
Timing Closure
in

Chip Design

Dissertation
zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Stephan Held

aus Bad Harzburg

im Juni 2008



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn.

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn unter
http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.
Erscheinungsjahr: 2008

Erstgutachter: Professor Dr. Bernhard Korte
Zweitgutachter: Professor Dr. Jens Vygen

Tag der Promotion: 28.08.2008



Danksagung/Acknowledgments
I would like to express my gratitude to my supervisors Professor Dr. Bernhard
Korte and Professor Dr. Jens Vygen. Without their ideas, help, guidance, and
backing this thesis would not have been possible. Under their leading, the Research
Institute for Discrete Mathematics at the University of Bonn provides outstanding
working conditions.

I would further like to thank my past and present colleagues at the institute,
especially Christoph Bartoschek, Jens Maßberg, Professor Dr. Dieter Rautenbach,
Dr. Christian Szegedy, and Dr. Jürgen Werber. Working together in the various
fields of timing optimization and clocktree design was very inspiring and joyful.

A special thanks goes to Alexander Kleff and Rüdiger Schmedding for their
contributions to clock skew scheduling and time-cost tradeoff curve computations
as well as to all other collaborating students in the VLSI team.

Sincere thanks go to Dr. Ulrich Brenner and Markus Struzyna for their efforts to
modularize BonnPlace, providing the capability to use it in an integrated design flow.

I am very grateful to all people at IBM who shared their knowledge of VLSI design
with me and helped to integrate, promote and support our design flow, especially
Dr. William E. Dougherty, Günther Hutzl, Dr. Jürgen Koehl, Karsten Muuss, Dr.
Matthias Ringe, and Alexander J. Suess.

Further thanks go to Koen Van Eĳk and Pankaj Goswami from Magma Design
Automation for their comprehensive experiments and helpful suggestions, while
integrating the fast gate sizing code into the Magma design environment.

I am personally grateful to Maggie and David for reading parts of this thesis at
short notice towards the end of completion.

My special thanks goes to my parents Gabriele and Wilhelm Held, and the rest of
my family for all their support, exhortations, and repeated proofreading of this work.

But my biggest thanks goes to Sandra for her loving encouragements and patience
during the whole time I was working towards the completion of this thesis.

i





Contents

1 Introduction 1

2 Timing Closure 5
2.1 Integrated Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 VLSI Design Flow Overview . . . . . . . . . . . . . . . . . . 6
2.1.2 Decomposition of VLSI Designs . . . . . . . . . . . . . . . . 7

2.2 Physical Design Input . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Boolean Equivalency . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Placement Constraints . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Routing Constraints . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Timing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Static Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Circuit Delays . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Wire Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.4 Signal Propagation . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.5 Electrical Correctness Constraints . . . . . . . . . . . . . . . 17
2.4.6 Arrival Time Constraints . . . . . . . . . . . . . . . . . . . . 18
2.4.7 Timing Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.8 Slacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.9 Signal Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Sign-Off Timing Constraints . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Timing Closure Problem . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Repeater Trees 33
3.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Repeater Tree Problem . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Analysis of Library and Wiring Modes . . . . . . . . . . . . . . . . 36

3.3.1 Bridging Large Distances . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Further Preprocessing . . . . . . . . . . . . . . . . . . . . . 38

3.4 Topology Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Delay Model for Topology Generation . . . . . . . . . . . . . 39
3.4.2 Priority Ordering . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Topology Generation Algorithm . . . . . . . . . . . . . . . . 42

3.5 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



iv Contents

3.5.1 Maximum Achievable Slack . . . . . . . . . . . . . . . . . . 45
3.5.2 Optimality Statements . . . . . . . . . . . . . . . . . . . . . 50

3.6 Postoptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Repeater Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8.1 Blockages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8.2 Handling Placement and Routing Congestion . . . . . . . . 54
3.8.3 Very High Fanout Trees . . . . . . . . . . . . . . . . . . . . 54
3.8.4 Plane Assignment and Wire Sizing . . . . . . . . . . . . . . 55

3.9 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Circuit Sizing 61
4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 New Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Fast Circuit Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Circuit Assignment . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 Refining Slew Targets . . . . . . . . . . . . . . . . . . . . . . 69
4.4.3 Enhanced Slew Targets . . . . . . . . . . . . . . . . . . . . . 72
4.4.4 Power Reduction . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.5 Electrical Correction . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Local Search Refinement . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Quality of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.1 Area Consumption . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.2 Delay Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.3 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Circuit Sizing in Practice . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Clock Skew Scheduling 81
5.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Slack Balance Problem . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Graph Models . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Late, Early and Window Optimization . . . . . . . . . . . . 96
5.2.3 Multi-Domain Cycle Time Minimization . . . . . . . . . . . 98

5.3 Iterative Local Balancing . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.1 Quality of Iterative Local Balancing . . . . . . . . . . . . . . 103
5.3.2 Convergence Rate . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.3 Iterative Time Window Optimization . . . . . . . . . . . . . 110
5.3.4 Implicit Implementation . . . . . . . . . . . . . . . . . . . . 111
5.3.5 Hybrid Balancing . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.1 Memory Consumption . . . . . . . . . . . . . . . . . . . . . 114
5.4.2 Running Times . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.3 Quality of the Slack Distribution . . . . . . . . . . . . . . . 116



Contents v

5.4.4 Other Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5 Notes on Clocktree Synthesis . . . . . . . . . . . . . . . . . . . . . . 120

6 Time-Cost Tradeoff Problem 127
6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3 A Combinatorial Algorithm . . . . . . . . . . . . . . . . . . . . . . 130

6.3.1 Preliminary Considerations . . . . . . . . . . . . . . . . . . 131
6.3.2 Modifying Delays . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.3 Choosing the Step Length . . . . . . . . . . . . . . . . . . . 135
6.3.4 Bounding the Running Time . . . . . . . . . . . . . . . . . . 137
6.3.5 Piecewise Linear Convex Cost Functions . . . . . . . . . . . 141
6.3.6 Optimizing Weighted Slacks . . . . . . . . . . . . . . . . . . 143
6.3.7 Optimizing the Slack Distribution . . . . . . . . . . . . . . . 145
6.3.8 Notes on the Acyclic Case . . . . . . . . . . . . . . . . . . . 146
6.3.9 Infeasible Maximum Delays . . . . . . . . . . . . . . . . . . 147

6.4 Applications in Chip Design . . . . . . . . . . . . . . . . . . . . . . 147
6.4.1 Delay Optimization Graph . . . . . . . . . . . . . . . . . . . 149
6.4.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4.3 Results in Threshold Voltage Optimization . . . . . . . . . . 152

7 Timing Driven Loop 157
7.1 Quadratic Placement . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.2 Timing Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.3 Timing Refinement and Legalization . . . . . . . . . . . . . . . . . 160
7.4 Netweights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.4.1 Data Netweights . . . . . . . . . . . . . . . . . . . . . . . . 162
7.4.2 Clock Netweights . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5 Timing Driven Loop Results . . . . . . . . . . . . . . . . . . . . . . 163

Notation Index 169

Bibliography 171

Summary 183





1 Introduction
Chip design is one of the most fascinating areas of mathematical optimization and of
combinatorial optimization in particular. A central characteristic of a computer chip
is the speed at which it processes data, determined by the time it takes electrical
signals to travel through the chip. A major challenge in the design of a chip is
to achieve timing closure, that is to find a physical realization fulfilling the speed
specifications. Due to the rapid development of technology with ever shrinking
feature sizes, highly efficient and effective algorithms are essential to coping with
deep submicron effects as well as with the rising complexity of computer chips. In
this thesis, we develop several new algorithms for optimizing the performance of
computer chips. These algorithms are combined into a common program flow to
achieve timing closure in physical design.

In Chapter 2, we present the timing closure problem with a special focus on timing
constraints. Apart from timing, further objectives such as power consumption and
robustness also have to be considered.

One of the main subproblems is the construction of repeater trees that distribute
electrical signals from a source to a set of sinks. In Chapter 3, we present a new
algorithm for generating repeater tree topologies: First, we propose a new delay
model for estimating the performance of such a topology. In contrast to known
approaches, it accounts not only for the distance a signal has to cover but also
for branchings in the topology that introduce extra delay. It turns out that the
basic structures for the extreme optimization goals, (resource-unaware) performance
and (performance-unaware) resource efficiency are optimum binary code trees with
shortest path lengths and minimum Steiner trees. Our algorithm scales seamlessly
between these two optimization goals. Moreover, its extreme speed is also very
important, as several 10 million instances have to be solved within our timing closure
flow.

Another indispensable optimization step is the circuit or transistor sizing. A chip
is composed of millions of small circuits that implement elementary logic functions.
A small set of predefined physical layouts is available for each circuit. The alternative
layouts differ in the size of the underlying transistors, and thus in their speed and
power consumption. Now, circuits have to be mapped to a layout of adequate
size such that not only are timing constraints met, but total power consumption
is also minimized. The problem is that discrete decisions are accompanied with
nonlinear non-convex constraints. Instance sizes of several million circuits make
exact optimization algorithms unusable. Former approaches usually work with
simplified delay models, for which the problem can be solved optimally, but that
can show substantial deviations from the actual delay rules.

1



2 1 Introduction

In Chapter 4, we propose a new circuit sizing algorithm that is not restricted to
certain delay models. Instead of hiding signal shapes, as most existing approaches
do, they play a central role in our extremely fast algorithm. Furthermore, we
develop a new method to compute lower bounds for the delay of the most critical
path and we show the effectiveness of our algorithm by comparing the results with
these bounds. On average, the critical path delays are within 2% of the lower delay
bounds, and thus, are very close to the optimum.
Next, in Chapter 5, we consider the optimization of the clock skew schedule,

which is the assignment of individual switching windows to each register such that
the performance and robustness of the chip are optimized. We present the first
strongly polynomial time algorithm for the cycle time minimization in the presence
of multiple clock phases and multi-cycle phases. While existing approaches are
based on binary search, we show that the problem reduces to a minimum ratio cycle
problem and can be solved by an adaptation of Megiddo’s algorithm.

Furthermore, we mathematically analyze the convergence of an iterative method
that greedily schedules each register to its local optimum. It has recently been shown
that this method maximizes the worst slack. We extend this result by the possibility
of restricting the feasible schedule of a register to some time interval. Such constraints
are used in practice to indirectly limit the power consumption of the clocktrees.
The iterative method has many advantages over classical combinatorial algorithms,
because it is very memory-efficient, fully incremental, and, at least on chip instances,
surprisingly fast—although theoretically, it has a linear convergence rate with
a convergence factor arbitrarily close to one. The iterative algorithm does not
guarantee optimality for the slack distribution above the worst slack. We overcome
this deficiency by introducing a hybrid model that selectively introduces global
constraint edges to hide the most critical paths, which have already been optimized.
The chapter closes with a description of how a clocktree can be constructed that
realizes a given clock schedule.

Chapter 6 deals with the computation of linear time-cost tradeoff curves in graphs
with variable edge delays and costs depending on the selected delays. Traditionally,
this problem was restricted to acyclic graphs, where the time-cost tradeoff curve
can be computed by successive maximum flow and longest path computations. We
develop the first combinatorial algorithm for the general case with cycles in the
graph. It alternates minimum cost flow computations, which determine a steepest
descent direction, and minimum ratio cycle computations, which determine the
maximum feasible step length. At the end of the chapter, we show how certain
optimization problems, such as threshold voltage optimization or plane assignment,
with a variable clock skew can be modeled as a discrete time-cost tradeoff problem.
Here, linear relaxation serves as an effective heuristic for the discrete problem.
Finally, in Chapter 7, all the presented algorithms are combined into a timing

closure flow. It alternates placement and timing optimization, where the placement
is steered by netweights that penalize the length of critical nets. This phase is
followed by a timing refinement and placement legalization step. In the end, the
clock schedule is optimized for the last time, and clocktrees are inserted based on



3

this schedule.
As part of this dissertation, we have implemented the proposed algorithms and

the integration into a design flow with the support of colleagues and students. They
are known as the Bonn Fast Timing Driven Loop and Bonn Clock Optimization and
are part of the BonnTools, a collection of physical chip design programs, developed
at the Research Institute for Discrete Mathematics at the University of Bonn, and
part of an industrial cooperation with IBM and in recent years also with Magma
Design Automation. As part of this cooperation, we have helped engineers all over
the world employ these tools in the design of many of the most complex industrial
chips, which can now be found in a number of devices, including network switches
and mainframe servers.





2 Timing Closure

2.1 Integrated Circuit Design
Digital integrated circuits, also known as computer chips, represent finite state
machines that process digital signals. Based on input signals and the current state,
a new state as well as output signals are computed. The actual computations, which
are the state transitions, are done in the combinatorial logic, while the states are
stored in registers. Figure 2.1 shows a schematic of a computer chip. Starting

Clock−Root

PI

Combinatorial Logic

Registers

Clocktree

PO

Figure 2.1: Schematic of a simplified chip.

from primary inputs (PI) and register outputs, Boolean variables, represented by
electrical signals, propagate through the combinatorial logic until they reach primary
outputs (PO), or register inputs, where they are stored until the next computation
cycle starts. The registers are opened and closed once per cycle by a periodic clock
signal. The clock signal is distributed by a clock network, which is often realized by
a clocktree. A clocktree can be considered as a huge net with tree topology, into
which repeaters (inverters and buffers) are inserted to refresh the signals, and that
is constructed such that each source-sink path achieves a prescribed delay target. A
higher clock frequency yields a faster chip, provided that the combinatorial logic is
fixed, and not subdivided by registers into several pipeline stages. The frequency is
limited by the delay through the combinatorial logic.
Computer chips consist of billions of electrical devices, mostly transistors. The

process of creating chips with such a high device density is called very large scale
integration—VLSI. Thus, today’s computer chips are also called VLSI chips, and
the design of their layout is called VLSI design.
VLSI chips are composed of a finite number of layers or planes, which are

5



6 2 Timing Closure

manufactured one by one in a bottom up fashion by etching and metalization. The
lowest planes contain the transistors, while the upper planes are reserved for wires.
The wire planes usually contain only wires in either x-, y-direction or vias between
adjacent planes in x/y-direction.

2.1.1 VLSI Design Flow Overview
Due to the huge amount of interacting structures that must be layouted, VLSI design
is a very complex task. Therefore, it is typically split into two main phases and
several subphases as shown in Figure 2.2. First, in the logic design phase a correct

Routing &

Local Corrections

RTL

HDL

Logic Design

Physical Design

Manufacturing

Global Optimization

Placement & 

Timing Closure

Figure 2.2: VLSI design flow

logical description of the final application has to be found. Such a description
is usually made in a hardware description language (HDL), which is similar to
computer programming languages, such as C/C++. Then the logical description is
translated by a compiler into the register transfer level (RTL) description, where
registers and the combinatorial logic in terms of elementary logic circuits such as
INVERTERs or two bit ANDs are determined. Most circuits represent a Boolean
function with only a single output value. These circuits with a single output are
also called logic gates or just gates.



2.2 Physical Design Input 7

Second, in the physical design phase the RTL description has to be implemented
physically. The circuits have to be placed disjointly in the chip area, their sizes
have to be chosen, interconnects are sped-up by repeaters, and routed disjointly
within a small set of routing planes. These steps cannot be performed independently.
On the one hand, useful circuits sizes and repeater trees can only be inserted once
placement and some routing information is known. On the other hand, placement
and routing must prioritize timing critical paths which are only known after sizing
and buffering. Detailed routing is a very runtime-intensive task. Therefore, it is
only possible to perform rather local corrections instead of global optimizations in
interaction with detailed routing.

In practice chip design is not performed strictly according to that one-way diagram
in Figure 2.2. There are all kind of feedback loops between those blocks. However,
they will be iterated seldom compared to subprograms that are performed within in
each box. In this thesis we consider the design steps before detailed routing with
a focus on signal performance optimization. As this basically means to fulfill all
timing constraints, this phase is called timing closure.

2.1.2 Decomposition of VLSI Designs
Physical laws and the lithographic production process of the hardware imply many
constraints like shape and spacing rules for wires and transistors. An analysis of
the lithographic realizability of a physical layout requires extensive computations.
This holds also for the analysis of the electrical signal propagation through the chip.
To reduce design complexity large circuits are composed of smaller circuits, which
can be reused many times without being reinvented and checked every time.
In the flat design style, a chip is decomposed into multi-million circuits, which

are mapped to circuit definitions or books from a predesigned circuit library. Most
books represent elementary logic functions like an INVERTER or a two-bit NAND
function. Other books can be large like memory blocks or even micro processors.
Such elements are often called (hard) macro circuits.

