | Cs | Co | Ks [Foo|FaglF31| Co [Frg)
degenerate Berge Pg|F31|Cs| Py | Ps | Ps | P5 | Cs| Ps |Co | F2 | Cs | C | Co | K5 |Foo|FueF 31| Ce [F19|
diamond-free Berge P |F31|Cs| Py | Ps| Ps| Ps|Cs| Ps | Co| F2 | Cs | Cs | Cs | Ks |Fo|FaelF31| Cs [Fas
doc-free Berge Ps|F31|C | Py | Ps | Ps| Ps|C | Ps | Co | F2 | Cs| Cs | Co | K [Foo[FuelF31| Cs [Figl
elementary Ps|F51|Cs| Py | Ps| Ps | Ps |Co | Ps | Cs| B2 | Cs | Cs | Co | Ks Vg0l Fugl < |Cs [l
forest Ps|Funss| Py | Ps | Ps | Ps| < | < | Fol < |<|<|Foq < |<|<|<| <<
gem-free Berge Ps|F31|Ce | Py | Ps | Ps| Ps|C | Ps | Co | F2 | Cs| Cs | Co | K [Foo[FuelF31| Cs [Fiol
HHD-free Py |For|F14| Py | Ps| Ps | Ps [For| F3 | Fo | Fo| < | < [Fis| Ks| < | < |FselFis|Fio
Hoang Py |F31[Fod| Py | Ps| P5 | P |Cs| Ps | Cs | F2|Cs | Cs | Cs | K5 Fo|Co [F19|
i-triangulated P |Far| Cs| Py | Ps| Ps | Ps [Far| F3|Cs | Fo | < [Frs|Cs | Ks| < | < | < [Fis| <
I4-free Berge Ps|F51|Cs | Py | Ps| Ps | Ps| C| Ps | Cs| F2| Cs| Cs | Co | K |Foo|FaglF31|Ce [F1o
interval Ps[ForFss| Py | Ps| Ps | Ps [For| Fs | Fo | B2 | < | < [For K| < | < | < [Far] <
Ky-free Berge Ps|F31|C | Py | Ps | Ps | Ps|Cs| Ps |Cs | F2 | Cs | Cs | Co K3 4F 60| Fu6{F 31| Cs | Foo
(K, Ps)-free Berge Pg|For|F14| Py |Cs | Ps | Ps | Cs | P5 |Co | F2 | Cs| Cs C_GKS,BIIF68F29 Ce |[Fog|
LGBIP Py |F46|Co| Py | Ps| Ps | Ps|Cs| Ps|Co| Fo|Ce| Ce | Co | K5 W0l a6l < |Co|Fog
line perfect Ps|F54 Cg| Py | Ps| P | Ps [Fsg| < |Cs| Fa| < K3,
locally perfect P5|Cs| B> |Cs
Meyniel F3|Cs|Fs| <
murky P5|Cs|F2|Cs
1-overlap bipartite P5|Cs| B> |Cs
opposition P;|Cs| F>|Cs
Py-free <|<|F|<
Py-lite P <|R|<
Ps-reducible F| < |Fl <
P,-sparse Fg <|F|<
P,-stable Berge P;|Cs| F5 |Faa
parity =|Cs| Fs| <
partner-graph A-free Ps| =|F|Cs
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Inclusions between
classes of perfect =
graphs 3 - Q 9 E =
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comparability Co|F31BKCy|Cs| < | < | Fo|Fo|Cu| L2 |Ca| Ps|Co|Co PR3 C1BEA Cs|Fio
A <6 Berge Cs|Ce BEIC1|Cs|Cs|Cs| Fo | Fy |Cy| Iz |Cy| Py |Cs | Cs BEK{C4BKY Cs | C
dart-free Berge Cs|CeBEACy|Cs|Cs|Cs| Fo | Fo|Cy| I | Cy| Py |Cs| Cs BE{ C.BEY Cs|Cs
degenerate Berge Cs|CsBEACy|Cs|Cs|Cs| Fo | Fo|Cy| I |Cu| Ps|Cs| Co BE{ C4BEKA Cs|Css
diamond-free Berge C6|C6|Foo|C1|Cs|Cs|Co| Fo | Fy |Ci| 1o | Ca| Pa|C | Co BK3 Ca|F54| C | Co
doc-free Berge Cs|CsRCYCL|Cs|Cs| Cs| Fo | Fo |Cu| I | C4| Py | Cs| Cs BEH Cy |Fa0|Cs| Cs
elementary Cs|Ce BKIC1|Cs|Cs|Cs| Fo | Fy |Cy| Iz |Cy| Py |Cs | Cs BEK{ C4 BEY Cs | C
forest <|<| < |CylFss| < | < |Fo|Fo|Cyl I | < | Py|FsalFogl < |C4| < | < |Fio
