Exercise 2

1. Let T be a Steiner tree on a terminal set N. Prove that

$$\sum_{v \in N} (|\delta_T(v)| - 1) = K_T - 1,$$

where K_T is the number of full components in T.

(6 points)

2. Prove that the following inequality holds for a net N with at most five (point-shaped) pins:

$$\operatorname{steiner}(N) \le \frac{3}{2} \operatorname{BB}(N).$$

(6 points)

- 3. Let P be a set of pins, and let \mathcal{R}_p be a set of axis-parallel rectangles for each $p \in P$. We search for a rectangle B with minimum perimeter such that for every $p \in P$ there is an $R \in \mathcal{R}_p$ with $B \cap R \neq \emptyset$. We denote $n := \sum_{p \in P} |\mathcal{R}_p|$.
 - (a) Show that such a rectangle B can be computed in $O(n^4)$. (2 points)
 - (b) Show that such a rectangle B can be computed in $O(n^3)$. (Hint: Enumerate all reasonable coordinates for the lower left corner of B.) (6 points)

The deadline of the exercise return is April 24, before the exercise.