In the hierarchical design style the chip is decomposed into a few sub-chips, called
random logic modules (RLM). Each of them is designed as a separate chip instance.
Figure 2.3 shows the placement of the chip David that is composed of more than
4 million circuits in the toplevel and another million in a hierarchy RLM in the
bottom left (with orange background).
Hierarchy is rather a practical issue but does not change the theoretical aspects.

Throughout this thesis, we consider only flat designs, which covers also the design
of individual flat levels in an hierarchical design style.

2.2 Physical Design Input
The geometric information for an object x that occurs on a chip is given as a
set S(x) of shapes. A shape is an axis-parallel rectangle, which is assigned to a



8 2 Timing Closure

Figure 2.3: Placement of a chip

plane. Formally a shape is a set [x1, x2]× [y1, y2]×{z}, with rectangular coordinates
x1, x2, y1, y2, z ∈ N, x1 < x2, y1 < y2, and a plane z. A computer chip is constructed
within a chip image. An image I = (S(I),D(I), P (I)) consists of a boundary shape
set S(I) defined as

S(I) :=
{
[xmin, xmax]× [ymin, ymax]× z | 0 ≤ z ≤ zmax,

}
,

where a base rectangle [xmin, xmax]× [ymin, ymax], xmin, xmax, ymin, ymax ∈ N, xmin <
xmax; ymin < ymax is distributed over a given number (zmax + 1), zmax ∈ N of planes.
The planes with numbers 1, 2, . . . , zmax are used for wires whereas plane ’0’ is the
placement plane. D(I) is a set of shapes representing blockages in either of the
placement and routing planes. Furthermore, I contains a set P (I) of IO-ports .
The layout of each port p ∈ P (I) is given by a shape set S(p) ⊂ S(I).

A circuit library B defines a set of prelayouted circuits that can be instan-
tiated on the chip. Each book B ∈ B has a physical description by a triple
(S(B),Pin(B),Pout(B)). S(B) is a set of shapes and Pin(B),Pout(B) are the input
and output pin definitions of B, which have their own shape sets S(Pin(B)) and



2.3 Design Constraints 9

S(Pout(B)). Figure 4.1 on page 62 shows an example of three different books
implementing an INVERTER.

The netlist of a chip consists of a quadruple (C, P, γ,N ). C is a finite set of circuits.
P is a finite set of pins. N is a finite set of nets that connect certain pins. Formally
N is a partition of the set of pins. Pins are mapped to circuits or to the image in
case of IO-ports by the mapping γ : P → C ∪̇ I. A mapping β : C → B binds every
circuit to a book from the circuit library.

The instance for physical design consists of a netlist (C, P, γ,N ), an image I, and
a circuit library B with an initial binding β. By P (o), o ∈ B ∪ C ∪N ∪ I we denote
the pins associated with the object o. Furthermore Pin(c) denotes the set of input
pins and Pout(c) denotes the set of output pins of a circuit or book c ∈ C ∪ B. For
a net N ∈ N , Pin(N) denotes the source pin, while Pout(N) is the set of sinks. A
source pin is either an output pin of a circuit of a primary input pin of the chip,
while a sink is either an input pin of circuit or a primary output pin.

2.3 Design Constraints
The main focus in this thesis is to meet the timing constraints which are described
in detail in Section 2.4. As further side constraints we summarize those that are
most important for prerouting timing closure:

2.3.1 Boolean Equivalency
In general it is allowed to replace the input netlist by any Boolean equivalent netlist.
But the Boolean equivalency of input and output has to be verified finally before the
chip goes into production. The decision problem whether two netlists are Boolean
equivalent is a NP-hard, as it contains the 3-SAT problem. Therefore, we consider
only modifications of limited complexity, whose correctness is verifiable sufficiently
fast.

Complex modifications such as latch insertion or re-timing, which is the swapping
of registers with logic books to balance the length of data paths, are considered
only at an early design stage (but not in this thesis). They require an extensive
simulation of many execution cycles.

In this thesis the main focus is given to the replacement of the physical realization
β(c) of a circuit c ∈ C by a book from the class [β(c)] of logically equivalent books,
and the replacement of repeater trees by equivalent trees. In special applications the
cloning of circuits, the merging of equivalent circuits, or the swapping of equivalent
input pins of a circuit will be applied too.

2.3.2 Placement Constraints
The circuits c ∈ C and thereby transistors must be placed disjointly in the chip area.
Formally, we have to find a location Pl : C → R2 such that



10 2 Timing Closure

(S(β(c)) + Pl(c)) ⊂ [xmin, xmax]× [ymin, ymax]

and (S(β(c))+Pl(c))∩(S(β(c′))+Pl(c′)) is at most one-dimensional for two different
circuits c, c′ ∈ C. Here, the sum of a shape S and a location (x′, y′) ∈ R2 denotes
the translation S + (x′, y′) := {(x+ x′, y + y′, z) | (x, y, z) ∈ S}. Furthermore, some
part of the chip area might be blocked to reserve space for later circuit insertion or
to model non-rectangular placement areas. We assume that blockages are modeled
as dummy circuits of fixed size and location.

2.3.3 Routing Constraints
As we consider only prerouting optimization, we will not address routing constraints
in detail. However, we have to ensure the routability of our output, which is
measured by global routing or routing estimation algorithms, see Brenner and Rohe
[2003], Vygen [2004], and Müller [2006]. Such an estimation is performed in a
coarsened global routing graph GGR. Here, the chip is partitioned into regions by
an axis-parallel grid. For each region and wiring plane there is a vertex in V (GGR).
Adjacent vertices are joined by an edge, with a capacity value indicating how many
wires of unit width can join the two regions. For each net we summarize its pins
within each region. If a pin consists of several shapes located in different regions,
the pin is assigned to one of those regions arbitrarily. Now, instead of connecting
the individual pins, these regions respectively vertices of have to be connected by a
Steiner tree in the global routing graph. A chip is considered routable if a packing
of the Steiner trees of all nets that respects the edge capacities in the global routing
graph can be found.

2.4 Timing Constraints
Timing analysis is the analysis of signals through the chip. A comprehensive
introduction into VLSI timing analysis is given by Sapatnekar [2004]. The static
timing analysis which we apply here was described first by Hitchcock et al. [1982].
We now summarize the basic concepts.

The logical state of a point on a chip is given by the electrical voltage. High
voltage Vdd represents the true or 1 value, low voltage V0 represents the false or
0 value. A signal is defined as the voltage change over time (Figure 2.4). We
distinguish data signals and periodic clock-signals. Data signals represent the bits of
a logical computation. They start at primary inputs or register outputs, propagate
through the combinatorial logic and enter primary outputs and register inputs again.
Clock signals control the storage elements on the chip. They are generated by analog
oscillator devices combined with a phase-locked loop (PLL) and distributed from a
clock root to the registers by a clock distribution network which is often realized by
a clocktree (see Figure 2.1 on page 5).



2.4 Timing Constraints 11

V

.

V

t t

Vdd

0.9Vdd

0.5Vdd

0.1Vdd

V0

Vdd

0.9Vdd

0.5Vdd

0.1Vdd

V0

at

slew

at

slew

Figure 2.4: A (rising) signal on the left and its approximation on the right

Because of manufacturing uncertainties the signal propagation through an elec-
trical device or wire segment can only be estimated. Even assuming certainty
the delay-computation through a series of transistors requires the solution of non-
linear differential equations. For our purpose, and in practice, for each book a
delay-function is given as a black box function that approximates the result of the
underlying differential equations.
In addition, an exact analysis of the dynamic switching behavior requires simu-

lations with an exponential number of input patterns. Therefore, in static timing
analysis, worst case assumptions for the switching patterns at every single circuit
are made. For instance, for a two-bit NAND with input pins A and B, the delay
from A to the output depends also on the present voltage in B. The delay from an
input pin to an output pin of a circuit is estimated assuming a worst case scenario
of input signals at the other input pins.

2.4.1 Static Timing
In static timing analysis signal occurrences are computed at certain measurement
points, which are usually the pins in the netlist. Some measurement points can also
be internal pins of circuits, which are not part of the netlist.

Signals are estimated by two linear functions that represent the earliest possible
and latest possible occurrence of the signal. This defines two timing modes which
are named early and late. Each linear function is given by two values: the arrival
time (at) and the slew (slew). Usually the arrival time is defined as the 50% voltage



12 2 Timing Closure

change and the slew is defined as the 10% and 90% Vdd transition time for a rising
signal and vice versa for a falling signal (see Figure 2.4). In general the slew is
defined by the range in which the real signal is almost linear. In industry other
ranges like 20%–80% or even 40%–60% are used rarely.

2.4.2 Circuit Delays
For every book B ∈ B a model timing graph GTB represents possible signal propa-
gations from input toward output pins. The vertex set V (GTB) contains at least
one vertex for every pin from Pin(B). Complex books have internal vertices, that
need not correspond to an existing pin. Directed edges in E(GTB) represent signal
relations between the vertices in V (GTB). They are called propagation segments.
All paths in GTB are directed from input to outputs. Every propagation segment is
labeled by a triple (η, ζ, ζ ′) ∈ {early, late} × {rise, fall} × {rise, fall}. The label
determines for some timing mode η ∈ {early, late} a possible signal transition based
on the underlying logic function. The signal is inverted if ζ ′ 6= ζ and non-inverted
otherwise. For instance, the propagation segments through an INVERTER or
NAND are inverting, while segments through an AND or OR are non-inverting, and
an XOR has both types of segments. A special case are registers where the output
data signals are triggered by the opening clock input signal. Therefore, there are so
called triggering segments of type (η, ζ, rise) and (η, ζ, fall), where ζ is the opening
edge of the register. For elementary books GTB is a complete bipartite graph on
V (GTB) = Pin(B) ∪̇ Pout(B), directed from input pins to output pins. For more
complex books—like registers or large macros—V (GTb) contains internal pins and
edges, mostly for the purpose of graph size reduction. Figure 2.5 shows an example
for a latch model graph of a simple latch. Propagation segments are colored blue.
The red edge between the data input d and the clock input c refers to arrival time
constraints that will be introduced later in Section 2.4.6. Parallel edges are drawn
once.

d

c

y

Figure 2.5: A simple latch and its model graph.

The delay and slew transformation through a propagation segment (v, w) ∈ E(GTb)
depend on the input slew of the signal at the tail v and the downstream capacitance
downcap(w, η), which is also called load capacitance, at the head w (see Figure 2.6).
The downstream capacitance at w is the sum of the wire capacitance wirecap(N, η)



2.4 Timing Constraints 13

Input Slew Downstream Capacitance

Figure 2.6: Circuit delay and slew function parameters.

and the sum of sink pin capacitances ∑u∈N\{w} pincap(u, η) of the net N ∈ N
containing w.
The capacitance values depend on the timing mode η to account for on-chip

variations, such as varying metal thickness, small temperature or voltage changes.
Variations across different chips and different operating conditions are usually much
higher. Enhanced timing analysis methods, taking into account the full spectrum
of variation, are applied only after routing. As they are accompanied with large
running times they allow only a small number of physical design changes and are
not suitable for (prerouting) timing closure.

A delay function ϑ̃e : R≥0 ×R≥0 → R and a slew function λ̃e : R≥0 ×R≥0 → R≥0
provide all information for the signal propagation through a propagation segment.
The first parameter is the downstream capacitance and the second the input slew.
If w is an internal node the load capacitance can already defined by the internal
structure of the book B. In such cases ϑ̃e and λ̃e can be considered as constant in
the load capacitance parameter.

The rules return reliable information only if the input slew and load capacitances
are within some intervals [0, slewlim(v, ζ)] and [0, caplim(w)] with slewlim(v, ζ),
caplim(w) ∈ R+. We assume that the functions are extrapolated continuously
and monotonically on R≥0. Besides the upper slew limit slewlim(v, ζ) and the
upper capacitance limit caplim(w) the timing rules are often only valid if slews and
capacitances are greater than a lower limit, which is a very small positive number.
The lower limits usually cannot be violated unless an output pin is not connected
to a net or a physically impossible input slew is asserted by the designer. Therefore,
lower limits are ignored throughout this thesis.

The timing functions are monotonically increasing Lipschitz continuous functions.
Figure 2.7 shows an example of a delay function. Slew functions have similar shapes
as delay functions.

2.4.3 Wire Delays
In contrast to circuit delays, where we are given precharacterized delay and slew
functions for all B ∈ B, wire delays have to be computed on arbitrary topologies.
As it is usually modeled as the delay through a discrete electrical network consisting
of resistance and capacitance elements, the wire delay is often called RC-delay.



14 2 Timing Closure

Figure 2.7: Example of a delay function. On the left the input parameters slew
and downstream capacitance are shown. The graph on the right side shows a
typical delay function. The x/y-axis are labeled by the input parameters slew and
capacitance, while the z-axis shows the resulting delay.

Fortunately wire delays are easier to compute than circuit delays because the
underlying differential equations are linear. For the purpose of timing closure we
mostly apply an even simpler approximation proposed by Elmore [1948]. Given a
Steiner tree Y , let Y[pq] be the edge set of the unique oriented path from a source
p to a sink q. The (preliminary) RC-delay rcElmore(p, q, η) from p to q in a timing
mode η ∈ {early, late} is defined as

rcElmore(p, q, η) =
∑

e=(x,y)∈Y[p,q]

res(e, η)
(
cap(e, η)

2 + downcap(y, η)
)

(2.1)

were res(e, η) and cap(e, η) are the wire resistance and capacitance estimates of
the wire segment e, while downcap(y, η) is the total metal capacitance of all wire
segments and input pins, which are reachable from y (assuming the tree being
oriented from a root to the leaves with root p). The resistances and capacitances
depend on wire thickness, width, layer (distance from ground) and neighboring
wires.

Delay and slew functions on the p-q-connection are defined based on the RC-delay
and the input slew s at p:

ϑElmore(p, q, s, η) = ϑElmore(s) · rcElmore(p, q, η) (2.2)
λElmore(p, q, s, η) = s+ λElmore(s) · rcElmore(p, q, η) (2.3)



2.4 Timing Constraints 15

The final net topologies and neighboring wires are not known throughout the
timing closure phase. For the majority of nets we make the pessimistic assumption
that all its wire segments are affected by a maximum possible coupling capacitance.
Later some of the algorithms will reserve free neighboring channels for timing critical
nets to obtain faster and more predictable delays. Note that the Elmore delay is
an upper bound on the wire delay with the nice property that it is invariant under
subdividing a Steiner tree segment.
Especially those algorithms that are designed for fine-tuning do also work with

more accurate delay models such as SPICE (Nagel and Pederson [1973]), or RICE
(Ratzlaff et al. [1991]).

As the wire topologies are determined only after the timing closure phase, we
estimate the final topology by short Steiner trees neglecting disjointness between the
nets. The rectilinear minimum Steiner tree problem is known to be NP-hard (Garey
and Johnson [1977]). For small trees with up to nine terminals exact solutions can
be computed efficiently via table look-up (Chu [2004]). For more terminals diverse
heuristics are applied (Hanan [1966], Takahashi and Matsuyama [1980]).
The timing propagation graph GTp = (V T , ETp ) for the full chip is composed

as follows. For each primary input or output pin p ∈ P (I) a node is added to
V T . For each circuit c ∈ C a copy of the model timing graph GTβ(c) is added to
GTp . For each source sink pair (p, q) of a net four edges are added from p to q
labeled (η, ζ, ζ) for η ∈ {early, late} and ζ ∈ {rise, fall}. They refer to all possible
non-inverting transitions. We make the convention that functions that are defined
on the model graph can be applied directly on GTp . By slewlim(v), v ∈ V T , we refer
to the slew limit of the input pin in the corresponding model graph. Figure 2.8
shows an example of a timing propagation graph, which consists of all nodes and
the black edges. Red edges refer to timing constraints which will be introduced
later in Section 2.4.6.

Test Arcs
Propagation Arcs

Figure 2.8: Example of a timing graph with parallel edges being collapsed



16 2 Timing Closure

2.4.4 Signal Propagation
Signals are initialized on a selected set V T start ⊂ V T of start nodes. Typically
V T

start contains the primary inputs pins. For every p ∈ V T start a set S(p) of four
possible signals is asserted

S(p) := {(p, early, rise), (p, early, fall), (p, late, rise), (p, late, fall)} (2.4)

Each signal σ ∈ S(p) is characterized by its arrival time at(p, σ) and slew slew(p, σ).
We will denote the timing mode of σ by η(σ) ∈ {early, late} the transition by
ζ(σ) ∈ {rise, fall}. By η−1 we denote the inverse timing mode, that is, early−1 = late
and vice versa. Analogously, we write ζ−1 for the inverse transition of ζ, that is,
rise−1 = fall and vice versa.

