
New Approximation Algorithms

for the Weighted Matching Problem

Sven Hanke

CTB CAMTEC Software GmbH Berlin
An den Treptowers 1

12435 Berlin, Germany
sven.hanke@gmx.de

Stefan Hougardy

University of Bonn
Research Institute for Discrete Mathematics

Lennéstraße 2, 53113 Bonn, Germany
hougardy@or.uni-bonn.de

Abstract. Finding matchings of maximum weight is a classical
problem in combinatorial optimization. The fastest algorithm known
today for solving this problem has running time O(mn+n2 log n). Sev-
eral applications require algorithms for the weighted matching problem
with better running time. Up to now no algorithm with o(mn) running
time was known that achieves an approximation ratio better than 2

3
.

We present two approximation algorithms for the weighted matching
problem in graphs with an approximation ratio of 3

4
− ǫ respectively

4

5
− ǫ and running time O(m log n) respectively O(m log2 n).

Keywords. approximation algorithms, analysis of algorithms, graph
algorithms, maximum weight matching

1 Introduction

The weighted matching problem in graphs is to find a matching of maxi-
mum weight in an edge weighted graph. In 1965 Edmonds [5] presented the
first polynomial time algorithm for this problem. The running time of his
algorithm was improved over the years and the fastest algorithm currently
known for the weighted matching problem has running time O(mn+n2 log n)
and is due to Gabow [7]. Many applications require faster algorithms for the
weighted matching problem. Therefore one is interested in approximation

1



algorithms for the weighted matching problem, i.e., algorithms that guar-
antee to find a matching whose weight is at least some constant fraction
of the largest possible weight. A very simple such algorithm is the greedy
algorithm. This algorithm has running time O(m log n) and always finds a
matching of weight at least 1/2 of the maximum possible weight. In 1999
Preis [16] presented a linear time algorithm also achieving a factor 1/2 ap-
proximation. Another such algorithm which is much simpler was presented
in [3]. Drake and Hougardy [4] improved this result in 2004 by presenting a
linear time algorithm which achieves a 2/3 − ǫ approximation factor for ar-
bitrarily small ǫ. Pettie and Sanders [15] presented another such algorithm
whith better dependence of the running time on ǫ. No other constant fac-
tor approximation algorithms for the weighted matching problem are known
that are faster than Gabow’s exact algorithm, i.e, that have running time
o(mn).

Our Contribution In this paper we present two new approximation algo-
rithms for the weighted matching problem. One has running time O(m log n)
and achieves an approximation ratio of 3/4 − ǫ. The other algorithm has
running time O(m log2 n) and achieves an approximation ratio of 4/5 − ǫ.
The algorithm of Drake and Hougardy [4] achieves an approximation ra-
tio of 2/3 − ǫ by considering augmentations which involve at most two non
matching edges. It is easily seen that this approach can be generalized by
considering augmentations which involve up to three non matching edges.
This will result in an approximation algorithm whith approximation ratio
3/4 − ǫ. However, the running time of this algorithm is O(mn).

We present two new ideas that allow to achieve an approximation ratio of
3/4−ǫ with running time O(m log n). First we show that augmenting cycles
of length six can be approximated reasonably well by overlapping augment-
ing paths of length seven. This requires a new definition of the gain of an
augmentation. Secondly we show that by approximating the gain of aug-
menting paths of length seven and by using appropriate data structures, one
can consider many augmentations simultaneously in one step. By combining
these two ideas and repeating the algorithm a constant number of time we
can show that it results in an 3/4− ǫ approximation ratio with running time
O(m log n). By extending these ideas we are able to show that augmen-
tations involving up to four non matching edges can be handled similarly.
This results in an approximation algorithm with approximation rato 4/5− ǫ
and running time O(m log2 n).

