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Abstract. We prove that the approximation ratio of the greedy algorithm for the
metric Traveling Salesman Problem is Θ(log n). Moreover, we prove that the same
result also holds for graphic, euclidean, and rectilinear instances of the Traveling
Salesman Problem. Finally we show that the approximation ratio of the Clarke-
Wright savings heuristic for the metric Traveling Salesman Problem is Θ(log n).
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1 Introduction

Let G = (V,E) be an undirected complete graph and c : E(G) → R≥0 be a
length function on the edges. A tour is a cycle in G that visits each vertex
exactly once. The length of a tour T is the sum of the lengths of the edges
in T . The Traveling Salesman Problem (TSP) is to find a tour of minimum
length. In this paper we study themetric Traveling Salesman Problem which
is the special version of the Traveling Salesman Problem where the function c
is metric, i.e., we have c({x, y})+c({y, z}) ≥ c({x, z}) for any three vertices
x, y, z ∈ V (G). The metric Traveling Salesman Problem is known to be NP-
hard [5] and therefore much effort has been spent to design polynomial time
algorithms that find good tours.

An algorithm A for the traveling salesman problem has approximation

ratio c if for every TSP instance it finds a tour that is at most c times longer
than a shortest tour. The greedy algorithm is one of the simplest algorithms
to find a TSP tour. It starts with an empty edge set and adds in each
iteration the cheapest edge (with respect to the length function c), such
that the resulting graph is a subgraph of a tour. Because of its simplicity
and because the greedy algorithm achieves quite good results on real world
instances (see e.g. [7, page 98]) it is often used in practice.
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In Section 2 we will prove that the approximation ratio of the greedy
algorithm for metric TSP is Θ(logn) for instances with n vertices. Our
result closes the long-standing gap between the so far best known lower
bound of Ω(log n/ log log n) and the upper bound of O(logn). Both these
bounds were proved in 1979 by Frieze [2].

Our result also holds for the euclidean, the rectilinear, and the graphic

TSP. These are well studied special cases of the metric TSP. In the eu-
clidean and the rectilinear TSP the cities are points in the plane and the
distance between two cities is defined as the euclidean respectively rectilin-
ear distance. A graphic TSP is obtained from an unweighted, undirected,
and connected graph G which has as vertices all the cities. The distance
between two cities is then defined as the length of a shortest path in G that
connects the two cities.

Another well established approximation algorithm for the traveling sales-
man problem that achieves good results in practice (see e.g. [7, page 98]) is
the Clarke-Wright savings heuristic [1]. This heuristic selects one city x and
connects it by two parallel edges to each other city. This way one obtains
a Eulerian tour that is transformed into a TSP tour as follows. For each
pair of cities a, b let the savings be the amount by which the edge {a, b}
is shorter than the sum of the lengths of the two edges {a, x} and {b, x}.
The replacement of the edges {a, x} and {b, x} by the edge {a, b} is called
a short-cut. Now go through all city pairs in nonincreasing order of savings
and short-cut the pair if this does not close a cycle on the cities different
from x and if both cities in the pair do not get adjacent to more than two
other cities. After going through all city pairs the result will be a TSP tour.

In Section 3 we will prove that the approximation ratio of the Clarke-
Wright savings heuristic for metric TSP is Θ(logn). Again, we close a long-
standing gap between the so far best known lower bound ofΩ(log n/ log log n)
and the upper bound of O(logn). Both these bounds were proved in 1984
by Ong and Moore [6].

2 The Approximation Ratio of the Greedy

Algorithm

In this section we describe the construction of a family of metric TSP in-
stances Gk on which the greedy algorithm can find a TSP tour that is by a
factor of Ω(k) longer than an optimum tour. Our construction is similar to
the approach in [3].
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We denote by Vk the set of cities in Gk. As Vk we take the points of a
2× (1

2
(3k+2 − 1)) subgrid of Z2. Thus we have

|Vk| = 3k+2 − 1 (1)

Let Gk be any TSP-instance defined on the cities Vk that satisfies the
following conditions:

(i) if two cities have the same x-coordinate or the same y-coordinate their
distance is the euclidean distance between the two cities.

(ii) if two cities have different x-coordinate and different y-coordinate then
their distance is at least as large as the absolute difference between their
x-coordinates.

Note that if we choose asGk the euclidean or the rectilinear TSP instance
on Vk then conditions (i) and (ii) are satisfied. We can define a graph on
Vk by adding an edge between each pair of cities at distance 1. The graphic
TSP that is induced by this graph is exactly the rectilinear TSP on Vk. The
graph for G0 is shown in Figure 1. We label the vertex at position 1

2
(3k+1+1)

in the top row of Vk as sk and the right most vertex in the bottom row of
Vk as rk.

r0

s0

Fig. 1. The graph defining the graphic TSP G0 together with a partial greedy tour (bold edges)
that connects s0 with r0.