Let us assume here that GTp is acyclic. We will discuss cycles in the propagation
graph later in Section 5, Remark 5.9. Static timing analysis is a variant of the
critical path method (CPM), which was invented jointly by the DuPont company
and the Remington Rand Corporation in the 1950’s for analyzing the duration of
chemical processes. Kelley Jr. [1961] and Fulkerson [1961] are early references to
the critical path method.
Starting at the signal sources, signals are propagated according to a topological

ordering of GT . Let q ∈ V T be a vertex with nonzero in-degree with all predecessors
being processed already, that is, for all (p, q) ∈ ETp the set S(p) of signals being
propagated to the predecessor p ∈ V T is already determined. Then for each e ∈ δ−(q)
with some label (η, ζ, ζ ′) we define the set S(e) of signals propagated through e by
adding σq := (x, η, ζ ′) to S(e) for each σp = (x, η, ζ) ∈ S(p). The arrival times and
slews propagated over the edge e are set by

at(e, σq) := at(p, σp) + ϑe(slew(p, σp)) + adje(σp, σq)
slew(e, σq) := slew(p, σp) + λe(slew(p, σp))

(2.5)

where ϑe/λe are either circuit delay/slew functions for a fixed downstream capaci-
tance or Elmore delay/slew functions for a fixed wire topology, and adje(σp, σq) is
some value that can be user defined or computed, and which is usually zero. Later
we will see, how the adjust value is needed to describe the propagation of signals
that flush through transparent latches.
The signal origin might be manipulated by a phase rename. That is, a signal

label σq := (x, η, ζ) ∈ S(e) might be replaced by another label σ′q := (x′, η, ζ) while
keeping the arrival time at(e, σ′q) = at(e, σq) and slew slew(e, σ′q) = slew(e, σq). The
final signal set of e then becomes (S(e) \ {σq}) ∪ {σ′q}. Instead of removing the old
signal, it could also be kept among the new signals. Furthermore several renames
could be applied iteratively on an edge. Phase renames can be user defined, or
automatically applied, for instance in connection with transparent latch timing.
To reduce the computational complexity in practice, the start nodes are often

partitioned into a few groups with equal signal sets. For this purpose, a phase
rename can be used to unify the signal sets within each group.



2.4 Timing Constraints 17

At q the signals propagated over all incoming edges are merged:

S(q) :=
⋃

e∈δ−(q)
S(e).

Arrival times and slews in q for σ ∈ S(q) are now given by

at(q, σ) := max
{
at(e, σ) : e ∈ δ−(q), σ ∈ S(e)

}
, (2.6)

slew(q, σ) := max{slew(e, σ) + ν · (at(e, σ)− at(q, σ)) :
e ∈ δ−(q), σ ∈ S(e)},

(2.7)

if η(σ) = late, and

at(q, σ) := min
{
at(e, σ) : e ∈ δ−(q), σ ∈ S(e)

}
, (2.8)

slew(q, σ) := min{slew(e, σ) + ν · (at(e, σ)− at(q, σ)) :
e ∈ δ−(q), σ ∈ S(e)},

(2.9)

if η(σ) = early assuming 0 · ∞ = 0.
The parameter ν was traditionally set to ∞, which implies that the slew in q is

the induced slew of the latest incoming signal, where at(q, σ) = at(e, σ). This can
result in too optimistic values. Vygen [2006] showed how to choose ν individually for
each pin definition, in a non-optimistic and least pessimistic way. However, many
industrial timing engines provide only the global settings ν ∈ {0, 2,∞}. The value
ν = 2 corresponds to combining the latest arrival time with the latest (earliest)
possible saturation, which is the 90% transition of a rising signal and 10% transition
for a falling signal. According to Blaauw et al. [2000] this is a sufficiently pessimistic
global choice.

So far, we have described the signal propagation through the timing graph. Now,
we introduce constraints on the signals.

2.4.5 Electrical Correctness Constraints
To compute valid arrival times and slews, all capacitance and slew limits must be
obeyed. Otherwise the timing rules are called outside their domain. In addition
to the capacitance and slew limits given by the timing rules, there are usually
capacitance limits for primary input pins as well as slew limits for primary output
pins.

A source pin p ∈ Pin(N) of a net N ∈ N is electrically correct if the capacitance
limit is met:

downcap(p, late) ≤ caplim(p). (2.10)

A sink pin p ∈ Pout(N) of a net N ∈ N is electrically correct if the slew limit is
met:

slew(p, σ) ≤ slewlim(p, ζ(σ)) for all σ ∈ S(p). (2.11)



18 2 Timing Closure

A net N ∈ N or a circuit c ∈ C is electrically correct if all its pins are.
A chip is electrically correct if all its nets are electrically correct. This implies

also the electrical correctness of all circuits c ∈ C and all IO-ports. To compute
valid slews, capacitance limits must be met. Therefore, capacitance violations are
usually considered as more severe.

2.4.6 Arrival Time Constraints
If the electrical correctness of a chip is given, all computed arrival times and slews
are reliable, apart from uncertainties in the timing rules. The arrival time constraints
introduced in this section ensure that the chip will work correctly at the intended
speed.
Let us first consider a simple (transparent) latch with a data input d ∈ V T as a

tested vertex and a clock input c ∈ V T as a testing vertex (see Figure 2.5 on page
12). A periodic clock signal arriving in c opens and closes the latch once per cycle.

Setup Test

In the conservative setup test, a late (tested) signal σd ∈ S(d) must arrive before the
register opens and releases the data for the next cycle. This constraint is represented
by the red arc in Figure 2.5. More precisely, the voltage state at the data input
d must have become stable some time before the register opens. This, so called
setup time setup (slew(d, σd), slew(c, σc)), depends on the slews at both test ends.
While the conservative setup test holds also for flip-flops and most other register
type, we will give a slightly relaxed “non-conservative” definition of the setup test
at transparent latches in Remark 2.1.

Both the data and the clock arrival times usually refer to the same cycle. Therefore,
at(c, σc) must be adjusted to a later (usually the next) cycle. This adjust value
is called cycle adjust. But the signals σd and σc can be of different frequency, or
multiple cycles can be allowed for σd to enter d.
In general a cycle adjust adj(σd, σc) defines an adjustment for σc, that must be

applied to the computed arrival time before comparing with σd. The late mode
constraints resulting at a latch can now be formulated as

at(d, σd) + setup (slew(d, σd), slew(c, σc)) ≤ at(c, σc) + adj(σd, σc). (2.12)

Now we give a short description of the cycle adjust calculation. The ideal
oscillation of a clock signal is defined by three numbers 0 ≤ tlead < ttrail ≤ T ,
where T is the cycle time, tlead + kT is the ideal occurrence of the so called leading
clock edge in the k-th computation cycle and ttrail + kT is the ideal occurrence the
trailing clock edge in the k-th computation cycle, with k ∈ N0. Usually, the leading
edge corresponds to the rising clock signal at an oscillator or PLL output, and
also to the opening edge of the registers behind, while the (inverse) trailing edge
closes the registers. When propagating through a chain of inverters, a clock edge is
alternatingly of type rise and fall.



2.4 Timing Constraints 19

Let tleadd , ttraild , Td be the clock definitions of the clock signal that triggers σd (at
some register), and tleadc , ttrailc , Tc be the clock definition of σc. Furthermore, let
td ∈ {tleadd , ttraild } be the time of the particular reference edge that triggers σd, and
let tc ∈ {tleadc , ttrailc } be the time of the particular reference edge to which σc refers.
Then the minimum positive difference

mpd(σd, σc) :=
min

{
tc + iTc − (td + jTd)

∣∣∣ i, j ∈ N0; tc + iTc − (td + jTd) > 0
} (2.13)

is the most pessimistic travel time limit for signal σd on the data path, which is the
path from the register which triggers σd to the current register where σd is captured
by σc. The adjust value that must be added to the clock arrival time at(σc) is then
given by

adj(σd, σc) := td − tc + mpd(σd, σc) + (mcσd,σc − 1)Td, (2.14)

where the parameter mcσd,σc ∈ N∪ {∞} is the maximum number of cycles the data
signal is allowed to travel. It is usually called multi-cycle adjust and is mostly set to
mcσd,σc = 1. If mcσd,σc =∞, there will be no effective test, that is, σd and σc are
asynchronous.

Remark 2.1. (Transparent Latch Timing)
A transparent latch contains a propagation arc from the data input to the data
output. On such an arc, a phase rename and an adjust on a signal propagation arc
are applied. The outgoing data signal is controlled and thus should have the same
origin label as the incoming opening clock signal σc. This results in a phase rename
from σ′d to σ′c on the data input to output edge, where σ′c is a signal propagated
from the clock input and σ′d the preliminary signal propagated from the data input.
In order to shift the output signal back to the cycle of the clock signal, a so called
flush-adjust adje(σd, σ′d) = − adj(σd, σc) must be applied on the propagation arc e.
The setup test (2.12) represents a conservative restriction for a transparent latch

that decouples the incoming data signal from outgoing data signals. If the data input
signals are required to arrive before the latch opening time, the data output arrival
times depend only on the opening time of the latch. Thus, the signal propagation
graph can be considered as acyclic. However, the latch would still work correctly
if the incoming data signal arrives during the open phase of the next cycle, which
would then result in a later output arrival time. In this scenario σc represents the
trailing clock edge, while the flush-adjust on the data input to output edge would be
computed with respect to the opening edge.

Hold Test

Besides late mode constraints, signals must not arrive too early at d, because the
voltage state at the output must be stable while the latch is open. Let now σd
be an early signal in d. Similar to the setup time for late mode tests, a hold time
hold(slew(d, σd), slew(c, σc)) specifies how long the input must be stable after the



20 2 Timing Closure

latch closes, where σc is now the latest closing signal at the latch. The arrival time
of σc is again adjusted by some number adj(σd, σc). The early mode constraints
read as follows:

at(d, σd) + hold
(
slew(d, σd), slew(c, σc)

)
≥ at(c, σc) + adj(σd, σc) (2.15)

The hold adjust is computed differently from the setup adjust. Let td, Td, tc, and
Tc be defined as before. For the setup test tc refered to the opening edge. Now σc
and therefore tc refer to the closing edge. The minimum non-negative difference

mnnd(σd, σc) :=
min

{
td + iTd − (tc + jTc)

∣∣∣ i, j ∈ N0; td + iTd − (tc + jTc) ≥ 0
}

is the most pessimistic lower travel time limit for signal σd on the data path. The
adjust value is then given by

adj(σd, σc) := td − tc + mnnd(σd, σc) + (mcσd,σc − 1)Td, (2.16)

Here mcσd,σc ∈ N0 ∪ {−∞} determines the number of cycles the data signal must
at least propagate before arriving at d, and mcσd,σc = −∞ is used for asynchronous
signals.

In the relevant “synchronous” case the signals σd and σc emerge from a common
clock source with reference cycle time T ref . However, σd and σc can still be derived
from different clock definitions with different frequencies. Certain circuits such as
PLLs can create a signal with cycle time qT ref , q ∈ Q+.
Note that for both, setup constraints (2.12) and hold constraints (2.15), the

difference td − tc, which is part of adj(σd, σc) cancels out in the sum

at(c, σc)− at(d, σd) + adj(σd, σc) (2.17)

as the values td and tc are implicitly contained in at(c, σc) and at(d, σd). Therefore,
(2.17) will increase if the underlying reference cycle time T ref increases by some
∆T ref ∈ R+. Consequently, the setup constraints (2.12) are relaxed by

mpd(σd, σc) ·∆T ref , (2.18)

and the hold constraints (2.15) are invariant or tightened by

mnnd(σd, σc) ·∆T ref (2.19)

when increasing the reference cycle time by ∆T ref .
More complex registers such as flip-flops, SRAMs, or non-sequential clock gates

have similar constraints that are representable as inequalities between data input
and clock input arrival times. All constraints between two signals have in common
that they express a race-condition between two signals which originate from a
common source, for example from a PLL. However, this common source may be
located off-chip.

The register timing constraints or generally book specific constraints are given by
the timing rules, which also provide the setup and hold functions.



2.4 Timing Constraints 21

Primary Output Constraints

Apart from register timing constraints there are primary output constraints. There
can either be a predefined required arrival times rat(p, σ) for a signal-pin pair
(p, σ), σ ∈ S(p) that do not depend on other signals, or user defined tests between
any two signals p, σp ∈ S(p), q, σq ∈ S(q) in the design. Predefined required arrival
times define an inequality constraint:

at(p, σ) ≤ rat(p, σ) if η(σ) = late, and (2.20)
at(p, σ) ≥ rat(p, σ) if η(σ) = early . (2.21)

User defined tests can be represented by inequalities similar to (2.12) between a
late and an early signal, with usually constant setup and adjust times.

at(p, σp) + setup
(
slew(p, σp), slew(q, σq)

)
≤ at(q, σq) + adj(σp, σq). (2.22)

User defined test can often be found between a set of primary output signals, which
may leave the chip at any time, but simultaneously. Sometimes user defined tests
are set between primary outputs and primary inputs, and replace predefined start
times and required arrival times for data signals. Although intended for modeling
primary output constraints, both constraint types can basically be found everywhere
on a design.

2.4.7 Timing Graph
As timing constraints describe the relation between two signals, they are often
represented as arcs between the early test end to the late test end on the underlying
timing nodes. A test arc (p, q) between two timing nodes p, q ∈ V T is labeled by a
triple

(η, ζ, ζ ′) ∈ {early, late} × {rise, fall} × {rise, fall},

and is created if there is a test between a signal σp ∈ S(p) of timing mode η(σp) = η
and transition ζ(σp) = ζ and a signal σq ∈ S(q) of timing mode η(σq) = η−1. The
set of test arcs is denoted ETt .

Definition 2.2. The graph GT = (V T , ET ) is called the timing graph, where
ET := ETp ∪ ETt is the set of timing edges.

2.4.8 Slacks
Each timing constraint induces a required arrival time (rat) for the tested signal.
The setup test (2.12) transforms to

at(d, σd) ≤ rat(d, σd), (2.23)



22 2 Timing Closure

with

rat(d, σd) := at(c, σc) + adj(σd, σc)
− setup

(
slew(d, σd), slew(c, σc)

)
.

(2.24)

The hold test (2.15) becomes

at(d, σd) ≥ rat(d, σd), (2.25)

with

rat(d, σd) := at(c, σc) + adj(σd, σc)
− hold(slew(d, σd), slew(c, σc)).

(2.26)

The required arrival times are propagated to every vertex in the timing graph in
backward topological order.

rat(p, σp) := min{rat(q, σq)− ϑe(slew(p, σp))− adje(σp, σq) |
e ∈ δ+(p), σq ∈ S(e) induced by σp},

(2.27)

if η(σ) = late, and

rat(p, σp) := max{rat(q, σq)− ϑe(slew(p, σp))− adje(σp, σq) |
e ∈ δ+(p), σq ∈ S(e) induced by σp},

(2.28)

if η(σ) = early.
The difference between required and computed arrival time of a signal σ ∈

S(p), p ∈ V T is called slack. It is defined as

slk(p, σ) := rat(p, σ)− at(p, σ), (2.29)

if η(σ) = late, and as

slk(p, σ) := at(p, σ)− rat(p, σ), (2.30)

if η(σ) = early.
Assuming individual but constant slews slew(p, σ) for all σ ∈ S(p) and all p ∈ V T ,

following properties of the slack values can be obtained by simple calculation.

Remark 2.3. Let p ∈ V T and σ ∈ S(p) be a late signal. Then slk(p, σ) specifies
the maximum delay, which—when added either to all incoming or to all outgoing
edges of p—guarantees, that the timing constraints of signal σ at any tested vertex
reachable from p are satisfied.
If σ ∈ S(p) is an early signal slk(p, σ) specifies the maximum delay, which—when

removed either from all incoming or from all outgoing edges of p—guarantees, that
the timing constraints of signal σ and any tested vertex reachable from p.



2.4 Timing Constraints 23

Remark 2.4. Let p ∈ V T and σ ∈ S(p), then slk(p, σ) ≥ 0 if and only if the timing
constraints of all paths of signal σ through p are satisfied.
The slack slk(p, σ) specifies the worst slack of a signal path containing the pair

(p, σ), p ∈ P, σ ∈ S(p). We can also define the slack slk(p, σp, q, σq) of a timing arc
(p, q) ∈ ET and two related signals σq ∈ S(p), σq ∈ S(q) as the worst slack of a
path that contains this arc and signals. Like the slack of a pin-signal pair, it can be
computed from the local information at the arc and its incident nodes.