2



2 Preliminaries

We denote by n the number of vertices and by m the number of edges in a
graph. A matching M in a graph G = (V,E) is a subset of the edges E of
G such that no two edges in M have a vertex in common. A vertex v ∈ V
is covered by a matching M , if there exists an edge in M that contains v.
A vertex is called uncovered if it is not covered by M . For a vertex v ∈ V
and a matching M we denote by M(v) all edges in M that are incident to
v. As M is a matching, the set M(v) is either empty or contains exactly
one edge. For a matching M and a vertex x ∈ V we define an arm of x as a
path of length one or two starting in x with an edge not in M . If the path
has length two, then the second edge must belong to M . The number of
arms starting in a vertex is bounded by the degree of this vertex. Therefore
we have:

Lemma 1 A graph contains at most 2m arms. �

In the following our graphs will always be weighted, i.e., together with the
graph G = (V,E) we have a function w : E → R+ which assigns a positive
weight to each of the edges of G. The weight w(F ) of a subset F ⊆ E of
the edges of G is defined as w(F ) :=

∑

e∈F w(e). The weighted matching
problem is to find a matching M in G that has maximum weight. Such a
matching (which needs not to be unique) will be denoted by M∗. In this
paper we present an approximation algorithm for the weighted matching
problem, i.e., an algorithm that for any graph G = (V,E) and any function
w : E → R+ returns a matching M such that w(M) ≥ c ·w(M∗), where c is
a constant. The constant c is called the approximation ratio.

Let G = (V,E) be a graph and M ⊆ E be a matching. A path or cycle is
called alternating if it contains alternately edges from M and E \ M . An
M -augmentation A is an alternating cycle or path such that the symmetric
difference of M and A, which we denote by M△A, is again a matching.
We consider an M -augmentation A to be a set of edges. If the matching
M is clear from the context, we simply say augmentation instead of M -
augmentation. The gain of an augmentation A is defined as gain(A) :=
w(A \M)−w(A ∩M), i.e., the gain of an augmentation is the difference of
the weights of the two matchings M and M△A. Note that the gain of an
augmentation may be negative.

3 A simple Approximation algorithm

We start by presenting a very simple approximation algorithm for the weighted
matching problem which achieves in polynomial time an approximation ra-

3



SimpleMatching: G = (V, E), w : E → R+, l ∈ N, matching M
Output: matching M ′

1 ALG = ∅
2 compute the set Al

3 while Al 6= ∅ do
4 choose A ∈ Al with maximum gain
5 ALG := ALG ∪ {A}
6 remove all elements from Al that are not vertex disjoint with A
7 endwhile
8 M ′ = M augmented by all augmentations in ALG

Figure 1: A simple algorithm for increasing the weight of a matching M .

tio arbitrarily close to one. Even though the running time of this algorithm
is much too high, it will be the starting point for our new approximation
algorithm for the weighted matching problem and is useful to elucidate some
of its ideas.

Let G = (V,E) be a graph and M ⊆ E be a matching. We denote by Al

the set of all M -augmentations which contain at most l edges not in M . For
fixed l the set Al can easily be computed in polynomial time. Figure 1 shows
a simple polynomial time algorithm for improving the weight of a matching.

To analyse the algorithm SimpleMatching we need the following definition
of a multiset Ωl whose elements are from Al. Consider the symmetric dif-
ference of M and M∗. This consists of connected components which are
M -augmentations. If such an M -augmentation contains at most l edges
from M∗ then put it into Ωl with multiplicity l. If it contains more than l
edges from M∗ then label the edges of M∗ within this augmentation con-
secutively. For any l consecutive edges (using wrap around) of M∗ in this
augmentation we include the M -augmentation containing these l edges of
M∗ in Ωl. If a wrap around in a path appears, this will result in two M -
augmentations that together contain l edges of M∗ (see Figure 2).

Theorem 1
∑

A∈Ωl
gain(A) ≥ l · w(M∗) − (l + 1) · w(M)

Proof. Each edge of M∗ \M is contained in precisely l augmentations from
Ωl. Each edge of M \M∗ is contained in at most l + 1 augmentations from
Ωl. Therefore we get

∑

A∈Ωl
gain(A) ≥ l ·w(M∗ \M)−(l+1) ·w(M \M∗) =

l · w(M∗) − (l + 1) · w(M) + w(M ∩ M∗) ≥ l · w(M∗) − (l + 1) · w(M). �

Theorem 2 If the algorithm SimpleMatching gets a matching M as input
then it returns a matching M ′ such that

w(M ′) ≥ w(M) +
1

2(l + 1)
·
(

l

l + 1
· w(M∗) − w(M)

)

.