gem-free Berge Cs|CeBEIC1|Cs|Cs|Cs| Fo | Fy |Ca| Iz |Ca| Py |Cs | Cs BE{C4 BKA Cs | Cs
HHD-free PP < BKJCy|F1a| < | < |Fo|Fo|Cy| Iz |Cy| Py |F1slF1sBK{C4 BKY < [F1o
Hoang Cs|CBKYC1|Cs|Cs|Co| Fo | Fy |Ci| I | Ca| Pa|Cs | Co PR3 CaBEA C | Co
i-triangulated Cs| < BEACL|Cs| < | < | Fy| Fo|Cy| I |Cy| Py |Cs| Cs BEK{ C4.BEI Cs|Fif
I;-free Berge Cs|Ce BEIC1|Cs|Cs|Cs| Fo | Fy |Cy| Iz |Cy| Py |Cs | Cs BEK{ C1 BKY Cs | C
interval <|<| < |Ca|Fss5| < | < |Fo|Fo|Cul| Io| < | Py [FraF1PEHCy| < | < |Fio
K,-free Berge Cs|Ce BEIC1|Cs|Cs|Cs| Fo | Fy |Cy| I |Cy| Py |Cs | Cs BEK{C4 BKY Cs | C
(K5, Ps)-free Berge Cs|CsBKAC4|C|Cs|Co | Fo | Fo|Cu| Iz |Ca| Py |Cs|Co B3 C4 B4 Cs
LGBIP Cs|Cs|Fs0|C1|Cs|Cs|Co [Fi2|F19| Ca| I2 | Ca| Py |Cs | Cs BE4 Cy
line perfect Csl < | < |Cu|Cs| < | < | Fo|Fy|Cs| I |Cu| Ps|Cs|Cs BE{Cy
locally perfect Cs|CsBEACL|Cs|Cs|Cs| Fo | Fo |Cu| I | C4| Py |Cs| Cs BEHCy.
Meyniel Cs| < BRKYCL|Cs| < | < | Fo|Fo|Cu| I |C4| Py |Cs| Cs BEK{Cy BEY C |1
murky Cs|CeBKYC4|Cs|Cs|Co| Fo | Fy |Ci| I | Ca| Pa|Cs | Co BE3 CaBEA C | Co
1-overlap bipartite Cs|CeBEACy|Cs|Cs|Cs| Fo | Fo|Cy| I | Cy| Py |Cs| Cs BE{ C.BEY Cs|Cs
opposition Cs|CsBKIC4|Cs|Cs|Cs| Fo | Fy |Cu| I |Ca| Py |Cs | Cs BE{C1BEY Cs | C
Py-free < | <BEJC,| <|<| <|<|<|Cy| L |Cs|Cs| < | < BE{C4BEK] < | <
Py-lite PPRPBEIC, [l < | < | < | < |Cy| 2 |Ca| Py |FrsFisp Ky C4 BEY <
Pj-reducible PP < BEAC, P < | < | < | < |Cu| 2 |Cy| Py| < | < BE{C41BKS <
P,-sparse OP| < BK4C, <|<|<|<|Cil I |Cy| Py |FislFisBEI CLBEY <
P4-stable Berge Cs|F31B KA Oy |Co|Fso|Fiug Fo | Fo |C4| I |Cy| Py |Cs|Cs BK3 C4 BEY Cs |F1o
parity Cs| < BKIC4|Cs| < | < | Fy|Fy|Cy| Iz |C4| Py |Cs|Co BK{C4 BKA Cs [F10
partner-graph A-free Cs|F51BEA Cy |F14|Cs | Cs|Fis| < |Cyl I |Cy| Py |Fi5FisBE{ C.BEY Cs |Fif

37



This paper appeared in: Discrete Mathematics 306 (2006), 2529-2571
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paw-free Berge Ko d < |Cs| < |K3|C6| < |Cy F?[{Lg < @CG <|Cg|I3| < mE; P
perfectly contractile K> 4F 11| Ce |F55| B3| Cs | F5 | Cy F?Km FL K4 Cs|Fys| Cs | Is F7H,3F4 Py
perfectly orderable Ko 4F11|Ce | < | K3|Cs| F5|Cy F?Km E@CG Fi5|Csl I3 F7H,3F4 P
permutation Kod < | < | < |Ks|Fss| F5|Cu| Fr K 4 Fullod < | < | < | I3 | F7 Ko 4 Fy| Ps
planar Berge K>4Cs|Cs |Co | K3 |Co | F5 | Ca | Fr Ky { Fu K24 C| Cs| Cs | Is | Fr [Ki 4 Fia | Po
preperfect K>4Cs|Cs |Co | K3 |Co | F5 | Ca | Fr Ky { Fu K24 C| Cs | Cs | Is | Fr [Ki 4 Fia | Po
quasi-parity K>,4Cs|C|Co | K3 |Cs| Fs | Ca| Fr K1 4 Fiu [0 { Cs|Cs| Cs| I3 | F7 [Ki 4 Fiu | Ps
Raspail K>,4Cs|C|Co | K3 |Cs| Fs | Ca| Fr K1 4 Fiu Ko { Cs|Cs| Cs | I3 | F7 [Ko 4 Fiu | Ps