For a test arc (p, q) ∈ ETt with the relation at(p, σp)+d(p, σp, q, σq) ≤ at(q, σq) (af-
ter simple algebraic transformation), where σp ∈ S(p), σq ∈ S(q), and d(p, σp, q, σq)
summarizes the setup or hold time and the adjust, the slack is simply

slk(p, σp, q, σq) := at(q, σq)− at(p, σp)− d(p, σp, q, σq). (2.31)
For a propagation arc (p, q) ∈ ETp the situation is slightly different. Given the

relation at(p, σp) + d(p, σp, q, σq) ≤ at(q, σq), where σp ∈ S(p), σq ∈ S(q), and
d(p, σp, q, σq) summarizes the delay and the adjust, we must consider the required
arrival time of (q, σq) if η(σp) = late and of (p, σp) if η(σp) = late to compute the
worst slack of a path through (p, σp, q, σq). The slack is given by

slk(p, σp, q, σq) := rat(q, σq)− at(p, σp)− d(p, σp, q, σq), (2.32)
if η(σp) = late, and

slk(p, σp, q, σq) := at(q, σq)− rat(p, σp)− d(p, σp, q, σq), (2.33)
if η(σp) = early.
If slews are not constant, the required arrival times defined in (2.27) and (2.28)

are unsafe, in the sense that Remarks 2.3 and 2.4 might not be true. This is because
the rat propagation does not account for the slew effects on the delays and slews in
the forward cone. As for the slew propagation, Vygen [2001, 2006] gave a safe rat
propagation formula, that considers the slew effects as well. Given ν ∈ (0,∞] as in
(2.6) and (2.8) safe required arrival times are propagated as follows:

rat(p, σp) := min
{
rat(q, σq)− ϑe(slew(p, σp))− adje(σp, σq)
− 1

ν
max{0, λe(slew(p, σp)− slew(q, σq)) :

e = (p, q) ∈ δ+(p), σq ∈ S(e)
}
,

(2.34)

if η(σ) = late, and

rat(p, σp) := max
{
rat(q, σq)− ϑe(slew(p, σq)) adje(σp, σq)
− 1

ν
min{0, λe(slew(p, σp)− slew(q, σq)) :

e = (p, q) ∈ δ+(p), σq ∈ S(e)
}
,

(2.35)

if η(σ) = early.
However, in industrial timing engines these rules are not used. The main reason is

that on critical paths slews tend to be similarly tight after optimization. Therefore,
the difference between classical and improved propagation rules emerge hardly. For
final timing sign-off most critical paths will be analyzed individually anyway.



24 2 Timing Closure

2.4.9 Signal Graph
In this Section we describe how arrival time constraints and feasible node potentials
in directed graphs are related, assuming delays and slews to be fixed. First, we relax
the formulation of the arrival time propagation rules, by replacing the maximum
(2.6) and minimum (2.8) functional equations by inequalities. If the signal arrival
times fulfill all late mode propagation rules (2.6), they will also fulfill the following
inequality:

at(q, σq) ≥ at(e, σp) = at(p, σp) + ϑe(slew(p, σp)) + adje(σp, σq) (2.36)

for all e = (p, q) ∈ ETp , σq ∈ S(q), and σp ∈ S(p), where e is labeled by
(late, ζ(σp), ζ(σq)), and η(σp) = η(σp) = late. Accordingly, if signal arrival times
fulfill all early mode propagation rules (2.8), they will also fulfill the relaxed inequality
formulation:

at(q, σq) ≤ at(e, σp) = at(p, σp) + ϑe(slew(p, σp)) + adje(σp, σq) (2.37)

for all e = (p, q) ∈ ETp , σq ∈ S(q), and σp ∈ S(p), where e is labeled by
(early, ζ(signalp), ζ(σq)), and η(σp) = η(σp) = early.

Now all propagation and test relations represent inequalities between two arrival
times plus some constant delay. Thus, they can be represented by an edge-weighted
signal graph (GS, cS).

The vertex set V S := V (GS) is given by all signal/pin pairs and some extra node
v0:

V S := {(p, σ) | p ∈ P, σ ∈ S(p)} ∪ {v0},

where v0 represents the time ’0’.
There are different type of edges:

• for each late propagation inequality (2.36) an edge e =
(
(q, σq), (p, σp)

)
with

edge cost cS(e) = −ϑe(slew(p, σp))− adje(σp, σq);

• for each early propagation inequality (2.37) an edge e =
(
(p, σp), (q, σq)

)
with

edge cost cS(e) = ϑe(slew(p, σp)) + adje(σp, σq);

• for each late start time assertion at(p, σ), p ∈ V T start, η(σ) = late, an edge
e =

(
(p, σ), v0

)
with edge cost c(e) := − at(p, σ);

• for each early start time assertion at(p, σ), p ∈ V T start, η(σ) = early, an edge
e =

(
v0, (p, σ)

)
with edge cost cS(e) := at(p, σ);

• for each setup test (2.12) an edge e =
(
(c, σc), (d, σd)

)
with edge cost cS(e) =

adj(σd, σc)− setup
(
slew(d, σd), slew(c, σc)

)
;



2.4 Timing Constraints 25

• for each hold test (2.15) an edge e =
(
(d, σd), (c, σc)

)
with edge cost cS(e) =

hold
(
slew(d, σd), slew(c, σc)

)
− adj(σd, σc);

• for each user defined test (2.22) an edge e =
(
(q, σq), (p, σq)

)
with edge cost

cS(e) = adj(σd, σc)− setup
(
slew(p, σp), slew(q, σq)

)
;

• for each predefined late-mode required arrival time rat(p, σ), p ∈ V T , η(σ) =
late, an edge e =

(
v0, (p, σ)

)
with edge cost cS(e) := rat(p, σ);

• for each predefined early-mode required arrival time rat(p, σ), p ∈ V T , η(σ) =
early, an edge e =

(
(p, σ), v0

)
with edge cost cS(e) := − rat(p, σ).

The first four types of edges are signal initialization and propagation relations. We
denote the set of these edges by ES

p . The last five types of edges correspond to the
arrival time tests, and we denote the set of these edges by ES

t .
As usual we define a node potential π : V → R for a directed graph (V,E) with

edge weights c : E → R to be feasible, if

π(v) + c(v, w) ≥ π(w) (2.38)

holds for all (v, w) ∈ E. The difference cπ(v, w) := c(v, w) + π(v)− π(w) is called
the reduced cost of (v, w) ∈ E, which we will also call slack, the customary term in
chip design.
The correspondence between node potentials in the signal graph and the arrival

time constraints in static timing analysis is given in following Lemma.

Lemma 2.5. Assume that all delays, setup and hold times are pre-computed and
fixed. Let π be a node potential for the signal graph (GS, cS) with non-negative
reduced costs cπ(e) for all e ∈ ES

p . Then each slack of an arrival time constraint is
greater than or equal to the reduced cost of the corresponding test edge in ES :=
E(GS).

Proof. Let π : V S → R be a feasible node potential, and let

at : {(x, σx) | x ∈ P, σx ∈ S(x)} → R

be the static timing arrival times. Due to the relaxation of the propagation and start
time initialization rules we have π((p, σ)) ≥ at(p, σ) for all (p, σ) ∈ {(x, σx) | x ∈
P, σx ∈ S(x), EL(σ) = late}, and π((p, σ)) ≤ at(p, σ) for all (p, σ) ∈ {(x, σx) | x ∈
P, σx ∈ S(x), EL(σ) = early}.
As late arrival times are not greater than the corresponding node potential and

early arrival times are not smaller than the corresponding node potential, the slacks
in timing analysis cannot be smaller than the corresponding reduced costs cπ.

2

Besides this simple result we will use the signal graph in Chapter 5 to optimize
clock schedules and for timing analysis in presence of cycles in the timing propagation
graph GTp .



26 2 Timing Closure

2.5 Sign-Off Timing Constraints
Due to its computational efficiency the static timing analysis is used during pre-
routing physical synthesis, and therefore it is the basis of this thesis. In this section
we give a short overview on the more accurate but runtime-intensive postrouting
timing-analysis. Though many effects can only be analyzed when a routing is
given, their impact can be considered to some extent during prerouting optimization,
especially within clocktree design. The main difference between pre- and postrouting
timing analysis are the inclusion of coupling between adjacent wires and transistors,
and the uncertainties due to process variations.
Delay variations occur due to different reasons. The environmental conditions,

such as temperature and voltage, have big impact on the delay. Within a typical
temperature range of −40 to 125◦ Celsius and a voltage range of 0.8 to 1.25 V , delays
differ by a factor of 2 or more. This means that under cold, high voltage conditions,
signals propagate about twice as fast as under hot, low voltage conditions. But the
same chip has to work correctly under both conditions.
Other examples for variation are caused by

• fabrication variation during lithography affecting the width, length and thick-
ness of wires, transistors, etc.,

• a hardly predictable voltage and temperature distribution on a chip in addition
to varying external temperature and voltage,

• shape transformations during the lifetime of a chip caused by electromigration.

The variation sources are usually split into two sets. First, there are inter-
chip variations that occur only on different chips or under different environmental
conditions. Second, there are intra-chip variations, also known as on-chip variations,
that occur on a single chip under a single environment condition.

In a sign-off timing check a static timing analysis is performed for a finite set of so
called process corners. Each process corner consists of extreme settings for certain
variation parameters, for example high temperatures combined with low voltage
and slow devices. In each process corner “small variations” are assumed between
early and late mode timing. Theoretically this sign-off methodology does not prove
that a produced chip will work, because not all combinations of process parameters
are checked for running time reasons. However, the large amount of pessimism in
the process assumptions ensures the functionality in practice. Section 2.5 shows
how some of the small variation pessimism can be removed.
The future trend for sign-off timing analysis seems to be the statistical analysis.

This targets to predict the final yield, which is the percentage working chips.
Although being discussed in the literature for a while, the running time overhead
and limited accuracy of these models have not yet led to a broad application in
industry.



2.5 Sign-Off Timing Constraints 27

Common Path Analysis

Static timing analysis makes several pessimistic assumptions to reduce the running
time and memory effort. One such pessimism is to compare always earliest with
latest signal arrival times at the timing tests. Now, throughout a path the early
delays are smaller than or equal to the late delays to model process variations. In
most cases both paths on which the compared arrival times were propagated to
the test ends have a common starting subpath. Most variations on this common
subpath apply equally to both paths and need not be incorporated into the slack
computation.

Methods for the removal of this pessimism were given by Hathaway et al. [1997]
and Zejda and Frain [2002]. In this section we summarize the basic ideas.

Clock−Tree

Latches

Data Paths

L1 L3

L4

Root

L2 L6

L5

Figure 2.9: A clocktree example.

As an example consider the clocktree in Figure 2.9. The arrival times at the data
input pin of latch L3 is triggered by a clock signal at the latch L1. Therefore, the
data input arrival times at L3 are propagated on a path from the clocktree source
through L1 to L3. Both paths, the data signal path and the clock signal path at
L3, share a common path behind the clock root up to the first inverter.

Assume that in the example the variation of each clock net is 1, and circuits have
no variation. Then the difference of the latest and earliest arrival time at a clock
input is 3. If the cycle time would be 5, data paths between latches must have
length no more than 2 to satisfy setup constraints.

However, the variations on the common path apply equally to the clock path and
data path. In the example the maximum possible variation between any two latches
is 2, as all paths share the first net behind the root. For certain paths, the actual
variation is even smaller, for instance the variation difference between L1 and L2 is



28 2 Timing Closure

one, for the self loop of L6 there is, in fact, no variation difference.
Consider the setup test in (2.12) between a tested signal σd at a pin d and a

testing signal σc at a pin c, and let cppr(σd, σc)R≥0 be the amount of variation that
applies equally to both paths, then the setup test becomes:

at(d, σd) + setup
(
slew(d, σd), slew(c, σc)

)
≤ at(c, σc) + adj(σd, σc) + cppr(σd, σc).

(2.39)

Let p, q,∈ V T be the start and end vertices of the common path. In the usual
case, where σd and σc are generated by the same transitions on the common
path , that is, there are signals σearlyp , σlatep ∈ S(p) with ζ(σearlyp ) = ζ(σlatep ), and
σearlyq , σlateq ∈ S(q) with ζ(σearlyq ) = ζ(σlateq ) such that σc is generated by σearlyp and
σearlyq , and σd is generated by σlatep and σlateq , the common path pessimism removal
adjust cppr(signald, signalc) is given by

cppr(σd, σc) = at(σlateq )− at(σearlyq )−
(
at(σlatep )− at(σearlyp )

)
. (2.40)

In the general case different signal transitions on the common path may generate σd
and σc. Then, a detailed variation analysis is required, to differentiate the common
variation in the wires, and non-common variations in the transistors.

A common path analysis for every timing-test would be too time-consuming. The
effort of static timing analysis is linear in the design instance size. The effort for
common-path analysis grows with every bifurcation in the clocktree. Therefore,
the general goal of timing optimization is to satisfy all tests with respect to the
pessimistic constraints, disregarding common paths. Only a small set of violations
can be checked by a more accurate common path analysis. However, in clock skew
optimization in Chapter 5 we will optimize paths, instead of endpoints for the most
timing critical parts of a chip, to obtain a more robust sign-off timing.



2.6 Timing Closure Problem 29

2.6 Timing Closure Problem
Having defined placement, routing and timing constraints, we can introduce the
Timing Closure Problem.

Timing Closure Problem
Input:

• A chip image I,

• a netlist (C, P, γ,N ),

• a library B and an initial circuit assignment β : C → B,

• timing constraints.

Output:

• A logically equivalent netlist (C ′, P ′, γ′,N ′) according to Sec-
tion 2.3.1,

• a legal placement Pl : C ′ → R2 according to Section 2.3.2,

such that all late mode timing constraints are met according to Sec-
tion 2.4, and the design is routable according to Section 2.3.3.

The Timing Closure Problem contains many NP-hard subproblems, like the
minimum rectilinear Steiner tree problem, facility location problems, the feedback-
arc set problem to name a few. In addition it combines difficult discrete problems
with non-linear and non-convex timing constraints.

Furthermore, we are dealing with very large instances. The instance sizes are in
the range of |C| ≈ |N | ≈ 6 000 000 and |P | ≈ 18 000 000, and increasing with each
new technology generation.
By these reasons, the Timing Closure Problem is usually decomposed into

smaller subtasks, which are solved sequentially and combined into a timing opti-
mization flow.

An optimization goal of these subproblems is to maximize the worst slack within
their scope. However, in order to reduce the effort for subsequent steps and the
robustness of the chip, less critical negative slacks should be maximized as well.
A good slack distribution can be characterized by the lexicographical order of the
sorted slacks. We adapt the definition of a leximin maximal vector from Radunović
and Le Boudec [2007]:

Definition 2.6. Given nmax ∈ N, a set of finite-dimensional vectors

X ⊆
nmax⋃
n=1

Rn,



30 2 Timing Closure

a vector x ∈ X ∩ Rn, 1 ≤ n ≤ nmax, and a threshold Stgt ∈ R ∪ {∞}, let x̃ ∈ Rnmax

result from x by

x̃i =

min{xi, Stgt} if 1 ≤ i ≤ n,

Stgt if n < i ≤ nmax,

The vector −→x ∈ Rnmax arises from x̃ by reordering the components in non-decreasing
order. A vector x ∈ X is leximin maximal with respect to Stgt if for every
vector y ∈ X , −→x is lexicographically greater than or equal to −→y .

This definition quantifies an optimum slack-distribution of slacks below some
target Stgt ∈ R, but has no further requirement on uncritical slacks above Stgt. This
allows optimization for power on uncritical parts of the chip as long as the slacks
remain above Stgt.

2.7 Test Data
We will carry out comprehensive experiments within each chapter on a set of
instances, for which the Timing Closure Problem proved to be difficult. The
instances are recent ASIC designs from IBM. ASIC is the abbreviation of application
specific integrated circuit, and stands for integrated circuits that are optimized for
special purposes, such as main board controllers, network switch chips, graphic
cards, etc.