4



Figure 2: Illustration of the definition of the set Ωl for l = 2. The figure
shows at the top an augmentation in the symmetric difference of M and M∗

which contains five edges of M∗. The edges of M are in bold. Below are the
six augmentations that are included in Ω2.

Proof. The algorithm SimpleMatching stops when the set Al is empty.
Therefore it must be the case that for every augmentation S in Ωl there
exists an augmentation A in ALG with gain(S) ≤ gain(A) and A and S
are not vertex disjoint. Assign S to one of the vertices in the augmentation
A which they have in common. By definition each vertex of the graph G is
contained in at most l + 1 augmentations of Ωl and therefore at most l + 1
augmentations can be assigned to it. Each augmentation of ALG has at
most 2(l + 1) vertices. Therefore it follows that

gain(ALG) ≥ 1

2(l + 1)2

∑

S∈Ωl

gain(S) . (1)

Now the result follows from Theorem 1. �

Theorem 3 If there exists an algorithm A that by input of a matching M
returns a matching M ′ with w(M ′) ≥ w(M) + α (β · w(M∗) − w(M)) ,
then for every ǫ > 0 there exists an algorithm A′ that finds a matching M ′′

of weight at least w(M ′′) ≥ β · (1 − ǫ) · w(M∗). The running time of A′ is
only by a constant factor (which depends on ǫ) larger than that of A.

Proof. Repeat the algorithm A a constant number of times. Let M0 be
the empty matching and Mi+1 be the matching that is obtained from Mi by
applying the algorithm A. By assumption we have w(Mi+1) ≥ wi+1 ·w(M∗)
where wi+1 is defined by the following recurrence

wi+1 = wi + α · (β − wi) , and w0 = 0 .

By solving this linear recurrence equation we get

w(Mi) ≥ β ·
(

1 − (1 − α)i
)

· w(M∗) .

5



This immediately shows that if i is larger than some constant c ≥ logǫ(1−α)
we have

w(Mc) ≥ β · (1 − ǫ) · w(M∗) .

As the algorithm A is repeated c times and c is a constant (depending on ǫ)
the result follows. �

Theorem 4 For any δ > 0 algorithm SimpleMatching yields an 1 − δ ap-
proximation algorithm for the weighted matching problem and has polynomial
running time.

Proof. By Theorem 2 we know that algorithm SimpleMatching returns a
matching M ′ with

w(M ′) ≥ w(M) +
1

2(l + 1)
·
(

l

l + 1
· w(M∗) − w(M)

)

.

Set l := 2/δ−1. Now apply Theorem 3 with α = 1
2(l+1) , β = l

l+1 and ǫ = δ
2−δ .

This yields an algorithm with approximation ratio β(1 − ǫ) = (1 − δ). The
running time of this algorithm is at most O(mn2/δ−2 log n). �

The running time of the algorithm resulting from the above theorem for
l ≥ 3 is larger than the running time of Gabow’s exact matching algo-
rithm. In the next section we will use several ideas to get a better running
time while preserving the general approach that is used by the algorithm
SimpleMatching.

4 A 3/4 − ǫ approximation algorithm

In this section we show how to achieve an approximation ratio of 3/4− ǫ in
time O(m log n). We will use a similar approach as in Section 3 but need
several new ideas. First, instead of considering all augmentations in set A3,
we will only consider O(m log n) of them. Secondly we will show that cycles
of length 6 in A3 can be approximated by paths of length 7 in A3 if the gain
function is redefined appropriately. Finally we will present data structures
that allow to keep and update all necessary information for the algorithm.

In line 4 of the algorithm SimpleMatching an augmentation A from Al is
chosen with maximum gain. If instead we only compute an augmentation A′

with a gain that achieves at least some γ-fraction of the maximum possible
gain, then the proof of Theorem 2 shows, that Theorem 3 can still be applied
with α = γ

2(l+1) . Therefore one idea of our new algorithm is not to store all
elements of A3 but to partition them appropriately and to keep only some
information about the partition classes.