skeletal Ko 4P| Co [0 B3 | Co | F5 | Cu [ Fr [ P Ro ] G [Fd| G | 15 [ P [ | P
slender K>4Cs|Cs |Co | K3 |Co | F5 | Ca | Fr Ky { Fu K24 C| C| Cs | Is | Fr [Ki 4 Fia | Po
slightly triangulated K>,4Cs |F15|Ce | K3 | Co | s | Ca | Fr Ky  Fa Ko 4Fu1| C [Fua| Is | Fr [Ko 4 Fia | Po
slim Ko 4F 41| Co [ K | Cs | Fs | Ca | Fr K A Fu Ko { C|Fus| C | I3 | F7 [Ko 4 Fiu | Po
snap K24 Cs|Cs|Cs | K3 | Cs | Fi | Ca| Fr Ko d Fiu Ko d C|Cs | Co | Is | Fr Ky Fiu | Po
split <|<|Fis < | K| < |Fs| < |FrKid < | < | < |Fas| < | I3 | FR G d < | <
strict opposition Ko AFy1|F15| < | K3|Cs| Fs|Cy| Fr [Ko d Fu Ko d Cs |F15| Cs | Is | Fr Ky Fu | Po
strict quasi-parity Ko AF 41| C [Fua| K3 | C | Fi | Cu| Fr [K0 A Fiy[Ka d O |F15| Co | I3 | F7 [ A Fy | Pe
strongly perfect K> 4F 11| Ce |F55| B3| Cs | F5 | Cy F?Km E@CG Fi5|Csl I3 F7H,3F4 P
3-overlap bipartite [{273?6 Cs|Cs| K3|Cs| F5|C, ﬁKLg Fi K 4Cs|Cs|Cs| I | Fr EF4 Py
3-overlap A-free K54 Cs|C|Cs | K3 | Cs | Fi | Ca| Fr [K0 d Fiu[Ka O |Cs | Co | I3 | F7 [ A Fy | Pe
threshold <l<|<|<|B|<|<|<|<kd<|<|<|<|<|B|<Kd<|<
tree <|<|F < |<|<|<|<|FrKd<|<|Fa|<|<Kid<|<|Ps|Ps
triangulated < | < |Fis| < |K3| < | Fs| < |Fr Ko d < Ko dFselFus| < | I3 | F Ky d Fu| Po
trivially perfect <|<|<|<|Bl<|<|<|<Kd<Kd<|<|<|L|<KidFi| <
2-overlap bipartite Ko A Cs|F17|Cs | K3 | Cs | Fi | Cy| Fr [K0 A Fiy[Ko { Cs |F17| Cs | Is | F7 [ A Fy | Pe
2-overlap A-free K> 4 Cs|Fi7|Cs | K3 |Cs | Fs | Ca | Fr K A Fu Ko { Cs|Fi7| Cs| I3 | F7 [Ko 4 Fiu | Ps
2-split Berge K>,4Cs|C|Co | K3 |Cs| Fs | Ca| Fr K1 4 Fiu Ko { Cs|Cs | Cs | I3 | F7 [Ki 4 Fiu | Ps
2K>-free Berge K>,4Co|Fi5|Co | K3 |Co| Fs | Ca| Fr Ky A Fia [FuslFss| Co [Fss| I3 | F7 [Ki 4F0| Cs
unimodular K24 Cs|C|Co | K3 |Cs| F5 | Ca | Fr K1 4 Fiu Ko 4 Cs|Cs| Cs | I3 | Fr [ 4 Fiu | Ps
weakly triangulated Ko AFy1|F1 5| < | K3 |Fao| Fi |Cu| Fr [Ko A Fu Ko AFu|Frs| < | I3 | F7 Ky A Fy | Pe
wing triangulated Ko AF 45| C [F5| K3 | C | Fi | Ca| Fr [Ko d Fiu[Ka d Cs |F15| Co | Is | F7 Ky Fiu | Po
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Inclusions between
<) (&)
classes of perfect ol @ &
graphs o | 2@ o A A
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(5] (] 5] ] (5] (5] ] 5] ] (5] (5] ] 5] ] (5] (5] (] 5] ] (5]
paw-free Berge Co| Is| < WK Py | F3|Ky ] I3 | F3 | Ps | < | P5|Cu| Is Ky 4 I5 | Pr| Ps |Fou| Cs
perfectly contractile CG I8 FGZLI(Q F1 F3E73 I3 F3 P5 F‘_15P5 0_4 I5 m I5 P7 P5F_1406
perfectly orderable CG I8 FGZLI(Q F1 F3E73 I3 F3 P5 _15P5 0_4 I5 m I5 P7 P5F_1406
permutation < | Is | Fs 0K Fy | F5|[K0 I3 | F3 | Ps [Fua| Ps | Ca | Is Ko d 15 | Pr| Ps [FiaFas
