Exercises 1

- 1. Let T be a Steiner tree for a terminal set N in which all leaves are terminals. Prove:
 - (a) $|\{v \in V(T) \setminus N : |\delta_T(v)| > 2\}| \le |N| 2.$ [2 points]
 - (b) $\sum_{v \in N} (|\delta_T(v)| 1) = k 1$, where k is the number of full components in T. [2 points]
- 2. Let N be an instance of the RECTILINEAR STEINER TREE PROBLEM and $r \in N$. For a rectilinear Steiner tree T for N we denote by l(T) the maximum length of a path from r to an element of $N \setminus \{r\}$ in T.
 - (a) Describe an instance in which no shortest Steiner tree minimizes l(T) and no Steiner tree minimizing l(T) is shortest. [2 points]
 - (b) Consider the problem of finding a shortest Steiner tree for which l(T) is minimum among all shortest Steiner trees. Is there always a tree with these properties which is a subgraph of the Hanan grid? [6 points]
- 3. For a finite set $N \subset \mathbb{R}^2$ we define $BB(N) := \max_{(x,y)\in N} x \min_{(x,y)\in N} x + \max_{(x,y)\in N} y \min_{(x,y)\in N} y$. Moreover, let STEINER(N) be the length of a shortest rectilinear Steiner tree for N, and let MST(N) be the length of a minimum spanning tree in the complete graph on N, where edge weights are ℓ_1 -distances.
 - (a) Prove that $BB(N) \leq STEINER(N) \leq MST(N)$ for all finite sets $N \subset \mathbb{R}^2$. [2 points]
 - (b) Prove that $\text{STEINER}(N) \leq \frac{3}{2}\text{BB}(N)$ for all $N \subset \mathbb{R}^2$ with $|N| \leq 5$. [4 points]
 - (c) Show that there exists no $k \in \mathbb{R}$ with $\text{STEINER}(N) \leq k \cdot \text{BB}(N)$ for all finite sets $N \subset \mathbb{R}^2$. [2 points]

The deadline for submitting solutions is April 23 before the lecture (12:15).