6



Let S be a finite set, f : S → R be an arbitray weight function, and α > 0,
β > 1 be constants. Denote by fmax the maximum of f(s) for all s ∈ S.
Then we define the rank r(s) of an element s ∈ S as follows

• If f(s) ≤ α·fmax

n then r(S) = 0

• Otherwise r(s) = i > 0 where i is the smallest integer for which it is
true that f(s) ≤ βi · α·fmax

n .

We will call this ranking an (f, α, β)-ranking. The definition implies that
the rank of an element s is an integer of size O(logβ

n
α).

Let G = (V,E) be a graph and M a matching. For each vertex v ∈ V
we will store an ordered list armsv which contains all arms of the vertex
v ordered by their gains. By Lemma 1 these lists can be computed in
O(m log n). Furthermore each vertex gets assigned O(logβ

n
α ) lists armsv,i

for i = 0, 1, . . . which contain all rank i arms of v ordered by their gains of
a (gain, α, β)-ranking. The constants α and β will be specified later. Note
that gainmax ≤ wmax where wmax is the maximum weight of an edge in E.

Let A be an augmentation in Al that is a path. We call an edge c in A a
center of A if c ∈ M and the number of edges M in A on both sides of c
differs by at most one. We will consider centers always as directed edges.
For a directed edge c = (x, y) we call an arm of x a left arm and we call an
arm of y a right arm. An augmenting path in A3 has length at most seven.
Therefore, it can be seen as a center c = (x, y) together with a left arm
starting in x and a right arm starting in y and an additional arm starting
in the end vertex of the left arm of x. This additional arm will be called an
extension of the left arm starting in x.

For each vertex x and each i we use a list Lx,i to store all arms of x that
can be extended by an arm of rank i. More precisely, let x be a vertex and
{x, y}, {y, z} be an arm of x. If armsz,i is not empty, then we put the arm
{x, y}, {y, z} into the list Lx,i. The lists Lx,i can be created for all x and
all i in O(m logβ

n
α) by simply scanning all lists armsx and all lists armsx,i.

We also can assume that the arms within each list Lx,i are ordered by their
gains. Therefore we have

Theorem 5 For all x ∈ V (G) and all i the lists armsx, armsx,i and Lx,i can
be computed in O(m logβ

n
α). Furthermore we may assume that the elements

within each list are ordered by their gain. �

Let M be a matching and e ∈ M . Then using the data structure of armsx

one can easily find an augmentation in A2 with e as a center that achieves
the maximum gain. This was already shown in [1]. Here we extend this
result in the following:

7



3/4-Matching: G = (V, E), w : E → R+, l ∈ N, matching M
Output: matching M ′

1 ALG = ∅
2 while M 6= ∅ do
3 compute Ai(~e) for all e ∈ M , i ≥ 0 and both orientations of e
4 from these let A have maximum gain
5 ALG := ALG ∪ {A}
6 remove all vertices and edges from G and M that intersect A
7 endwhile
8 M ′ = M augmented by all augmentations in ALG

Figure 3: The basis part of a 3/4-approximation algorithm.

Theorem 6 Assume that the lists armsx, armsx,i and Lx,i are given. Then
for a given directed center c = (x, y) and a given i if exists one can find in
constant time an augmenting path with center c in A2 that has maximum
gain and allows a left extension of rank i that has only one vertex in common
with the path.

Proof. We only have to consider arms in Lx,i such that its extension can be
combined with some arm in armsy. As the elements in both these lists are
sorted, we can find the elements with highest gain in both lists in constant
time. A left arm with its extension may intersect a right arm. However,
it is easily seen that it is enough to consider the four left and right arms
with the highest gain. Then at least one of these pairs is intersection free
and allows an extension of the left arm, i.e., it results in a path of length
seven or a cycle of length six. As in total there are only constantly many
combinations possible, all these can be checked in constant time, and the
one with highest gain can be returned. �

We will denote by Ai(~c) an augmentation that results from Theorem 6. In
the special case of i = 0 we will also consider augmentations consisting only
of a left or right arm, i.e., do not have an extension. Also note that the right
arm my be degenerated, i.e., it consists of only one edge. In the theorem
the precise gain of the rank i extension is not specified. Therefore we will
always assume in the following a rank i extension with lowest gain. The
algorithm will choose always one extension that has at least this gain.