planar Berge Cs| Is | Fo WKy ' | F3 [ d I3 | F3 | P5 |Co | P5 |Ca | I5 Ko 4 Is | Pr| Ps | Cs| Cis
preperfect Cs| Is | Fo WKy ' | F3 [ d I3 | F3 | P5 |Co | P5 |Ca | Is Ko d Is | Pr| Ps | Cs| Cis
quasi-parity Co|Is | Fs 0Ky F | F3[Ki A I3 | F3 | P5|Cg| Ps | Ca| I5 [Ko 4 Is | Pr| P5 |Cs |C
Raspail Co|Is | Fo WK F1 | F3|Ki 4 I3 | F3 | Ps|Cs | Ps|Ca| Is 0 d I5 | P7| P5 |Cs | Cos
skeletal Cs| Is | Fo WKy ' | F3 [ d I3 | F3 | Ps [F1a| P5 |Ca | I5 Ko 4 Is | Pr| Ps [F14 Cis
slender Cs| Is | Fo WKy ' | F3 [ d I3 | F3 | P5 |Co | P5 |Ca | I5 Ko d Is | Pr| P | Cs| Cis
slightly triangulated Fis| I | Fo bRy Fy | F3 |04 I3 | F3 | Ps|Cs| Ps |Ca| I5 K04 Is | Pr | Ps |Cs [Fay
slim Cs| Is | Fo pKY F1 | F3 [Ki 4 Is | F3 | Ps [Fis| Ps | Ca | Is Ko d 15 | Pr| Ps [F14| Cs
snap Co| I | Fo WK 1 | F3 i d Is | F5 | P5 | Co | P5 |Ca | I5 [0 4 I5 | P2 | P |Cs | Cis
split Fis| I | Fo| < |Fy | F3lKid I3 | F3| < |[Fus| < [Fus| Is KA Is | < | < | < | <
strict Opposition F15 I8 FGZLI(Q F1 F3E73 I3 F3 P5 F‘_15P5 0_4 I5 m I5 P7 P5 F_14F23
strict quasi-parity Co| Is | Fo WK Iy | F3 Ky I3 | F3 | Ps [Fus| P | Cu| I5 Ky 4 Is | Pr| Ps [Fi4| Cs
strongly perfect CG I8 Fﬁ4[(2F1 F3E73 I3 F3 P5 F15 P5 0_4 I5 [(173 I5 P7 P5F_1406
3—over1ap bipartite CG Ig FS4[(2F1 Fg@ Ig Fg P5 ?6 P5 0_4 15 m 15 P7 P5 C_G CG
3-overlap A-free Co| Is | Fo WK Iy | F3 Ky I3 | F3| Ps |Co | P |Cu| Is Ky 4 I5 | Pr| P5|Cs | Cs
threshold <|L|Fs|<|R|<KdL|<|<|<|<|<|LKdL|<|<|<]|<
tree Fouli d < |Fas| Fr | Ps| < [Kiq Ps| Ps| < | Ps| Ps o4 F7 | Ps | Pr | Ps [Fo| Py
triangulated F15 I8 FGZLI(Q F1 F3E73 I3 F3 P5 F15 P5 0_4 I5 [(173 I5 P7 P5 F_142P4
trivially perfect <||FspK B | BG4 | < | <|<|Fu|Cu| LKid | <|<|<|<
9-overlap bipartite ERRTERREARR Y RAEARRR
2—0V6I‘1&p N-free F_17 I8 FGZLI(Q F1 F3E73 I3 F3 P5 F52 P5 0_4 I5 m I5 P7 P5 F522P4
2—Sp1it Berge CG I8 Fﬁ4[(2F1 F3m[3 F3 P5 ?GP5 0_4 I5E73 I5 P7 P5 C_GCG
2Ko-free Berge Fis| Is | Fg [Fro| Fy | F3 K04 I3 | F3 | C6 | Cs [Fao| Cs| I5 [Ka 4 I5 |FoslFas| Cs [Fr
unimodular CG Ig FS4[(2F1 Fg@]g Fg P5 ?6P5 0_4 I5E3 15 P7 P5 C_GCG
weakly triangulated Fis| Is | Fo bRy Fy | F3 [0 4 I3 | Fs | Ps |Fus| Ps |Ca| Is K04 Is | Pr | Ps [FraFay
Wll’lg triangulated CG I8 Fﬁ4[(2F1 F3E73 I3 F3 P5 F15 P5 0_4 I5 m I5 P7 P5F_1406
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Inclusions between © -
classes of perfect T2 £ = 9| 4
sraphs 5|22 A REHEHERREREE
HEEE: E IR EEIPER
1121314516 q-’.:_*uﬁﬁg_(ﬁ B &gi Eigég
arEnm e B HE P AR S HEE
m i i E HEEE A EHEEEEEHEE
wjojaj2 2 2fglglg|glsle|s]elg|2]|s|ele|s|elsele|c|gls
paw-free Berge P3| | Co|Cs| 15 I Co|F1o2P) Cs BE| Cs | Cs | Cs | 1| Ca| CuB | Ci