A TSP tour is called greedy tour if this tour can be the output of the
greedy algorithm. Let V be a subset of the cities Vk of the instance Gk

and let T be a greedy tour in Gk. A partial greedy tour on V is a path P
containing exactly the vertices of V such that there exists a greedy tour in
Gk that contains P . The bold edges in Figure 1 form a partial greedy tour
on V0. The next lemma is similar to Lemma 1 in [4] and Lemma 1 in [3].

Lemma 1. Let the cities of Gk be embedded into Gm with m ≥ k. Then
there exists a partial greedy tour P in Gm that

(a) contains exactly the cities in Gk,

(b) connects sk and rk,
(c) has length exactly (2k + 8) · 3k − 1, and
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(d) the edges in P have length 3i with 0 ≤ i ≤ k.

Proof. We use induction on k to prove the lemma. For k = 0 a partial
greedy tour of length 8 ·30−1 = 7 that satisfies (a)–(d) is shown in Figure 1.
Now assume we already have defined a partial greedy tour for Gk. Then we
define a partial greedy tour for Gk+1 recursively as follows. By (1) we have
|Vk+1| = 3k+3− 1 = 3 · (3k+2− 1)+2. Therefore, we can think of Gk+1 to be
the disjoint union of three copies G′

k, G
′′
k, and G′′′

k of Gk such that G′
k and

G′′
k are separated by a 2×1 grid. Moreover, we assume that G′′

k is embedded
after mirroring at the y-axis. This is shown in Figure 2.

G
′

k

s
′

k

r
′

k

G
′′

k

s
′′

k

r
′′

k

G
′′′

k

s
′′′

k

r
′′′

k = rk+1

sk+1

Fig. 2. The recursive construction of a partial greedy tour for the instance Gk+1. The dashed
lines indicate partial greedy tours in G

′

k, G
′′

k , and G
′′′

k .

By definition sk+1 is the vertex at position 1

2
(3k+2+1) in the top row of

Vk+1. As we have 1

2
(3k+2 + 1) = 1

2
(3k+2 − 1) + 1 = 1

2
|Vk|+ 1 this is the first

vertex in the top row behind G′
k.

We now claim that a partial greedy tour for Gk+1 may look as follows
(see the bold edges in Figure 2): it contains the three recursively defined
partial greedy tours in G′

k, G
′′
k, and G′′′

k plus four additional edges. These
four additional edges are the two edges of length one that leave r′k and r′′k to
the right respectively to the left plus the two edges {s′k, sk+1} and {s′′k, s

′′′
k }.

As s′k is at position 1

2
(3k+1 + 1) in the top row and sk+1 is at position

1

2
(3k+2 + 1) in the top row, we have that the edge {s′k, sk+1} has length

1

2
(3k+2 + 1)−

1

2
(3k+1 + 1) = 3k+1.

The edge {s′′k, s
′′′
k } has length

1

2
(3k+1 + 1) +

1

2
(3k+1 + 1)− 1 = 3k+1.

Thus, we have constructed a partial tour that satisfies (a), (b), and (d)
and its total length is

3 · ((2k + 8) · 3k − 1) + 2 + 2 · 3k+1 = (2(k + 1) + 8) · 3k+1 − 1
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and therefore also (c) holds. We still have to prove that this partial tour
is contained in some greedy tour. The two edges of length one that leave
r′k and r′′k to the right respectively to the left may be chosen by the greedy
algorithm at the very beginning. Afterwards, by induction the partial greedy
tours within G′

k, G
′′
k, and G′′′

k may be chosen. By induction, the longest edge
that has to be considered by the greedy algorithm up to this step has length
3k. We now claim that all edges that are incident to the vertices s′k, s

′′
k, s

′′′
k ,

and sk+1 and that may be added by the greedy algorithm have length at
least 3k+1. For the vertices s′′k, s

′′′
k , and sk+1 this is immediately clear, as any

vertex not belonging to Gk+1 has distance at least 3k+1 to these vertices.
We still have to rule out that s′k has a neighbor to the left of Gk+1 within
a distance smaller than 3k+1. But if there exists a neighbor to the left of
Gk+1 then by the recursive construction Gk+1 is contained in an embedding
of Gk+2 and this implies that to the left of G′

k there is a mirrored copy of
Gk. Thus the next neighbor to the left of s′k has distance at least 3k+1.