Figure 3 shows an algorithm based on computing the augmentations Ai(~c).
There exist at most O(m logβ

n
α ) different augmentations Ai(~c) each of which

can be computed in constant time by Theorem 6. This allows our algorithm
to be much faster than listing all elements in A3. Clearly, the augmentations
Ai(~e) do not have to be calculated in each iteration of the while-loop of the
algorithm. Instead they are updated in line 6 of the algorithm.

To prove the correctness of the algorithm 3/4-matching we have to modify

8



theorems 1 and 2 slightly.

We define a set Ω′

3 similarly as the set Ω3 as a multiset whose elements are
from A3. The only exception are cycles of length six in M∗△M . For these
we now include three artificial paths of length seven in Ω′

3, which result by
going around the cycle and taking an edge of M as start and end edge of
the path. With this definition of Ω′

3 the proof of Theorem 1 can be adopted
and we get:

Theorem 7
∑

A∈Ω′

3

gain(A) ≥ 3 · w(M∗) − 4 · w(M) �

Similarly the proof of Theorem 2 can be adopted by few changes to analyse
the algorithm 3/4-matching.

Theorem 8 If the algorithm 3/4-matching gets a matching M as input
then it returns a matching M ′ such that

w(M ′) ≥ w(M) +
β

8
·
(

3

4
· (1 − α) · w(M∗) − w(M)

)

.

Proof. We essentially follow the proof of Theorem 2. The only point
where we have to change the argument is the point where we claimed that
for every augmentation S in Ω3 there exists an augmentation A in ALG
with gain(S) ≤ gain(A) and A and S are not vertex disjoint. This is no
longer true as the chosen A contains only one possible extension of rank
i, but not necessarily the best one. Therefore, for i > 0 there might be
an error of up to a factor β that comes in here (note that by definition all
elements with the same rank are at most factor β apart.) For i > 0 we have
gain(S) ≤ β · gain(A). For i = 0 the error might be arbitrarily large, as
the weight of rank 0 elements may be arbitrarily close to 0. For that reason
we need some other argument. Consider all rank 0 extensions in M∗△M .
There are at most n of them and by definition of the rank 0 each have weight
at most αwmax

n . As we can bound wmax by w(M∗) the total weight of all
rank 0 extensions is at most α · w(M∗). We might think of our algorithm
as to operate on the graph where all rank 0 extensions have been removed
before. Then the rest of the proof of Theorem 2 remains unchanged and we
have to replace w(M∗) by (1 − α) · w(M∗). �

We still have to consider the running time of algorithm 3/4-matching. As
mentioned above we do not explicitely recompute the augmentations Ai(~e)
in line 3 of the algorithm. Instead we will only update them, if they are
affected by line 6 of the algorithm. To see that these updates can be done
in total time O(m logβ

n
α) note that each non-matching edge belongs to at

most two arms. We keep pointers for each arm to all the lists it belongs to.
This allows to do removal from lists in constant time. As long as the lists

9



armsv,i contain more than four elements we do not have to recalculate the
augmentation Ai(~e) as we do not keep track of the extension that belongs
to the augmentation but we only need to know that there exists at least one
extension of rank i that can be used. If there are less than four elements in
armsv,i each time we remove one element from the list we can recalculate
Ai(~e) in constant time. To find the augmentation with maximum gain in
line 4 we can use for example fibonacci heaps.

Theorem 9 For any given ǫ > 0 there exists an O(m log n) algorithm that
finds in a graph a matching of weight at least (3

4 − ǫ) · w(M∗).

Proof. As argued above the running time of algorithm 3/4-matching is
within the required bounds. Now by applying Theorem 3 with α > 0 and
β > 1 chosen sufficiently small (depending on ǫ only) we get the desired
result. �

5 A 4/5 − ǫ approximation algorithm

The O(m log2 n) algorithm for finding a matching of weight at least 4/5− ǫ
follows essentially the approach of the last section. The only difference here
is that instead of considering augmentations Ai(~e) for a center e ∈ M we
have to consider augmentations Ai,j(~e) which consist of a left and a right
arm and an extension of rank i of the left arm and an extension of rank j
of the right arm. We still can use the fact that only a constant number of
extensions of the left and the right arm can intersect each other completely.
This results in an additional factor logβ

n
α for computing Ai,j(~e) instead of

Ai(~e). The rest of the argumentation follows the line of proof given in the
previous section. We therefore get:

Theorem 10 For any given ǫ > 0 there exists an O(m log2 n) algorithm
that finds in a graph a matching of weight at least (4

5 − ǫ) · w(M∗).