perfectly contractile Py | Fo|Cs|Co| I |Fa1| Cs |[F19R2 Py Cs BEKA Cs | Cs | Cs | Kz | Cy | Cy BES Cs
perfectly orderable Py | Fy|Cs|Co| I |Fa1| Cs |[F19R2 Py Cs BEKA Cs | Cs | Cs | Kz | Cy | Cy BES Cs
permutation Ps|Fy| < | < |Is | < |FiglFroR PiFsoBEF 4 < | < | Ko |Cu|CuBEAF
planar Berge P5 | F5|Cs|Cg | Is [F31|Co |F10|C | Cs BK3 C| C| Cs | K2 | Ca| C4 B3 C
preperfect P5 | F5|Cs|Cs | I [F31|Co |F10| C| Cs BK3 C| C| Cs | K2 | Ca| C4 B4 C
quasi-parity Ps| F»|Cs|Cs| I [F31|C |F19| Cs | Cs BE4 C6 | Cs| C | K2 | Ct | C4 B2 Cig
Raspail Ps| F»|Cs|Cs| I [F31|C |F19| Cs | Cs K4 C6 | Cs| C | K2 | C | C4 B2 Cig
skeletal P5| Fy|Cs|Cs| I5 |Fao| Cs [F1oR P Cs BEY C | Cs | Cs | Ko | Cu | C4BEH Cs
slender P5| F5|Cs|Cs | I [F31|Co |F10|C| Cs BK3 C| C| Cs | K2 | Ca| C4 B4 C
slightly triangulated Ps| By [FudFyol Is |F51|Fi5|F10| Cs [F31BEY Cg [FsalFua| Ko | Cy | CABEAF
slim P5| F»|Cg|Cg| Is [Fao| Cs [F10R P Cs BKY Cs | Cs | Cs | K2 | Ca | Ca BEY Css
snap Ps| F»|Cs|Cs| I [F31|C |F19| Cs | Cs K4 C6 | Cs| C | Kz | Cy | C4 B3 Cig
split R <|<||<[Fisl<|<|< <.|< < | K| < | Py|F15[F10
strict opposition Ps | Fy|Cs|Cs | Is |Fsa|FislFioR PAF 4B EAF 4| Cs | Cs | Ko | Oy | Cy BEGFY
strict quasi-parity Ps| Fy|Cs|Cs | Is |F51|Cs [FroR P Cs BE) Cs | C | Cs | Ko | Cy | C4BEH C
strongly perfect Ps | Fy|Cs|Co | Is |F51| Co |F10RPA Cs BEY Ci | Cs | C | Ko | Oy | CL BES Cg
3-overlap bipartite Ps | F5|Cs|Cs | I [Fag Cs [F1o| Cs | Cs BEA Cs | Cs | C | Ko | Ca | C1 BEA Cs
3-overlap A-free Ps| Fy|Cs|Cs | Is |F51|Cs [Fro| Cs | Cs BEY Cs | C | C | Ko | Cy | C4BEH C
threshold < B <|<|<|<|<|<|I<|<I<|I<|<K<|<|<]|<
tree Ps | Ps| < | <Ko < |Pg|Fa0| Py |FaaloqFad < | <|Ka|Ps|Py|F13lF10
triangulated Ps|Fy| < | < | I5 [FsdlFus|FLoR PAFoBEAF 4| < | < | Ko |Cy|CABEAF
trivially perfect <|F|<|<|Iz|<|<[Fiol <|<BK] <|<|<|K|Ci|CiBEKY <
92-overlap bipartite P3| B[ Cs|Cs| I [T o Fro P Cs B Os | Cs | Os | Ko [ G| B o
2-overlap A-free Ps | Fy|Cs|Cs | Is |FsolFaslFioR PA Cs BEY Cs | Cs | Cs | Ko | Oy | Cy BEGFY o
2-split Berge Ps| F»|Cs|Cs| I [F31| C |F19| Cs | Cs BE4 C6 | Cs| C | Kz | Ct | C4 B2 Cig
2K>-free Berge F3| By [FoolFss| Is [Foo{F15{F20| Co [Fss|Foo| Co [Fos|Fo2| K2 | Co | Pa [F15/F 10| Cs
unimodular P5 | Fy|Ce|Cs | Is |F51| Co [F10| C | Cs BEY Ci | Cs | Cs | Ko | O | C BES Cg
weakly triangulated Ps| By | < |Fyo| Is |F51|Fis|FLoR PAF 31 BEAF 4| < |Fuo| Ko |Cy | CABEAF
wing triangulated Ps | Fy|C|Co | Is |Fao Co IF10RPA Cs BEY Ci | Cs | C | Ko | O | CL BES Cs
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Inclusions between
classes of perfect .