Chip Technology #Circuits Frequency
Without Repeaters With Repeaters

Fazil 130 nm 55 K 61 K 200 MHz
Felix 130 nm 63 K 73 K 500 MHz
Julia 130 nm 183 K 202 K 200 MHz
Bert 130 nm 911 K 1043 K 1000 MHz

Karsten 130 nm 2776 K 3146 K 800 MHz
Trips 130 nm 5169 K 5733 K 267 MHz
Franz 90 nm 63 K 67 K 209 MHz
Arĳan 90 nm 3288 K 3853 K 1334 MHz
David 90 nm 3658 K 4224 K 1250 MHz

Valentin 90 nm 4136 K 5404 K 1250 MHz
Lucius 65 nm 56 K 81 K 371 MHz
Minyi 65 nm 197 K 283 K 657 MHz
Maxim 65 nm 318 K 481 K 1000 MHz
Tara 65 nm 716 K 795 K 250 MHz

Ludwig 65 nm 3108 K 3490 K 250 MHz

Table 2.1: Test Instances



2.7 Test Data 31

The instances were implemented in three current technologies, namely 65 nm,
90 nm, and 130 nm. Table 2.1 shows all instances by chip name, technology, number
of circuits, and the maximum occurring clock frequency. As the number of circuits
varies throughout the timing closure flow, we specify two numbers. The column
“Without Repeaters” contains the number of circuits in the input netlist without
buffers and a minimum number of inverters, which are required for parity reasons.
The column “With Repeaters” contains the number of circuits at the end of the
timing closure flow including all inserted repeaters. The instances range from small
RLMs with less that 100 000 circuits to huge ASICs with multi-million circuits.
Though being small, the selected RLMs are hard to implement, as they often
represent the processing cores of larger chips, and have large combinatorial cones.
The additional difficulty of larger ASICs are the long distances signals have to cover
and of course the computational effort.
We thank IBM for providing the test cases. We also thank the University of

Texas at Austin for providing us the Trips design data, see Burger et al. [2004] for
information about that multi-core processor.





3 Repeater Trees
One of the key tasks in timing optimization is the construction of repeater trees.
As shown in Section 2.4.3, the interconnect RC-delay of an unbuffered net grows
quadratically in the length with respect to the Elmore delay metric and almost
quadratically with respect to more accurate delay models. In order to control this
delay increase, repeaters (inverters or buffers) that refresh the electrical signals
are used to linearize the delay as a function of length and to keep it small over
large distances. With shrinking feature sizes, the fraction of the total circuit count
represented by repeaters that have to be added to a design in order to buffer
interconnect is bound to grow. Saxena et al. [2003] try to quantify this increase for
typical designs and predict that at the 45nm and 32nm technology nodes up to 35%
and alarming 70% of all circuits might be repeaters. In this situation the efficient
construction of high quality repeater trees has vital importance for timing closure.
In this Chapter we focus on the global topology generation of an interconnect.

The subsequent repeater insertion combined with local modifications to the global
topology will be described in Section 3.7.

We motivate the topology generation problem with a small example. Temporarily,
consider a topology as a Steiner tree connecting a source pin with a set of sink
pins. Finding a topology that minimizes the l1-netlength is already a NP-hard task
(Garey and Johnson [1977]). But a shortest topology can even result in impractical
long delays, as it tends to form a daisy-chain, where the path-delay from the source
to the last sink in the chain is extremely high. Figure 3.1 shows an example where,
on the left, a shortest topology generates a long path from source r to sink s. If
r s r s r s

Figure 3.1: Three different minimum length topologies.

the critical path on the chip contains the edge (r, s) ∈ GTp , this would be a very
unfavorable topology. The topology in the middle connects s directly with r, which
would be a better solution. In addition to the path lengths, the delay also increases
with every branch-off and every terminal on the path as they introduce extra delays
through extra capacitances. Under this considerations, the right topology would be
fastest for s, because only the branch emerging in r adds extra capacitance.

33



34 3 Repeater Trees

A shortest Steiner tree topology of large trees with several hundred thousand
sinks can easily result in source-sink delays that are 10–50 times higher than the
cycle time. However, a timing aware topology must not introduce too much wiring
overhead compared to a shortest topology because of limited power and wiring
resources.
A further challenge is the huge number of instances that have to be solved. On

today’s ASIC designs there are up to 5 000 000 instances with up to 700 000 sinks.
The main feature of the new approach is that it efficiently balances the require-

ments of maximizing the worst slack and minimizing the wirelength. For this
purpose, a new delay model on global topologies is proposed that estimates the final
delays after repeater insertion.

The effectiveness is demonstrated by theoretical as well as experimental results on
current industrial designs. We establish theoretical bounds on the worst slack of an
optimum solution. We compare our results with respect to worst slack estimates and
wirelength to theoretical bounds, proving that our solutions are indeed very good.
Moreover, in contrast to many previous approaches, our algorithm is extremely fast.
Most results in this chapter were obtained in a joint work with Christoph Bar-

toschek, who made all repeater tree related implementations, Dieter Rautenbach
and Jens Vygen (see also Bartoschek et al. [2006, 2007a,b]).

3.1 Previous Work
Most repeater tree algorithms split the task into two parts: topology generation and
buffering. Some try to combine the tasks. Although we will change the topology
while buffering, we also construct a preliminary topology first.

Several authors proposed heuristics for the construction of a suitable topology or
tried to combine topology generation and buffering. Cong et al. [1993] proposed
the A-tree algorithm, which constructs a shortest path tree targeting minimum
wirelength. Okamoto and Cong [1996] proposed a repeater tree procedure using a
bottom-up clustering of the sinks and a top-down buffering of the obtained topology.
Similarly, Lillis et al. [1996] also integrated buffer insertion and topology generation.
They considered the P-tree algorithm (P for placement), which takes the locality of
sinks into account, and explored a large solution space via dynamic programming.

Hrkic and Lillis [2002, 2003] considered the S-tree algorithm (S for slack), which
makes better use of timing information, and integrated timing and placement
information using so called SP-trees. In these approaches the sinks are typically
partitioned according to criticality. The initially given topology (for example a
shortest Steiner tree) can be changed by partially separating critical and noncritical
sinks. Whereas the results obtained by these procedures can be good, the running
times tend to be prohibitive for realistic designs in which millions of instances have
to be solved.
The C-tree algorithm (Alpert et al. [2002]) is a hybrid combination of the Prim

heuristic (see Theorem 3.15) for minimum Steiner trees and Dĳkstra’s shortest path



3.2 Repeater Tree Problem 35

tree algorithm (Dĳkstra [1959]). First, it computes several solutions for a small set
of different tradeoffs. Finally, it chooses the solution which is ranked as the best by
some performance metric.
Further approaches for the generation or appropriate modification of topologies

and their buffering were considered in Cong and Yuan [2000], Alpert et al. [2001,
2003], Müller-Hannemann and Zimmermann [2003], Dechu et al. [2005], Hentschke
et al. [2007], and Pan et al. [2007].

3.2 Repeater Tree Problem
A repeater tree instance is defined as follows.

Repeater Tree Instance
Input:

• a root r (an output pin of some circuit in the netlist or a primary
input pin), its location Pl(r) ∈ S(I), a source arrival time
at(r, ζ, downcap) and slew slew(r, ζ, downcap) at r depending on
the load capacitance downcap,

• a set S of sinks s (input pins of circuits in the netlist), and for
each sink s its parity + or −, the location Pl(s) ∈ S(I), the
input capacitance, and a slew-dependent required signal arrival
time rat(s, ζ, slew),

• a library B of repeaters (inverters and buffers), and for each
repeater type t ∈ B its timing rule and input capacitance,

• a finite set of possible wiring modes, each of which consists of a
routing plane (or a pair of routing planes with similar electrical
properties), wire width, spacing to neighboring wires, and in
particular resistance and capacitance information per unit length,
and

• a shape set D(I) of blockages whose areas are unusable for placing
repeaters.

A repeater tree (Cr,Plr,Nr) consists of a set Cr of repeaters with placement
locations Plr(c) ∈ S(I) \ D(I) for all c ∈ Cr. It connects the root to all sinks
through all circuits in Cr and all nets in Nr, and the signal arrives at each sink with
the correct parity, which means that the number of inversions on the path from the
root to the sink is even if and only if the sink has parity +. Furthermore, the tree
should be free of electrical violations if possible. In the definition of a repeater tree
instance we ignore the case where signals with equal transition but different origins



36 3 Repeater Trees

enter the root “r”. We consider only the worst slack signal for each transition and
ignore less critical signals.

Among the repeater trees satisfying the above conditions, one typically seeks for
a tree that optimizes certain goals. One of the most important optimization goals is
maximizing the worst slack, which is given by the slack at the root. If the timing
restrictions allow, minimizing the use of wiring resources as well as the number (and
size) of inserted repeaters are secondary goals; moreover we would like to minimize
the resource allocation.

We assume that the resource allocation of a tree Tr = (Cr,Plr,Nr) is summarized
by a single function-value

ρ : {Trees for r} → R+.

Where applicable, we will be more specific on ρ. However, we assume that the
resource allocation correlates well with (weighted) wirelength because the number of
needed repeaters correlates with the total capacitance that is to be driven. The wire
capacitance, in turn, depends on the wire length (area and fringing capacitance)
and wiring congestion (coupling capacitance). During topology generation, we
consider only wirelength (possibly weighted based on congestion estimates) as a
second objective.

To balance these two main objectives, timing and resource allocation, we introduce
a parameter ξ ∈ [0, 1], indicating how timing-critical a given instance is. For ξ = 1
we primarily optimize the worst slack, and for ξ = 0 we minimize resource allocation.
Only in case of ties, we consider the most resource efficient objective value with
respect to ξ = 0 as a tie breaker. In practice we mainly use values of ξ that are
strictly between 0 and 1. (see Section 7.2).

Repeater Tree Problem
Input: A repeater tree instance (according to page 35),

a performance parameter ξ ∈ [0, 1].
Output: A repeater tree T = (Cr,Plr,Nr) that maximizes the weighted sum

ξ · slk(r)− (1− ξ) · ρ(T ), (3.1)

and in case of ties minimizes

ρ(T ). (3.2)

3.3 Analysis of Library and Wiring Modes
For a given technology and library we compute some auxiliary data and parameters
once in advance, which are then used for all instances. The main goal is to allow for
quick delay estimates when handling a particular instance.



3.3 Analysis of Library and Wiring Modes 37

3.3.1 Bridging Large Distances
The goal of this section is to compute a parameter dwire that will act as a multiplier,
to quickly estimate the delay of an optimally buffered two point connection through
its length. For this purpose, we assume that we want to bridge an infinite long
distance by an infinite uniform chain of inverters such that the objective function
as a linear combination of delay per length unit and resource allocation per length
unit is (approximately) minimized.
By a uniform chain we mean that all repeaters are mapped to the same book

t ∈ B, all distances between two consecutive repeaters are equal, and the wiring
modes of all nets are equal. Alternatively, in the special case of inverters this
configuration can be interpreted as a ring oscillator composed of a single inverter
and a certain wire of certain length and wiring mode connecting its output with
its input. At its eigenfrequency the oscillator has a certain circulation delay and
resource allocation from which the per length unit values are derived.
For a repeater of type t ∈ B, with input transition ζ and slew value sin, driving

a wire of length l of wiring mode m with an additional load capacitance c at the
other end of the wire, let ϑ(t, ζ, sin, l,m, c), λout(t, ζ, sin, l,m, c), ρ(t, ζ, sin, l,m, c),
and tr(ζ) be the total delay (through the repeater and wire), the slew at the other
end of the wire, the resource allocation, and the output transition (which is the
input transition for the next stage), respectively. For the sake of a simpler notation
we assume that all values are infinite if a load limit or slew limit is violated.

In the notation of Section 2.4, let e = (late, ζ, tr(ζ)) ∈ GTt be the corresponding
model graph edge. Then the delay and slew function would be

ϑ(t, ζ, sin, l,m, c) = ϑ̃e(wirecap(l,m) + c, sin)+(
ϑElmore

(
λ̃e(wirecap(l,m) + c, sin)

)
· res(l,m)

(
wirecap(l,m)

2 + c
))
,

(3.3)

and

s(t, ζ, sin, l,m, c) = λ̃e(wirecap(l,m) + c, sin)+(
λElmore

(
λ̃e(wirecap(l,m) + c, sin)

)
· res(l,m)

(
wirecap(l,m)

2 + c
))
,

(3.4)

where wirecap(l,m) and wireres(l,m) are the wire capacitance and resistance of a
wire of length l and wiring mode m.

Recall that ϑ̃e and λ̃e are the timing rules for e. If the currently considered
repeater t is an inverter, let s0 be any reasonable slew value of a rising transition
ζ0 = rise, and we define recursively

si+1 := λout(t, ζ i, si, l,m, c) (i ≥ 0).

Otherwise, if t is a buffer, let s0, s1 be reasonable slew values of a rising transition
ζ0 = rise and falling transition ζ1 = fall, and define the sequence (si)i∈N0 by

si+2 := λout(t, ζ i, si, l,m, c) (i ≥ 0).



38 3 Repeater Trees

The sequences (si)i=0,2,4,6,... and (si)i=1,3,5,... of slews refering to equal transi-
tions, typically converge very fast. We call s′∞(t, l,m, c) := limi→∞ s2i−1 and
s′′∞(t, l,m, c) := limi→∞ s2i the stationary slews of (t, l,m, c). In practice it suf-
fices to consider a chain of N = 10 repeater pairs and approximate s′∞(t, l,m, c) by
s2N−1 and s′′∞(t, l,m, c) by s2N . Note that the absolute values of the two station-
ary slews can be quite different due to asymmetric behavior of rising and falling
transition. We abbreviate

ϑ(t, l,m, c) := 1
2
[
ϑ(t, s′∞(t, l,m, c), l,m, c) +

ϑ(t, s′′∞(t, l,m, c), l,m, c)
]
,

ρ(t, l,m, c) := 1
2
[
ρ(t, s′∞(t, l,m, c), l,m, c) +

ρ(t, s′′∞(t, l,m, c), l,m, c)
]
,

and
s∞(t, l,m, c) := 1

2
[
|s′∞(t, l,m, c)|+ |s′′∞(t, l,m, c)|

]
.

We choose a wiring mode m∗, a repeater t∗ ∈ L, and a length l∗ ∈ R>0 which
minimizes the linear combination

ξϑ̄(t∗, l∗,m∗) + (1− ξ)ρ(t∗, l∗,m∗) (3.5)

of estimated delay per unit distance

ϑ̄(t∗, l∗,m∗) := ϑ(t∗, l∗,m∗, icap(t∗))
l∗

and estimated resource allocation per unit distance

ρ(t∗, l∗,m∗) := ρ(t∗, l∗,m∗, icap(t∗))
l∗

.

This corresponds to optimal long chains of equidistant inverters or buffers of the
same type. The minima can be found easily by binary search over all lengths for
each wiring mode and each repeater type. We denote the resulting delay per unit
distance by

dwire := ϑ̄(t∗, l∗,m∗). (3.6)
This parameter will be used for delay estimation during topology generation.

3.3.2 Further Preprocessing
We use the average stationary slews at the input pins of our optimal repeater chain
as slew targets that we want to achieve during buffering. Therefore, we set:

optslewrise := s′′∞(t∗, l∗,m∗, icap(t∗)), and (3.7)
optslewfall := s′∞(t∗, l∗,m∗, icap(t∗)). (3.8)



3.4 Topology Generation 39

Next, we compute a parameter dnode that is used during topology generation to
model the expected extra delay along a path due to the existence of a side branch. It
is determined as follows. Let inv(c, s) denote the inverter with the smallest resource
allocation that achieves a fall-slew of at most s at its output pin if its input rise-slew
is s′′∞(t?, l?,m?, icap(t?)) and the load is c. Let t1 := inv(maxcap, optslewrise), and
let t2 := inv(icap(t1), optslewrise). Note that t1 = t? if t? is an inverter. We modify
our inverter chain of length 2N by adding a capacitance load of icap(t2) in the
middle of the first wire. Then dnode is set to the additional total delay through the
inverter chain caused by this change.
Finally we compute the partial derivative ∂ ϑ(t∗,l∗,m∗,icap(t∗))

∂icap(t∗) and set

capdelay(c) := (c− icap(t∗))∂ ϑ(t∗, l∗,m∗, icap(t∗))
∂icap(t∗) .

Note that capdelay(c) ≥ 0 if and only if c ≥ icap(t∗).

3.4 Topology Generation
The topology specifies the abstract geometric structure of the repeater tree.

Definition 3.1. A (repeater tree) topology, for a repeater tree instance with root r,
is an arborescence T (rooted at r), where r has exactly one child and all internal
nodes have two children. All internal nodes u ∈ V (T ) are assigned placement
coordinates Pl(u) ∈ S(I).

The final topology will have S as the set of leaves. Nodes of the topology may
have the same position, which can even be necessary to represent shortest Steiner
trees. The reason for restricting the maximum out-degree to two is related to the
delay model, which should account for branches.