6 Conclusion

We have presented two approximation algorithms for the weighted match-
ing problem. The first hast approximation ratio 3/4 − ǫ and running time
O(m log n). The well known and often used greedy algorithm has the same
running time, but achieves only an approximation ratio of 1/2. Our second
algorithm has running time O(m log2 n) and has an approximation ratio of
4/5 − ǫ. It is an interesting open question whether an approximation ratio
of 1 − ǫ can be achieved in running time O(mpoly log n).

10



References

[1] D.E. Drake, S. Hougardy, Linear Time Local Improvements for Weighted
Matchings in Graphs. In: WEA 2003, LNCS 2647, 107-119.

[2] D.E. Drake, S. Hougardy, Improved linear time approximation algorithms
for weighted matchings, In: Approximation, Randomization, and Combinato-
rial Optimization, (Approx/Random) 2003, S.Arora, K.Jansen, J.D.P.Rolim,
A.Sahai (Eds.), LNCS 2764, Springer 2003, 14–23.

[3] D.E. Drake, S. Hougardy, A simple approximation algorithm for the weighted
matching problem, Information Processing Letters 85:4 (2003), 211–213.

[4] D.E. Drake, S. Hougardy, A linear time approximation algorithm for weighted
matchings in graphs, ACM Transactions on Algorithms 1 (2005), 107–122.

[5] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, Journal
of Research of the National Bureau of Standards 69B (1965), 125–130.

[6] T. Fischer, A.V. Goldberg, D.J. Haglin, S. Plotkin, Approximating matchings
in parallel, Information Processing Letters 46 (1993), 115–118.

[7] H.N. Gabow, Data structures for weighted matching and nearest common
ancestors with linking, SODA 1990, 434–443.

[8] M. Goldberg, T. Spencer, A new parallel algorithm for the maximal indepen-
dent set problem, SIAM Journal on Computing 18:2 (1989), 419–427.

[9] J. Jájá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading,
Massachusetts 1992.

[10] H.J. Karloff, A Las Vegas RNC algorithm for maximum matching, Combina-
torica 6:4 (1986), 387–391.

[11] M. Karpinski, W. Rytter, Fast Parallel Algorithms for Graph Matching Prob-
lems, Clarendon Press, Oxford 1998.

[12] R.M. Karp, E. Upfal, A. Wigderson, Constructing a Perfect Matching is in
Random NC, Combinatorica 6:1 (1986), 35–48.

[13] S. Micali and V.V. Vazirani, An O(
√

V E) Algorithm for Finding Maximum
Matching in General Graphs, Proc. 21st Annual IEEE Symposium on Foun-
dations of Computer Science (1980) 17–27.

[14] K. Mulmuley, U.V. Vazirani, V.V. Vazirani, Matching is as easy as matrix
inversion, Combinatorica 7:1 (1987), 105–113.

[15] S. Pettie, P. Sanders, A simpler linear time 2/3- ε approximation for maximum
weight matching, Information processing letters 91:6 (2004), 271–276.

[16] R. Preis, Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs, Symp. on Theoretical Aspects in Computer Sci-
ence (STACS), LNCS 1563 (1999), 259–269.

[17] P.W. Purdom, C.A. Brown, The Analysis of Algorithms, Holt, Rinehart and
Winston, New York, 1985.

11



[18] R. Uehara, Z.-Z. Chen, Parallel approximation algorithms for maximum
weighted matching in general graphs, Information Processing Letters 76:1-2
(2000), 13–17.

[19] V.V. Vazirani, A Theory of Alternating Paths and Blossoms for Proving Cor-
rectness of the O(

√
V E) General Graph Maximum Matching Algorithm, Com-

binatorica 14:1 (1994), 71–109.

12