graphs o o0 %o
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paw-free Berge < [Kiq < K F | FyKi A K| < |Cs|Cs| < | 1y |Cy| Ku| Ps o4 K5 | < | <
perfectly contractile P15 7 Fo [Ku g F1 | F3 Ko 4 K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A Ps | Pr | Ps
perfectly orderable P15 7 Fo Ko g F1 | F3 Ko A K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A Ps | Pr | Ps
permutation < K14 Fos [Kud ' | F3 [ A K3 | F3 | Ps |Fia| Ps | 1y |Ca | Ky | Ps G 4 Ps | Pr | Ps
planar Berge Colf { Fo [0 P | s . Ko [ P | G [ P 1 | Ca Ka | Ps [ { P R P
preperfect Co KA F [Ku g F1 | F3 K 4 K| Fs | Ps |Co| Ps | Iy |Ca | Ky | Ps K1 4 Ps | Pr | Ps
quasi-parity Coll17 Fo [Ku g F1 | F3 Ko A K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A P5 | Pr | Ps
Raspail CsK1 4 Fo [Kad Fi | F3 K0 4 K3 | F5 | P5|Co| Ps | 1y |Ca| Ku| Ps Ky 4 Ps | P | Ps
skeletal 5l 4 F Ko g Py | Fs K4 K| Fs | Ps | Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
slender Co K174 F [Ku g F1 | F3 K 4 K| Fs | Ps |Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
slightly triangulated Co K1 Fs [Ku g F1 | F3 K 4 K| Fs | Ps |Fus| Ps | 1o |Ca | Ky | Ps K1 4 Ps | Pr | Ps
slim F151 7 Fo [Ku g F1y | F3 Ko 4 K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A Ps | Pr | Ps
snap CsK1 4 Fo [Kad Fi | F3 K0 4 K3 | F5 | P5|Co| Ps | 1y |Ca| Ku| Ps Ky 4 Ps | P | Ps
split Fislfiq Fo| < | F1|F3 K4 K| Fs | < [Fus| < | Lo [Frs| Ka | K5 KA K | < | <
strict opposition P15 7 Fo [Ku g F1y | F3 Ko A K3 | Fs | Ps |Fis| Ps | 1o |Ca | Ky | Ps i A Ps | Pr | Ps
strict quasi-parity F5lKi 4 Fo Ko g Py | F3 K4 K| Fs | Ps | Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
strongly perfect P15 7 Fo [Ku g F1y | F3 Ko 4 K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A Ps | Pr | Ps
3-overlap bipartite Coll17 Fo [Ku g F1 | F3 Ko { K3 | F5 | Ps |Co | Ps | 14 |Cy | Ky | Ps i 4 Ps | Pr | Ps
3-overlap A-free Co K7 Fs [Kug F1 | F3 K 4 K| Fs | Ps |Co| Ps | Iy |Ca | Ky | Ps [ 4 Ps | Pr | Ps
threshold <KiFs|<|R|<KdK|<|<|<|<|L|<|K|KKiK|<|<
tree <K <|<|<|<|Kg<|<|<|F35 < |KiqFosq < |PslKig <|<|<
triangulated Fislq Fo| < |Fi|F3 K4 Ka | Fs | < |Fus| < | Iy |Fus| Ko | Ps KA G| < | <
trivially perfect <|KiqpFe| < Fi| < KiglG| < | <|<|<|L4|<|Ki|KsKigks| <|<
2-overlap bipartite P17 7 Fo [Kud Fi | F3 K4 K3 | Fs FE).IFE) I, |Cy| Ka| P54 Ps | Pr | Ps
2-overlap A-free P17l 7 Fo [Ku g F1y | F3 [0 4 K3 | Fs | Ps |Fro| Ps | 1o |Ca | Ka | Ps i A Ps | Pr | Ps
2-split Berge Coll17 Fo [Ku g F1 | F3 Ko A K3 | F3 | Ps |Co | Ps | 1o |Ca | Ka | Ps i A P5 | P7 | Ps
2K>-free Berge Coll1.7 Fo [Ku g F1 | F3 Ko A K3 | F3 | Ps |Fis| Ps | 1o |Ca | Ko | K i A P5 | Pr | Ps
unimodular Col17 Fo [Ku g F1 | F3 [ { K3 | F3 | Ps |Co | Ps | 1y |Cy | Ky | Ps |y 4 Ps [Foo| Ps
weakly triangulated P15l 4 F Ko g Py | Fs K4 K| Fs | Ps |Fus| Ps | 1y |Ca | Ky | Ps [ 4 Ps | Pr | Ps