3.4.1 Delay Model for Topology Generation
We estimate the delay caused by the actual wires and repeaters in the following way.
For an arc e = (u, v) of the topology, which represents an appropriately buffered
point-to-point connection between the locations of u and v, we write

ϑe = dwire · dist(Pl(u), P l(v)).

This is justified as appropriate buffering linearizes the delay. The distance is usually
the `1-distance, that is, dist(Pl(u), P l(v)) = ||Pl(u)− Pl(v)||1. However, different
metrics can be used (cf. Section 3.8.1 and 3.8.2) to account for blockages and
congestion.

Similarly, every internal node in the topology represents a bifurcation and thus an
additional capacitance load for the circuit driving each of the two emanating branches
(compared to alternative direct connections). This additional delay depends on the



40 3 Repeater Trees

Figure 3.2: Load capacitance reduction by inserting a shielding inverter.

load at the other branch and can hardly be estimated beforehand. However, a less
critical branch with a high load can be shielded by inserting a small repeater with
a small input pin capacitance directly behind the branching. Figure 3.2 shows a
net with two branches. The green inverter shields the capacitance in the bottom
from the horizontal wire segment and thus the capacitance that the vertical branch
adds to the horizontal one. This shielding repeater can increase the delay on the
less critical branch. In fact, during repeater insertion there will be some room to
balance the delays of the two branches by inserting one, or two shielding repeaters.
In our delay model we account for this, by demanding the distributing of an

additional amount of delay dnode (cf. Section 3.3.2) to the two emanating branches.
We denote by ϑnode(e) the amount assigned to arc e; we require

ϑnode(e) ≥ λϑnode for all arcs e, and
ϑnode(e) + ϑnode(e′) = dnode for the two arcs e, e′ ∈ δ+(v) (3.9)

leaving the same internal node v. The parameter λ must lie between 0 and 1
2 . A

value of λ = 0 corresponds to the possibility to insert an ideal shielding repeater
with zero input pin capacitance. In the other extreme case, λ = 1

2 , there is no
freedom to balance the delay ϑnode. For the arc e leaving the root we always set
δnode(e) := 0.
Next we take into account that the root may be weaker or stronger than the

repeater t∗ that we assume in our delay model. We compute the optimal average
delay that we get if the root drives only a repeater of type t∗ at distance l∗ with a
wire of mode m∗. The average is taken over both transitions. If the root is itself
a repeater of type t∗, this delay is δopt := ϑ(t∗, l∗,m∗, icap(t∗)) if the input slews
of the root are optslewrise and optslewfall, as discussed above. Otherwise it may be
useful to insert a buffer or two inverters. If dr is the minimum delay we can obtain
in this way, we set

∆ δr := δr− δopt .
Note that this number can be positive, zero, or negative.

To account for different delays caused by different input capacitances of the sinks,
we add capdelay(icap(s)) (see Section 3.3.2) to the estimated delay from r to s. A
linear delay model has the disadvantage of neglecting the internal delay of the root
circuit. Thus, it is too optimistic for short connections. To compensate for this, we
add the term

max
{
0, (dopt − dr + d′r) ·

(
1− dist(Pl(r), P l(s))

l∗

)}



3.4 Topology Generation 41

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

Estimated delay (ns)

Ex
ac
t
de

la
y
af
te
r
bu

ffe
rin

g
(n
s)

Figure 3.3: Correlation between estimated and exact delays.

to the delay estimation from r to s, where d′r is defined as dr, but without any
distance between the root and the repeater to be driven. Let

sinkdelay(s) := capdelay(icap(s)) +

max
{

0, (dopt − dr + d′r) ·
(

1− dist(Pl(r), P l(s))
l∗

)}
.

Altogether, during topology generation the delay from the root r to some sink s
is modeled as ∑

e=(u,v)∈E(T[r,s])

(
dnode(e) + dwire · dist(Pl(u), P l(v))

)
+ rootdelay + sinkdelay(s),

(3.10)

where E(T[r,s]) denotes the set of arcs on the path from r to s in the topology T .
Note that the actual topology influences only the first part∑

e=(u,v)∈E(T[r,s])

(
dnode(e) + dwire · dist(Pl(u), P l(v))

)
,

which is therefore the focus of the topology generation. In contrast, the residual
term (rootdelay + sinkdelay(s)) is equal for any topology.

The simple delay model used by our topology generation is justified by the good
correlation between our estimated delays and the final delays of the critical paths
in repeater trees after buffering and sizing (Figure 3.3). Here the final delays were
measured by static timing analysis with slew propagation.

3.4.2 Priority Ordering
Our topology generation inserts the sinks into the topology one by one. The
resulting structure depends on the order in which the sinks are considered. In order



42 3 Repeater Trees

to quantify correctly how critical a sink s is, it is crucial to take its required arrival
times as well as its location Pl(s) into account. We restrict the slew dependent
required arrival time to a single value, assuming that the output slews equal the
slews of our optimum repeater chain. We set

rats := min
{
rat(s, ζ, optslewζ) | ζ ∈ {rise, fall}

}
.

Now, a good measure for the criticality of a sink s is the slack that would result
from connecting s optimally to r and disregarding all other sinks. Within our delay
model this slack equals

slks := rats − atr−dwire · dist(Pl(r), P l(s))
− sinkdelay(s)− rootdelay .

(3.11)

The smaller this number is, the more critical we will consider the sink to be.
However, we do not distinguish between very large values of these estimated slacks
and give such sinks the same priority. The sinks are inserted into the topology in
an order of non-increasing criticality.

3.4.3 Topology Generation Algorithm
At any time during the topology generation algorithm (Algorithm 1) we maintain a
partial topology T ′ whose set of leaves is a subset S ′ of S. Moreover, we maintain a
required arrival ratv time for each node v ∈ V (T ′) with the property

ratv = max
λdnode≤d≤(1−λ)dnode

min
{
ratw−d, ratw′ −(dnode − d) | w,w′ ∈ δ+(v)

}
, (3.12)

if v ∈ V (T ′)\{r}, and ratr = ratw, where (r, w) is the single edge in δ+(r). This way,
we implicitly maintain the numbers dnode(e) for each e ∈ E(T ′) with the properties:

• dnode(e) = 0 for the arc e leaving the root r;

• dnode(e) ≥ λdnode for all other arcs e for some fixed λ ∈
[
0, 1

2

]
.

• dnode(e) + dnode(e′) = dnode if the two arcs e and e′ leave the same node.

The sinks S = {s1, s2, . . . , sn} are inserted into the topology one by one in the order
of their priority, slks1 ≤ slks2 ≤ · · · ≤ slksn , as computed in Section 3.4.2. If there
are ties, we choose a sink that is closest to the root.
Initially, S ′ contains just one most critical sink s1, and the topology consists of

the arc from r to s1. Suppose now s ∈ S \ S ′ is the next sink to be inserted into
T ′. To decide where to insert s, we consider each arc e = (u,w) ∈ E(T ′) for an
insertion of a new node v and edge (v, s).
Given the positions Pl(u) and Pl(w), we determine the closest point Pl(v) to

Pl(s) within the set SP (u,w) of locations, which are covered by a shortest path
between Pl(u) and Pl(w). Using the l1-metric, SP (u,w) is simply the area within



3.4 Topology Generation 43

Algorithm 1 Topology Generation Algorithm
1: For each s ∈ S, compute slks according to (3.11);
2: For each s ∈ S: rats := rats− sinkdelay(s);
3: Sort S by non-decreasing slack bound: slks1 ≤ slks2 ≤ · · · ≤ slksn ;
4: T ′ := ({r, s1}, {(r, s1)});S := S \ {s1};
5: for i = 2, . . . , n do
6: Create a new internal node v;
7: V (T ′) := V (T ′) ∪ {si} ∪ {v};
8: (u?, w?) = ∅
9: best1 = −∞;

10: best2 = −∞;

/* Find best edge in E(T ′) for attaching si.*/
11: for (u,w) ∈ E(T ′) do
12: E(T ′) := E(T ′) \ {(u,w)} ∪ {(u, v)} ∪ {(v, w)} ∪ {(v, si)};
13: ∆w := dist(Pl(s), SP (u,w));

/* Compute root slack.*/
14: for (x, y) ∈ E(Pr,si(T ′)) \ δ+(r) traversed bottom-up do
15: Let y′ be the sibling of y;
16: ρy := raty−dwire·dist(Pl(x), P l(y));
17: ρy′ := raty′ −dwire·dist(Pl(x), P l(y′));
18: ratx := max

λdnode≤d≤(1−λ)dnode
min {ρy − d, ρy′ − (dnode − d)} ;

19: If ratx was not changed: Goto 21;
20: end for
21: ratr := ratw, where {(r, w)} = δ+(r);

/* Maximize 1st and 2nd objective lexicographically.*/
22: if (ξ(ratr−atr) + (ξ − 1)dwire ·∆w,−∆w) >lex (best1, best2) then
23: (u?, w?) := (u,w);
24: best1 := ξ(ratr− atr) + (ξ − 1)dwire ·∆w;
25: best2 := −∆w;
26: end if
27: Revert changes from lines 12 and 18;
28: end for

/* Finally attach si to (u?, w?) and update ratv (v ∈ V (T ′)).*/
29: E(T ′) := E(T ′) \ {(u?, w?)} ∪ {(u?, v)} ∪ {(v, w?)} ∪ {(v, si)};
30: for (x, y) ∈ Pr,si(T ′) traversed bottom-up do
31: Let y′ be the sibling of y;
32: ρy := raty−dwire·dist(Pl(x), P l(y));
33: ρy′ := raty′ −dwire·dist(Pl(x), P l(y′));
34: ratx := max

λdnode≤d≤(1−λ)dnode
min {ρy − d, ρy′ − (dnode − d)};

35: end for
36: end for



44 3 Repeater Trees

SP (u, v) SP (u, w)

Pl(v)

Pl(u)

Pl(s)

Pl(w)

Figure 3.4: Insertion of the next sink s into an edge (u,w)

the bounding box of Pl(u) and Pl(w). At this point we tentatively place the new
internal node v and replace the arc (u,w) by three new arcs (u, v), (v, w), and (v, s).

Figure 3.4 demonstrates this situation. The sink s is connected shortest possible
to SP (u,w) (blue box). The magenta edges and box indicate the resulting shortest
path areas SP (u, v), SP (v, w), and SP (v, s), where SP (v, w) and SP (v, s) are
straight lines.
Having inserted s into an edge, we optimize the required arrival times ratv of

all nodes v ∈ V (T ′) on the path from s to the root such that the resulting slack
(ratr− atr) at the root, according to our delay model, is maximized, and such that
our rules regarding dnode are not violated. Note that there is no need for considering
any other node; all required arrival times can be updated by scanning the path
bottom-up to the root until there are no further changes.

We can now estimate the worst slack slkr at the root as well as the additional wire
length ∆w, which would result from this change. Finally, we insert s into an arc
e = (u, v), for which the objectives (i) ξ(ratr− atr) + (ξ − 1)dwire∆w and (ii) −∆w
are maximized lexicographically. Before investigating the quality of the resulting
topology in the next section, we determine its running time:

Theorem 3.2. The worst case running time of the topology generation algorithm
(Algorithm 1) is O(n3 + n2TSP), where n = |S| and TSP is the running time
for finding a shortest path between a point and an area, which is covered by all
shortest paths between two points, in a given metric. The best case running time is
Ω(n2 + n2TSP).

Proof. There are exactly n− 1 outer loop iterations (lines 5–36). When the sink si
is considered for insertion, the tree has 2(i− 1)− 1 edges (spanning r, i− 1 leaves,
and i − 2 internal nodes). Thus, in total, there are ∑n

i=2(2(i − 1) − 1) = Θ(n2)
updates (lines 11–28). In the worst case, where the topology has depth O(n), there
are at most O(n3) runs through lines 14–18, in total. Together with Θ(n2) shortest
path searches this give the worst case running time of O(n3 + n2TSP).



3.5 Theoretical Properties 45

In the best case no value ratv of any node v on the path from si to r changes,
and the most inner loop is stopped immediately in line 19. Therefore, we obtain
the claimed best case running time.

2

If distances are computed with respect to the l1-metric, the shortest path between
Pl(s) and SP (u,w) can be determined in constant time, yielding overall running
time bounds of O(n3) and Ω(n2).
In practice the worst case occurs hardly, because the sinks are inserted with

decreasing criticality, which makes it unlikely that required arrival times have to
be updated on the complete paths up to the root. Moreover, the data that has
to be manipulated and the calculations that are executed are all very simple and
efficient. Indeed, our experiments will show that the running time of our algorithm
is extremely small.
Nevertheless, for very large repeater tree instances, we reduce the running time

by a pre-clustering approach from Maßberg and Vygen [2005, 2008] that runs in
O(|S| log |S|) time. Furthermore, in the presence of blockages, the distances and
shortest path areas have to be specified. These and further implementation issues
are discussed in more detail in Section 3.8.

3.5 Theoretical Properties
In this section we explain how to compute efficiently an estimate for the maximum
achievable slack within our delay model. Furthermore, we establish some optimality
statements for the generated topology in the two extremal cases corresponding to
maximizing worst slack (ξ = 1) and minimizing wirelength (ξ = 0).

3.5.1 Maximum Achievable Slack
Lemma 3.3. There is always a slack-optimal topology such that all internal nodes
are at the same position as the root, that is, every sink is connected individually to
a node at the position of the root by a shortest connection.

Proof. Let T be a slack optimum topology, let v ∈ V (T ) be an internal node with
parent u ∈ V (T ) and Pl(u) 6= Pl(v). Let w1, w2 ∈ V (T ) be the two children of v.
Then we can change the placement of v to Pl(u) without changing the wire delay,
and thus, without changing the total delay to w1 and w2. The lemma follows by
iterative application of this operation.

2

The transformation used in the above proof introduces two parallel wires between
the old and new position of v to each of its children. Thus, numerous implementations
of such slack-optimum topologies would inhibit the routability of a chip in practice.
In order to estimate the maximum achievable slack by any topology within our

delay model we first define a λ-tree:



46 3 Repeater Trees

Definition 3.4. Given a number λ ∈
[
0, 1

2

]
, a λ-tree is a pair (T, d), where T =

(V,E) is a rooted binary tree and

d : E → R≥0

such that the two different arcs e, e′ ∈ E, leaving a common node, satisfy

d(e) + d(e′) = 1 and
min{d(e), d(e′)} ≥ λ.

Definition 3.5. For λ ∈
[
0, 1

2

]
and D ∈ R, we denote by f(D) the maximum

number of leaves in a λ-tree (T, d) in which the depth of every leaf with respect to d
is at most D.

Lemma 3.6. Given λ ∈
(
0, 1

2

]
, the maximum number of leaves f(D) in a λ-tree

satisfies the recursion

f(D) =


0, if D < 0,
1, if 0 ≤ D < 1

2 ,
max

λ≤x≤1−λ
f(D − x) + f(D − (1− x)), if D ≥ 1

2 .
(3.13)

Proof. The first two cases are clear. The “divide and conquer” recursion in the third
case takes the maximum over all possibilities to attach two optimum λ-subtrees,
with smaller depths D − x and D − (1− x), to the root of the new λ-tree.

2

If λ = 0, the recursion formula (3.13) would be undefined, as f(D) = ∞ for
D ≥ 1. For λ = 0 and D ≥ 1, we can construct trees with arbitrary many leaves.
The construction starts with a path P with dnode(e) = 0 for all e ∈ E(P ). Now, a
second edge e′ with dnode(e′) = 1 emanates from each internal node. The length of
P and, therefore, the number of leaves can be chosen arbitrarily. Eventually, we
have f(D) = ∞ for λ = 0 and D ≥ 1. By the same construction, we can easily
achieve a worst slack of min{slks +dnode | s ∈ S}, regardless of the number of sinks
|S|.
We will apply Kraft’s inequality, originating from coding theory, which char-

acterizes, whether an ordinary binary tree with unit edge length and prescribed
maximum depths of the leaves can be realized:

Theorem 3.7 (Kraft [1949]).
There exists an ordinary binary tree with unit edge lengths and n leaves at given
depths l1, l2, . . . , ln if and only if

n∑
i=1

1
2li ≤ 1. (3.14)

We will also need one direction of Kraft’s theorem generalized for λ-trees.



3.5 Theoretical Properties 47

Lemma 3.8. Given S = {1, 2, . . . , n} and l1 ≤ l2 ≤ · · · ≤ ln and a λ-tree T with n
leaves at depths at most l1, l2, . . . , ln, then

n∑
i=1

f(ln − li) ≤ f(ln). (3.15)

Proof. Starting from T , we create a tree T ′ of depth at most ln in the following way.
To each leave i ∈ S, attach a λ-subtree of depth (ln − li) and a maximum number
of leaves f(ln − li) with root i. Summation yields the number of leaves of T ′ on the
left side of (3.15), which is certainly at most f(ln).