Theorem 1. On graphic, euclidean, and rectilinear TSP instances with n
cities the approximation ratio of the greedy algorithm is Θ(logn).

Proof. The upper bound is proven in [2]. For the lower bound we apply
Lemma 1. The instance Gk defined above has n := 3k+2 − 1 cities and an
optimum TSP tour in Gk has length n. As shown in Lemma 1 there exists a
partial greedy tour in Gk of length at least (2k+8) · 3k − 1. Thus, for k ≥ 1
the approximation ratio of the greedy algorithm is greater than

(2k + 8) · 3k − 1

3k+2 − 1
≥

(2k + 8) · 3k

3k+2
=

2k + 8

9
≥

2

9
· log3(n + 1).

Conditions (i) and (ii) are satisfied whenever the distances in Gk are
defined by an Lp-norm. Thus Theorem 1 not only holds for the L2- and the
L1-norm but for all Lp-norms.

2.1 The 1-2-TSP

For completeness we also provide the approximation ratio of the greedy
algorithm for the 1-2-TSP.

Theorem 2. The approximation ratio of the greedy algorithm for the 1-2-

TSP is 3

2
− 1

2n
on instances with n cities.

Proof. We first present an example showing that the approximation ratio
is at least 3

2
− 1

2n
. For an odd number n with n > 4 consider the cycle
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on vertices {1, . . . , n}. Add to this cycle all edges {i, j} with |i − j| =
2 and i and j odd. All these edges get length one while all other edges
get length 2. Now the greedy algorithm may choose (n + 1)/2 edges of
length one by taking the edges {2, 3} and {1, n} in addition to the edges
{3, 5}, {5, 7}, . . . , {n− 2, n}. No other edge of length one can be chosen by
the greedy algorithm. Thus the total length of the tour returned by the
greedy algorithm is (n + 1)/2 + 2(n − 1)/2 = (3n − 1)/2. As an optimum
tour obviously has length n, the approximation ratio of the greedy algorithm
is at least 3

2
− 1

2n
.

Now we prove that the approximation ratio of the greedy algorithm is
never worse than 3

2
− 1

2n
. Let T be a tour found by the greedy algorithm and

denote by G1 the subgraph of T that contains all edges of length one. Let m
be the number of edges inG1. We may assume that T is not an optimum tour
and therefore G1 will consist of several connected components, each of which
must be a path. Let e be an edge of length one contained in an optimum
TSP tour. As e was not added by the greedy algorithm, it must either be
incident to a vertex of degree two in G1 or it connects two vertices of degree
one in the same connected component of G1. For each connected component
C of G1 of size at least two we can have at most 2(|C|−2)+1 = 2(|C|−1)−1
edges of the optimum tour that have length one and are either incident to
a vertex of degree two in C or connect two vertices of degree one in C. By
summing over all connected components of size at least two in G1 we obtain
k ≤ 2m − 1 where k is the number of length one edges in an optimum
TSP tour. As the greedy tour has length 2n−m ≤ 2n− (k + 1)/2 and the
optimum tour has length 2n− k we conclude that the approximation ratio
of the greedy algorithm is at most

2n− (k + 1)/2

2n− k
≤

2n− (n+ 1)/2

2n− n
=

3

2
−

1

2n
.

3 The Approximation Ratio of the Clarke-Wright

Savings Heuristic

Theorem 3. For metric TSP instances with n cities the approximation

ratio of the Clarke-Wright savings heuristic is Θ(logn).

Proof. The upper bound is proven in [6]. For the lower bound extend the
construction used to prove Lemma 1. Let Gk be the graph as defined above
and let x be a new vertex that is connected to all vertices in Gk. Take the
graphic instance induced by Gk and define the length of all edges incident
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to x as 1

2
· 3k+2. Note that this value is larger than any distance within the

graph Gk.
Now start the Clarke-Wright savings heuristic on this instance with city

x. As all edges incident to x have the same length, the short-cutting of a
pair results in a reduction of the edge length that is only dependent on the
length of the edge between the two cities in the pair. Therefore, the Clarke-
Wright savings heuristic may choose the pairs to short-cut exactly in the
same order as the greedy algorithm applied to Gk. Thus, we just have taken
into account that the greedy tour and an optimum tour contain two edges of
total length 3k+2 incident with city x. Similarly as in the proof of Theorem 1
we get that for k ≥ 1 the approximation ratio of the Clarke-Wright savings
heuristic is greater than

(2k + 8) · 3k − 1 + 3k+2

3k+2 − 1 + 3k+2
≥

(2k + 17) · 3k

2 · 3k+2
=

2k + 17

18
≥

1

9
· log3 n.
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