wing triangulated P15 7 Fo [Ku g F1 | F3 Ko 4 K3 | F3 | Ps |Co | Ps | 1y |Ca | Ka | Ps i A Ps | Pr | Ps
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Inclusions between
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paw-free Berge FPs|F34Co| Py | Ps| P | Ps| < | < |Col = | < | < |Cs| Kl < |<|<|<|<
perfectly contractile Py |Fs1|Cs | Py | Ps| Py | Ps [For Ps | Cs| Fy | = [Fuo| Cs | K < |F31|F451F19
perfectly orderable Py |Fs1|Cs | Py | Ps| Py | Ps [For P | Cs| Fa | < | = |Cs| K < |F31|F451F19
permutation P |F34[F14| Py| Ps| Ps | Ps [Fosg| Ps | Fo | Fo| < | < | = | K <| < |F1dF19
planar Berge P |F31|Cs| Py | Ps| Ps| Ps|Cs| P5 | Cs| F2 | Cs | Cs | Cs | = Fhg
preperfect Ps|F31|Cs | Py | Ps| Ps | P5|Cs | Ps | Cs| F» | Cs| Cs| Cs | K5 Fig)
quasi-parity Ps|F31|Cg| Py | Ps| Ps | Ps |Cs| Ps | Cs | F2 | Cs | Cs | Cs | K5 Fyo)
Raspail Py |F31|Cg| Py | Ps| Ps | Ps |Cg| Ps | Cs | F2 | Cs | Cs | Cs| K5 Fyo)
skeletal Ps|For] Co| P Ps| Ps | Ps [ 5| Co| P [ Fioa| C | 5 Fiq
slender Ps|F31|Cs| Py| Ps | Ps| P5|Cs | Ps |Cs| F» | Cs | Cs | Cs | K =
slightly triangulated P |F31|F14| Py | Ps| Ps| Ps|Cs| P5 | Cs| F2 | Cs | Cs | Cs | K5 Fyof
slim Ps|[F31|Cg| Py | Ps | Ps | Ps [Far| Ps | Co | F2 Cs| K5 g
snap Ps|F31|Cg| Py | Ps | Ps | Ps | Cs| Ps | Co | F2 Cs| K5 Fyo)
split < |Fys| < | Py|Fo|Fr | Fr | < |F5|Fo|Fa| < | < |Fis| K <
strict opposition Py |Fs1| < | Py| Ps| Ps| Ps [Far| Ps | Fo | P> K Flg
strict quasi-parity Ps|F51|Cs| Py | Ps| Ps | Ps [Far| Ps | Cs | Fa K; Fho
strongly perfect Py |F31|Cg| Py | Ps| Ps | Ps [Foq| P5 | Cs | F K Flg
3-overlap bipartite Ps|Fug/Co| Py | Ps| Ps| Ps | Cs | Ps | Cs | F |Cs | Cs K |
3-overlap A-free Ps|F51|Cs| Py | Ps| Ps | P5 | Cs | Ps | Co | F» | Cs| Cs | Cs | K )
threshold <|l<|<|<|<|<l<|<|<|<|RR<]|<]|<|Ks <
tree P |FyrFss| Py | Ps | Ps | Ps| < | < |Fo| < | <| < |Fay < <
triangulated Py |ForFss| Py | Ps | Ps | Ps [For| Fi | Fo | Fo | < | < |Fis| K <
trivially perfect <|l<|<|<|<|<|<|<|<|< |2l <]|<]|<|Ks <
2-overlap bipartite Ps F37.| Py | Ps| Ps| Ps|Cs | Ps | Fo | F» | Cs | Cs |Fiql K Fio
2-overlap A-free Py |FsdFso| Py | Ps| Ps| Ps |Cs | Ps | Fo | F5 | Cs| Cs |Fiq| K Flg
2-split Berge Ps|F31|Cg| Py | Ps| Ps | Ps|Cs| Ps | Cs | F2|Cs | Cs | Cs| K5 Fyo)
2K-free Berge P |For{F14| Py |Co| P5 | P | C | P5 | Cs| F2 | Cs| Cs | Cs | Ks Fyo)
unimodular Ps|F31|Cs| Py | Ps| Ps| Ps|Cs | Ps | Cs| F2 | Cs| Cs | Cs | K5 |
weakly triangulated Py |F31|F14| Py | Ps| Ps| Py [For| Ps | Fo | Fy | < [FuolFis| K Fio
wing triangulated Ps |F3 Cs| Py | Ps| Ps | Ps RP s | C E.|F55 Cs| Ks Fro
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Inclusions between
classes of perfect = =
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D|lwm|B|la|B|B | Bl |EB|lE|E|lE|la|a|a|la|El2E