2

Multiplying both sides in (3.14) by 2n, it can be seen that (3.14) is equivalent to
(3.15) with f(x) = 2x.

The lemmata above help us to derive an upper bound for the maximum achievable
worst slack of any topology:

Theorem 3.9. Given an instance of the repeater tree problem, let slks be the upper
bound for the slack of sink s ∈ S, as defined in Section 3.4.2, and slk = max{slks |
s ∈ S} be the maximum of these bounds. Furthermore, let dnode be defined as in
Section 3.4.1 and let λ ∈

(
0, 1

2

]
, the maximum achievable worst slack slkopt of a

topology is at most the largest value slk that satisfies

∑
s∈S

f

(
slk− slks
dnode

)
≤ f

(
slk− slk
dnode

)
. (3.16)

Proof. As dnode(e) = 0 for the arc e leaving the root of the topology, the root r and
its only child can be considered as one root-node of a binary λ-tree. Therefore, if the
maximum achievable worst slack of a topology for this instance equals slkopt, then
this is equivalent to the existence of an λ-tree (T, d) whose sinks are the elements of
S such that the depth ls of sink s ∈ S in (T, d) satisfies

ls ≤
slks− slkopt

dnode
.

By (3.15) we have

∑
s∈S

f

(
slk− slks
dnode

)
=
∑
s∈S

f

(
slk− slkopt

dnode
− slks− slkopt

dnode

)
≤ f

(
slk− slkopt

dnode

)
.

2

Unfortunately, solving the recursion for f is not easy, especially as it grows
exponentially. For instances with a small number of sinks n = |S|, (3.16) could be
used to determine a good upper bound for best possible slack slkopt.
To use Theorem 3.9 for instances with many sinks, we need more insight into

the structure of f . It was shown that the asymptotic growth of f follows a simple
exponential formula:



48 3 Repeater Trees

Theorem 3.10 (Maßberg and Rautenbach [2007]).
Given λ ∈

(
0, 1

2

]
, there are positive constants αλ and βλ such that the maximum

number of leaves f(D) in a λ-tree with depth at most D fulfills

lim
D→∞

f(D)
βλ · αDλ

= 1, (3.17)

Proof. (see Maßberg and Rautenbach [2007])
2

Using this theorem we obtain an approximate upper bound for the maximum
achievable worst slack:

Theorem 3.11. Given a set S of sinks with upper slack bounds slks (s ∈ S), and
assuming f(D) = βλα

D
λ for some βλ, αλ ∈ R+. Then, the maximum achievable

worst slack slkopt of a topology is at most the largest value slk that satisfies

∑
s∈S

2−
log2(αλ)·(slks − slk)

dnode ≤ 1. (3.18)

Proof. Using the explicit presentation f(D) = βλα
D
λ , dividing by its right side, and

applying 2log2(.) to each summand, (3.16) transforms to (3.18).
2

Note that (3.18) conforms Kraft’s Theorem 3.7, which states that with ls =
log2(αλ)·(slks− slk)

dnode
, there exists an ordinary binary tree (that is, with all edge lengths

equal to one) with leave set S, such that each s ∈ S has depth at most⌈
log2 (αλ) · (slks− slk)

dnode

⌉
.

A binary tree which fulfills (3.7) and defines the supremum for slk can easily be
determined through Huffman coding in its adaptation for min-max functions by
Golumbic [1976] (see Algorithm 2).

Algorithm 2 Slack Bound Computation via Huffman Coding
Input: A finite set X of real numbers;
1: while |X| > 1 do
2: x1 := max{x ∈ X};
3: x2 := max{x ∈ X \ {x1}};
4: X = X \ {x1, x2} ∪ {min{x1, x2} − 1};
5: end while
6: Return the only remaining element x? ∈ X;

The algorithm implicitly builds up a binary tree in a bottom-up order. In
each iteration the elements x1 and x2 are connected to a new node (their father),
represented by the new element inserted into X.



3.5 Theoretical Properties 49

Theorem 3.12 (Golumbic [1976]).
Given a set X = {x1, x2, . . . , xn} of integers, Algorithm 2 returns the value

x? = −
⌈
log2

(
n∑
i=1

2−xi
)⌉

.

This is the maximum possible root label l(r) = x? achievable by a binary tree with n
leaves that conforms l(i) = xi for all leaves i and l(v) = min{l(w)− 1 | w ∈ δ+(v)}
for all non-leave nodes.

Proof. See Golumbic [1976], who proved the theorem for a generalized r-ary trees.
2

Implementing the set X as a heap, the runtime of Algorithm 2 obviously is
O(|X| log |X|). When calling Algorithm 2 with X =

{
log2(αλ)·slks

dnode
| s ∈ S

}
, slk? :=

dnode·(x?+1)
log2(αλ) serves as an approximate upper bound on slkopt for large instances. Again

this bound is approximate due to the assumption f(D) = βλα
D
λ .

For the two special cases λ ∈
{

1
2 ,

1
4

}
the slack bounds can be computed efficiently.

Theorem 3.13. If λ = 1
2 , the maximum possible slack slkr is at most

− dnode
2 log2

(∑
s∈S

2−
2·slks
dnode

)
. (3.19)

If 2·slks
dnode

(s ∈ S) are integral, the slightly tighter bound

− dnode
2

⌈
log2

(∑
s∈S

2−
2·slks
dnode

)⌉
(3.20)

is realizable by a topology.

Proof. As λ = 1
2 , there is no freedom to distribute delay, but each edge is assigned

a delay of dnode
2 . Let T be a topology with

slkr ≤ slks−
dnode

2 ls (s ∈ S),

where ls is the number of edges on the r-s-path minus one. That is, ls is the number
of edges on the r-s-path without the edge leaving r. Using Kraft’s inequality (3.14)
with ls and resolving by slkr yields the desired bound. The second inequality (3.20)
follows similarly from Theorem 3.12.

2

For the case λ = 1
4 , the recursion formula for f was resolved by Maßberg and

Rautenbach [2007]. They obtained following result:

f(k) = 0.1038 e−0.7644 k cos (7.4259 k)
− 0.3649 e−0.7644 k sin (7.4259 k)
+ 0.8961 e1.528 k



50 3 Repeater Trees

for all k ∈
{
i
4 | i ∈ N0

}
. Therefore,

α 1
4

=


1

2 +
√

31
108

 1
3

+
1

2 −
√

31
108

 1
3

−4

≈ 4.613 (3.21)

and β 1
4
≈ 0.8961.

3.5.2 Optimality Statements
In the last section, we investigated upper bounds for the achievable slack. Here
we derive quality statements of Algorithm 1 in terms of slack and wire length. As
already mentioned towards the end of the previous section, the case λ = 1

2 allows
stronger statements. The following result corresponds to slack optimization for
instances whose sinks are more or less close to the root.

Theorem 3.14. For dwire = 0, dnode = 2, λ = 1
2 , atr, rats ∈ N and rootdelay =

sinkdelay(s) = 0 for s ∈ S, the topology constructed by Algorithm 1 realizes the
maximum achievable slack slkopt, and we have

slkopt = −
⌈
log2

(∑
s∈S

2− rats + atr
)⌉

.

Proof. Since all relevant quantities are integers, the stated expression for slkopt
follows from Theorem 3.12.

The fact that our topology realizes the optimum slack slkopt follows by induction
on the number of sinks. For one sink the statement is trivial. Now let s1, s2, . . . , sn
denote the sinks ordered such that

ratsi ≤ ratsj

for i < j. By induction, the topology T ′ containing all but the last sink sn realizes
the maximum possible slack slk′opt for these sinks. Since the procedure has the
option to insert sn using all arcs of T ′ leading to sinks, we can assume that all
sinks are exactly at the maximum allowed depth ls = rats− atr− slk′opt within T ′.
By Kraft’s inequality (3.14), this implies that ∑n−1

i=1 2−ls equals exactly 1. Thus∑n
i=1 2−ls > 1 which implies

slkopt ≤ slk′opt−1
which will clearly be realized by Algorithm 1.

2

In the second special case, we assume that timing is uncritical and can be
disregarded by setting ξ = 0. In this case, the priority order, as calculated in Section
3.4.2, does not give a good hint in which order the sinks should be inserted. In such
a situation we can actually use further criteria to select a good order for processing
non-critical sinks. For minimizing wirelength we propose to choose that sink to



3.6 Postoptimization 51

be inserted next, which is closest to the current partial topology. Furthermore, we
choose the arc into which the new sink will be inserted as to minimize the additional
wiring, ignoring slacks (ξ = 0).

In fact, this will turn Algorithm 1 into a Steiner tree heuristic (sometimes called
Prim heuristic) similar to one considered by Rohe [2002]. Note that another situation
in which the described modification of the insertion is reasonable is an early design
stage in which the estimates for the arrival times are unreliable or meaningless. The
following result is a well known consequence of Hwang’s theorem on the Steiner
ratio (Hwang [1976]).

Theorem 3.15. If the sinks are inserted into the topology as described above, then
the `1-length of the final topology is at most 3

2 times the minimum `1-length of a
Steiner tree on the terminals {r} ∪ S.

Proof. For a short proof see Bartoschek et al. [2006].
2

3.6 Postoptimization

One drawback of the proposed approach is that it uses a fixed pair of delay and
resource allocation parameters based on a single value of ξ. The algorithm accounts
for this because non-critical sinks usually do not influence the root slack and thus
are connected by the tie-breaker rule that minimizes resource allocation. In addition
a subsequent circuit sizing will downsize non-critical branches and thereby decrease
the resource allocation in terms of placement area and power consumption. However,
we can take further advantage of non-critical subtrees.

Once a good topology is found, the resource allocation might be reduced by
adding more delay to non-critical paths for the sake of less resource consumption.
Higher, but more resource efficient, delays can be assigned to certain edges in the
topology. This includes choosing lower cost wiring modes, detours of two-point
connections through less congested areas, or larger assumed repeater spacings, that
will guide the subsequent repeater insertion. The problem of optimizing a fixed
topology T can be formulated as follows.
For each edge e ∈ E(T ) there a is set T (e) ⊂ R of alternative delays, each of

which is associated with a resource allocation cost function ce : T (e)→ R≥0. The
set T (e) of alternative delays will usually be composed of intervals, potentially
with length zero, for example when the next different delay can only be realized by
changing the wiring plane. Later in Chapter 6 we will show how to chose delays for
a given slack target using minimum resources, not only for tree structures, but in
general directed graphs with cycles.



52 3 Repeater Trees

3.7 Repeater Insertion

After the topology is defined repeaters have to be inserted. Here, we give only a
short summary on known buffering strategies that can be applied. Most approaches
are based on dynamic programming. Van Ginneken [1990] was the first to use
dynamic programming. He considered the problem of inserting a single buffer type
into a given topology and a fixed set of potential buffer locations. The approach
works in a bottom-up fashion and computes the best solutions given all solution
combinations at the children in the tree. Inferior solutions can be pruned such that
the solution-set stays relatively small.

This approach has been extended and refined several times. Lillis et al. [1995]
extended it to allow for several buffer types. Shi and Li [2005, 2006b, 2006a] greatly
improved the originally quadratic running time of van Ginneken’s algorithm. Hu
et al. [2006] use the same idea to primarily optimize slew and not slack.

Some authors also considered analytic models for locating and sizing buffers.
Using rather restricted delay models, closed formulas were obtained by Dhar and
Franklin [1991], Chu and Wong [1997]. Alpert and Devgan [1997] also applied
methods from continuous optimization, and Mo and Chu [2000] combined van
Ginneken’s dynamic programming paradigm with quadratic programming. Clearly,
the optimality statements made about these continuous approaches are only valid
within the somewhat unrealistic circuit and delay model and do not capture the
discrete nature of the buffering decisions. All of these solutions have rather high
running times, which prevents their application on millions of instances.

In Bartoschek et al. [2007b] we proposed a faster algorithm that finds potential
repeater positions on the fly. Then it applies a fast bottom-up buffering along the
previously computed topology. The optimum repeater distances in an optimum
chain, as computed in Section 3.3.1, define distance limits between two repeaters.
Once that limit is reached, a repeater is inserted. Whenever two branches are
merged, a small predefined finite set of the promising ways to combine the branches
and add shielding repeaters is enumerated. If two branches of different parities
are merged, the merge is not done immediately. Instead, two parallel branches are
maintained, leaving the possibility of the inverter insertion to an appropriate point.
This prevents excessive inverter insertion if too many distinct parities are to be
merged.

As the topology generation, the repeater insertion balances efficiently between
power and performance. The parameter ξ ∈ [0, 1] controls the repeater spacing as
well as the effort for inserting shielding repeaters during the branch merging and for
inserting repeaters directly behind load sensitive root pins.

Altogether we are able to solve 1.3 million timing critical instances in 20 minutes
on a Xeon E7220 processor, and achieve slacks comparable to high accuracy dynamic
programming approaches, which would require days for such a task.



3.8 Implementation Issues 53

Figure 3.5: Blockages (red) on the chip Arĳan with blockage grid (blue).

3.8 Implementation Issues

3.8.1 Blockages

Repeater tree algorithms have to be aware of blockages as they occur frequently
in practice. In some areas it is impossible to place repeaters (placement blockages,
mostly due to pre-placed macros). Some macros do not even allow any wiring across;
these areas define wiring blockages. Some of these blockages can force us to make
detours.
We introduce a blockage grid, which is the Hanan grid given by the coordinates

of all edges of significantly large blockages (Hanan [1966]), enhanced by additional
grid-edges if routing and placement congestion shall be considered. Figure 3.5 shows
typical blockages on a chip as red areas and and a blockage grid by blue lines.
Next we define a cost function on the edges of the blockage grid that reflects delay
(similarly as Held et al. [2003]). As before, the cost of an edge is dwire times its
length unless the edge is in the interior of a blockage. For long distances within
placement blockages we extend the linear function beyond l∗ in a continuously
differentiable way by a quadratic function. This models higher (and quadratically
growing) delays in the case when the distance between two repeaters is larger than
optimal. Edges within routing blockages have infinite cost.
Given the blockage grid with these edge costs, we can compute a shortest path



54 3 Repeater Trees

between any pair of points fast with Dĳkstra’s algorithm (Dĳkstra [1959]), and
thus get a metric c on R2. In the absence of any relevant blockages this is dwire
times the `1-distance. However, to use c instead of `1-distances properly in our
topology generation algorithm, we would have to compute shortest three-terminal
Steiner trees with respect to c in every step, which is much more time-consuming
than doing the same with respect to the `1-metric. This has not been implemented
yet. However, we will re-route two-point connections based on the metric c during
buffering.

3.8.2 Handling Placement and Routing Congestion
Routing congestion can be generated by repeater trees, and placement congestion
(too little space for too many circuits) can also result from inserting many repeaters
in a certain area. Thus it is advisable to take routing and placement congestion
into account when constructing repeater trees.
Our repeater tree algorithm balances efficiently between wire length and perfor-

mance. This results in an overall economic consumption of placement and wiring
resources. When applied in cooperation with an efficient congestion-driven place-
ment algorithm (like Brenner and Rohe [2003]), wiring congestion does hardly show
up. Our current implementation and our experimental results do not take specific
care of routing and placement congestion. Nevertheless all chips could be legalized
and routed without any problems, not only in our experiments but also in the daily
usage of our industrial partners.
Anyway, the algorithm can be extended to handle congestion directly, when

augmenting the blockage grid by congestion information. Using the combined
information we can define a metric which can be used instead of the `1-metric or c
as defined in the previous subsection. Edges within congested areas become more
expensive.

Estimating placement congestion is a routine job. For estimating routing conges-
tion we suggest to use a fast method like Brenner and Rohe [2003] rather than a
full global routing. Of course the information must be updated regularly if many
repeater trees are built. One could even think of using our inverter tree routine as a
subroutine of a multicommodity-flow-based global router, such as the one described
by Müller [2006].

3.8.3 Very High Fanout Trees
As we will show in our experimental results, the running time of our algorithm
is extremely small for instances up to 1 000 sinks. Nevertheless, our topology
generation as described above has a cubic running time. On real designs there are
some instances with several hundred thousand sinks, for which this would lead to
intolerable running times.

One way to reduce the running time would be to consider only the nearest k arcs,
were k is some positive integer. This would require to store the arcs as rectangles in



3.9 Experimental Results 55

a suitable geometric data structure (for example k-d-trees). However, we chose a
different approach.