paw-free Berge Cs| < BEKIC4|Cs| < | < | Fo|Fy|Cy| I |Cu| Py |Cs|Cs BK4 C4 BEKa Cs [Fio
perfectly contractile Cs|F51BEACy | Cs| < [Fug| Fo| Fo|Cy| I | Cy| Py | Cs| Cs BKA C BRI Cs |y
perfectly orderable CslF51BEACY|Cs| < | < | Fo| Fo|Cy| I |Cy| Py |Cs| Cs BEKA C4 BRI Cs|Fyo
permutation D PAFoa3 g Ca || < | < | Fo|Fo|Ca| I | Ca| Pa|[FidFLBR{CL B < [Fio
planar Berge Cs|CoBKC1|Cs|Cs|Co| Fo | Fy |Ci| I | Ca| Pa|Cs | Co BE3 CaBEIC | Co
preperfect Cs|CeBKC1|Cs|Cs|Co| Fo | Fy |Cu| I | Ca| Pa|C | Co BK3 CaBEI C | Co
quasi-parity Cs|Ce BEIC1|Cs|Cs|Cs| Fo | Fy |Cy| I |Cy| Py |Cs | Cs BEK{C4 BKY Cs | C
Raspail Cs|Ce BEIC1|Cs|Cs|Cs| Fo | Fy |Cy| I |Cy| Py |Cs | Cs BEK{C4 BKY Cs | C
skeletal Co|[FosBKIC1|Cs| < |Fo3| Fo | Fo |Cy| Iz |Cy| Py |Cs|Co BK{C4 BEA Cs [F10
slender Cs|CeBKC1|Cs|Cs|Co| Fo | Fy |Ci| I | Ca| Pa|Cs | Co BE3 CaBEAC | Co
slightly triangulated = |C6BKYC4|Cs|Cs|Cs| Fo | Fy |Cy| I2 | C4| Py |Cs | Cs BE{ C4 BKA Cs | Cs
slim Co| = BK4Cy Fs4| Fo| Fo |Cy| Iz |Cy| Py |Cs|Co BK{C4 BKA Cs [F10
snap Cs|Cs| = |Ca Cs| Fo|Fy|Cy| I2 |Cy| Py |Cs | Cs BK4 Ca|Fi5|Cs | Cs
split <l<|<|= < |Fo|Fo|Py| I | < | Py|FrslF1s| < | < [Fis| < [Fio
strict opposition Cs|F51BKACy| = Fo|Fy|Cy| I |Cy | Py |Fy5|FisBEA Cy BEY Cs [Fig
strict quasi-parity Cs|F31BKAC4|Cs| = [Fud Fo | Fo |C4| I |C4| Py |Cs | Cs BK3 C4 BEJ Cs | Fio
strongly perfect Cs|F51BKA Cy | Cs = | Fy|Fy|Cy| I |Cy| Py | Cs|Cs BK4 C,BEKI Cs |Fy o
3-overlap bipartite Cs|CsBEACy|Cs|Cs|Cs| = | < |Cu| I |Cy| Ps|Cs| Cs BE{ C4BES Cs|Css
3-overlap A-free Cs|CeBKYC1|Cs|Cs|Co|Fis| = |Ci| 12 | Ca| Pa|Cs | Cs BK3 CaBEI C | Co
threshold <<l << << < < <|=h|<|<|<|<]<I<I<|I<|I<
tree < | < | <|Ps|F35| < | <|Fo|Fo|Py|=| <|Py|FouFoy <|P5| <|<|Fio
triangulated < | < | < |Cy|Fss| < | < |Fo|Fo|Cy| Iz | = | Py |Fis|F15B K3 Cy|F1s| < |[Fho
trivially perfect <|<|<|Cil<|<|<|<|<|Ci|L|<|=|<|<BK{C4| < |<|<
2-overlap bipartite Cg|CsBKAC4|Cs|Cs|Cs| Fo | Fo |C4| I |C4| Py | = | < BK3§C4BEJ Cs|F1o
2-overlap A-free Cs|CsBKIC1|Cs|Cs|Cs| Fy | Fy |Cy| I |Cy | Py |Fis| = BK{C4BKCs [F1o
2-split Berge Cs|Ce BKIC1|Cs|Cs|Cs| Fo | Fy |Cy| I |Cy| Py |Cs|Cs| = |C4BKYCs | Cs
2K-free Berge Cs|C6BKAC4|C|Cs|Co| Fo | Fy| Py| I2|Ca| P4 |Cs|Co PR = BK4Cs|Co
unimodular Cs|CsRCACL|Cs|Cs|Cs| Fo | Fo|Cy| I |Cs| Ps|Cs| Cs BE{Cy| = |Cs|Cs
weakly triangulated PP|F51BEY Oy |F1a| < [Fao Fo | Fo |Cy| Iz |Cy| Py |F1slF1sBE{C4 BEY = [F1o
wing triangulated Co[FspRI | Co| < [T Fo | Fo[Ca| 12 | €| P Cs | Co P | Cu B G| =
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7 Counterexamples

The counterexamples F; appearing in the previous table to prove that some class is not
contained in some other class are shown in this section. Fortunately, while we give 12888
such counterexamples, it turns out that only 74 different counterexamples are needed.
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