For instances with more than 1 000 sinks we first apply a clustering algorithm to
all sinks, except for the 100 most critical ones if ξ > 0. More precisely, we find a
partition S ′ = S1

.
∪ · · ·

.
∪ Sk of the set S ′ of less critical sinks, and Steiner trees Ti

for Si (i = 1, . . . , k) such that the total capacitance of Ti plus the input capacitances
of Si is at most maxcap. Among such solutions we try to minimize the total wire
capacitance plus k times the input capacitance of the repeater t∗.
For this problem we use the approximation algorithm by Maßberg and Vygen

[2008], which generates very good solutions in O(|S| log |S|) time. We introduce an
appropriate inverter for each component; its input pin constitutes a new sink. This
typically reduces the number of sinks by at least a factor of 10. If the number of
sinks is still greater than 1 000, we iterate this clustering step. Finally we run our
normal repeater tree algorithm as described above.

3.8.4 Plane Assignment and Wire Sizing
So far, we used only one wiring mode. However, the best wiring mode for bridging
large distances may not be appropriate for short connections. On the other hand, if
we concentrate on minimizing the use of routing resources (small ξ), it may still
be appropriate to use higher planes and/or thicker wire types for some nets, for
example for long nets crossing macros.

Our algorithm can be extended naturally to using several wiring modes within a
repeater tree. In particular, preprocessing is done for all wiring modes, and the best
choice depends on ξ. During buffering we will be able to use different wiring modes
for different nets of the same repeater tree.

3.9 Experimental Results
To demonstrate the effectiveness of our algorithm we compare the results of our
trees with lower bounds for the wire length and the number of inserted repeaters,
as well as with upper bounds for the achievable worst slack.
We carried out experiments on all repeater tree instances of the chip Ludwig.

The distribution of the instances by the number of sinks is given in Table 3.1. We
have chosen Ludwig, because it is the largest design from the newest technology,
65 nm, in our testbed. Among the three technologies in our testbed, wire delays play
the most important role in this technology, because here the wire resistances are
highest. The chip contains 2.175 million instances. Thereof, 426 thousand instances
are non-trivial, as they have more than two sinks.
The running time for constructing all 2.175 million topologies is less than 50

seconds on an Intel Xeon E7220 processor with 2.93 GHz. This speed proves the
efficiency of the algorithm in practice.



56 3 Repeater Trees

Number of Sinks Number of Instances
1 1391443
2 357057
3 152456
4 91859
5 48221
6 26195
7 24537
8 16147
9 13310
10 8254

11–30 32639
31–50 3913
51–100 7999
101–500 796
501–1000 181
> 1000 6
Total 2175013
> 2 426513

Table 3.1: Distribution of repeater tree instances.

The experiments were carried out with λ = 1
4 , and performed for five different

topology tradeoffs 0.0, 0.25, 0.5, 0.75, and 1.0.
For wirelength, we compare the lengths of our topologies to the length of a

minimum Steiner tree. For up to 30 sinks we compute a provable optimum Steiner
tree. For larger instances we approximate this bound by effective Steiner tree
heuristics, which are usually within 1% of the optimum length on average.

Table 3.2 on page 58 shows the results for several topology tradeoffs ξ. The average
numbers (column “Avg.”) show the excess of the total length of our topologies
compared to the total length of the minimum Steiner trees in percentage, for all
instances matching the number of sinks in that row. The maximum numbers (column
“Max”) contain the maximum deviation among all instances covered by that row.

For ξ = 0.0, the total wire length exceeds its lower bound by only 0.71%. Note, we
did not implement the variant of Theorem 3.15, which iteratively connects the sink
which is closest to the partial topology and guarantees the maximum deviation to
be within 50% of the minimum Steiner tree length. Hence, there are a few instances
for which we exceed the minimum Steiner tree length by more than 50% percent
for ξ = 0.0 (for instance by 97.66%). As the total length deviation is already very
small, implementing the proposed variant is not too important. We could of course
use other existing Steiner tree heuristics with a performance guarantee directly.
Furthermore, we never use the setting ξ = 0.0 in our timing closure flow, but choose
at least a small positive value for ξ to avoid extreme daisy chains also for resource
efficient trees.
When targeting the topologies towards slack aware trees by increasing ξ, the



3.9 Experimental Results 57

average length deviations as well as the maximum deviations increase, as expected.
Upper bounds for the slack are computed as follows. For less than five 5 sinks we

enumerated all topologies to obtain an upper bound for the achievable slack. For
more sinks we applied Huffman coding, as described below Theorem 3.12, using
the approximate representation (3.21) for α 1

4
. The slacks are measured in the delay

model of our topology.
Table 3.3 summarizes the average slack deviation (of all instances covered by

the number of sinks in that row) in picoseconds and the maximum worst slack
deviation among those instances, also in picoseconds. It can be seen nicely how
the slack deviations improve with increasing ξ. Also note that, for ξ = 0.75, we
achieve already very good average slack deviations with a moderate total wire length
deviation of only 5%.
The slack numbers above were computed using the delay model of the topology

generation. Another interesting question is, whether the computed topologies prove
useful after repeater insertion. For this purpose we computed a lower bound on the
worst slack that includes repeater insertion. For each sink, we build a buffered path,
ignoring any branchings. The worst slack over all sinks we obtain this way is an
upper bound for the achievable slack of a buffered topology. Table 3.4 shows the
slack deviation of the buffered topology with respect to this bound.
The table shows the average and maximum slack deviations for the extreme

settings ξ = 0.0 and ξ = 1.0. The applied buffering algorithm scales between power
and performance, like our topology algorithm. In these tables it was run with
highest slack effort assuming unconstrained resources.

In the forth and seventh column we compare the total number of inserted repeaters
(of all instances covered by that row) with a lower bound, which is computed as
follows. Let Cmin be total capacitance of a minimum Steiner tree connecting the root
with all sinks plus the input capacitances of all sinks minus minus the maximum
capacitance the root r may drive with the given input slew optslewx such that its
output slew is at most optslewy, with suitable x, y ∈ {rise, fall}. Furthermore, let
cmax(t) be the maximum load an inverter t ∈ B may drive, in order to maintain the
optimum slew. Now, using kt ∈ N0 inverters of type t the following inequality has
to hold

Cmin +
∑
t∈B

icap(t)kt ≤
∑
t∈B

cmax(t)kt,

in order to maintain the optimum slew specification. To obtain a lower bound for
the number of repeaters we want to minimize

∑
t∈B

ctkt,

where we simply set ct = 1 if t is an inverter, and ct = 2 if t is a buffer, which always
consists of two internal inverters. Solving this integer linear program we obtain that



58 3 Repeater Trees

ξ = 0.0 ξ = 0.25 ξ = 0.5 ξ = 0.75 ξ = 1.0
#Sinks Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.76 79.38 1.80 93.91 3.49 94.37 35.11 99.72
4 0.14 23.95 1.13 80.09 2.67 90.26 4.83 101.16 28.03 191.83
5 0.22 29.27 1.50 75.07 3.72 89.42 6.69 128.87 50.69 190.49
6 0.73 27.64 2.44 77.96 5.06 92.85 8.43 105.02 31.99 226.77
7 0.54 25.60 1.44 80.19 2.81 86.86 5.10 107.87 49.39 196.15
8 0.83 32.65 1.64 67.75 3.28 99.47 6.78 125.62 43.79 343.98
9 1.09 31.82 2.09 66.51 4.00 81.94 7.46 106.93 42.69 239.26

10 1.03 32.27 1.95 78.40 6.45 90.61 10.66 154.01 41.95 303.73
11–30 2.97 52.93 4.29 66.07 6.79 103.35 10.55 163.06 40.08 530.83
31–50 4.89 36.21 5.95 36.83 8.68 70.98 13.46 104.46 53.05 748.98

51–100 1.99 41.17 2.38 41.17 3.24 57.84 23.97 93.35 168.16 1204.69
101–500 8.68 34.84 10.25 40.33 12.28 48.18 15.65 106.04 67.22 1170.43

501–1000 17.60 52.73 21.50 56.09 26.59 63.51 34.93 95.91 331.91 2759.00
> 1000 55.11 97.66 55.08 98.02 55.35 97.67 56.62 97.67 65.09 97.67
Total 0.71 97.66 1.27 98.02 2.27 103.35 4.98 163.06 31.36 2759.00
> 2 1.27 97.66 2.26 98.02 4.04 103.35 8.87 163.06 55.84 2759.00

Table 3.2: Wire length deviations for varying topology tradeoff ξ (in %).

ξ = 0.0 ξ = 0.25 ξ = 0.5 ξ = 0.75 ξ = 1.0
#Sinks Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 2.97 20.81 1.21 20.81 0.70 20.81 0.43 20.81 0.01 4.95
4 5.60 209.48 2.38 160.29 1.24 45.83 0.71 25.49 0.06 9.90
5 9.26 23.39 4.07 14.85 2.01 14.85 1.12 14.85 0.04 8.43
6 10.29 71.48 3.92 56.39 1.69 34.57 0.80 23.37 0.09 12.13
7 12.39 96.33 5.62 86.33 3.29 86.33 2.03 36.98 0.10 13.73
8 13.47 226.84 6.66 29.70 3.92 29.70 2.08 22.27 0.29 15.11
9 14.72 498.44 6.88 48.69 3.82 48.69 2.03 26.59 0.27 14.59

10 18.92 836.45 10.78 836.45 4.35 39.60 2.19 29.70 0.46 22.71
11–30 21.76 581.52 9.29 576.57 4.53 411.96 2.17 74.25 0.30 37.23
31–50 42.20 2584.16 20.26 228.37 10.61 199.12 5.23 119.10 1.15 43.47

51–100 76.68 2571.07 63.24 2566.12 57.10 1999.71 28.06 417.18 7.20 55.83
101–500 115.74 1079.06 39.32 220.90 19.73 172.04 9.53 102.41 1.64 36.16

501–1000 454.12 1117.79 135.21 476.82 62.17 198.58 39.24 128.69 11.63 113.03
> 1000 107.11 191.31 75.05 151.72 49.48 97.27 25.55 54.57 0.65 2.42
Total 1.94 2584.16 0.95 2566.12 0.58 1999.71 0.31 417.18 0.05 113.03
> 2 9.89 2584.16 4.86 2566.12 2.97 1999.71 1.56 417.18 0.24 113.03

Table 3.3: Slack deviations for varying topology tradeoff ξ (in ps).



3.9 Experimental Results 59

Topology Tradeoff ξ = 0.0 Topology Tradeoff ξ = 1.0
Slack # Repeaters Slack # Repeaters
(in ps) (in %) (in ps) (in %)

#Sinks Avg. Max Avg. Avg. Max Avg.
1 0.00 0.01 165.43 0.00 0.01 165.43
2 1.48 63.72 615.09 1.48 63.72 615.09
3 6.82 117.52 454.64 4.54 305.22 358.40
4 10.90 226.76 419.96 7.42 86.49 291.91
5 13.15 79.79 610.24 8.74 85.74 365.18
6 12.16 155.61 589.85 7.73 232.91 309.66
7 14.21 151.48 517.05 9.93 94.57 336.92
8 17.96 288.57 467.54 14.16 112.71 292.74
9 18.50 530.88 518.60 14.91 104.47 312.30

10 18.67 872.58 497.98 14.29 101.47 268.03
11–30 25.28 736.51 545.99 18.56 179.19 302.56
31–50 51.10 2842.37 557.88 36.72 169.57 397.22

51–100 51.47 3094.53 596.97 56.77 183.61 613.95
101–500 119.13 497.29 543.52 63.42 408.15 536.44

501–1000 499.97 1063.32 514.90 177.98 356.36 745.37
> 1000 191.81 420.41 686.79 136.66 253.57 687.42
Total 2.84 3094.53 416.52 2.12 408.15 329.50
> 2 13.26 3094.53 499.10 9.55 408.15 339.96

Table 3.4: Deviation of worst slacks and number of repeaters after high effort
buffering (buffering tradeoff 1.0).

the optimum value (k?t )t∈B equals

∑
t∈B

ctk
?
t =

⌈
min

{
ct · Cmin

cmax(t)− icap(t)
| t ∈ B

}⌉
.

Interestingly, the average slack deviation is relatively small even if the topology
is constructed unaware of timing constraints (Table 3.4, ξ = 0.0). However, the
big outliers are eliminated in the timing aware topologies (ξ = 1.0). The reason
for the relatively good slack deviation of the timing-unaware topologies lies in the
efficiency of the subsequent buffering algorithm to insert shielding repeaters. This
becomes evident when comparing the number of inserted repeaters. Though having
an overall shorter wire length much more repeaters are needed to achieve good
slacks on timing unaware topologies.
Table 3.5 describes the mutual effect of varying the topology tradeoff and the

buffering tradeoff. It shows the average and maximum slack deviations (after
buffering) and the repeater usage deviation over all non-trivial instances (with more
than two sinks) for several combinations of the buffering and topology tradeoffs.
With a low (0.0) or medium (0.5) buffering tradeoff the number of inserted repeaters
correlates with the topology tradeoff. But with a high buffering tradeoff, the relation
between the topology tradeoff and the number of inserted repeaters is reciprocal.



60 3 Repeater Trees

Tradeoff Slack # Repeaters
(in ps) (in %)

Buffering Topology Average Max Average
0.0 0.00 37 3056 126.45
0.0 0.25 37 3052 126.57
0.0 0.50 37 2285 126.64
0.0 0.75 37 796 127.98
0.0 1.00 36 556 154.13
0.5 0.00 26 3043 160.57
0.5 0.25 25 3039 160.99
0.5 0.50 25 2260 161.39
0.5 0.75 25 756 163.11
0.5 1.00 25 412 188.11
1.0 0.00 13 3094 499.10
1.0 0.25 10 3095 405.20
1.0 0.50 9 2236 363.25
1.0 0.75 9 744 340.71
1.0 1.00 9 408 339.96

Table 3.5: Buffering versus Topology Tradeoff



4 Circuit Sizing

4.1 Problem Description
In circuit sizing a layout or size for every circuit has to be found. Technically, a
mapping β : C → B must be determined. For every c ∈ C there is a finite class
[β(c)] ⊂ B of logically equivalent implementations for c. If p ∈ P (β(c)) we denote
by [p] the class of corresponding pins on logically equivalent books from [β(c)].
Figure 4.1 shows an example of three different layouts for an INVERTER.
Every layout has different delay characteristics. They depend on the size of the

transistors, on the relative scaling between the p- and n-transistors, and on the
applied materials. Precharacterized circuit libraries provide books which differ in
four main characteristics:

• size,

• threshold voltage,

• beta ratio, and

• tapering.

The most important characteristic is the size. We say that a subset B′ ⊂ [β(c)]
scales in size if the relative sizes between the transistors within are almost constant
throughout B′, and if they do not differ in their materials. Generally, larger sizes
yield higher drive strengths, as current can flow faster through a larger transistor-
gate. This also implies higher capacitance limits at the output pins, and lower
output slews, provided a constant input slew. On the other hand the input pin
capacitances (blue wires in Figure 4.1) are increasing, and thereby slowing down the
predecessors, which have to charge or discharge larger capacitances. Furthermore,
larger circuits consume more power and area.
A characteristic that has become more and more important in the last years is

the threshold voltage Vt. This is the voltage at which a transistor changes its state
from insulation to conduction or vice versa. An n-transistor is switched off if the
gate voltage is below the threshold voltage and turned on when it is larger than the
threshold. A p-transistor behaves vice versa. Books with different thresholds can be
realized, without changing the pin and transistor shapes, by varying the fabrication
materials such as the gate conductor material (polysilicon vs. metal), the gate
insulation material, the thickness of the gate material, and the concentration of the
channel doping. As every threshold requires a separate mask and production step,

61



62 4 Circuit Sizing

Output

n−transistor

p−transistor

VDD

GND

Input

Figure 4.1: Example of three alternative layouts for an INVERTER. The figure
shows a view from the top. The semiconductors are located in the center of the
transistors, hidden below the blue input wires. The p-transistor is connected to the
voltage supply network VDD. The n-transistor is connected to the ground network
GND. If the input voltage is high the p-transistor is blocking and the n-transistor
is admitting current flow. Potential load on the output net can be discharged to
the ground (GND). If the input voltage is low the p-transistor is open and the
n-transistor is blocking. Now the output is charged by the VDD-connection.

there are usually at most three different threshold voltages on a chip. The lower the
threshold voltage the faster the circuit. As a drawback the leakage current increases
exponentially when lowering the threshold voltage. Therefore, the number of low
threshold voltage circuits must be kept small, as the leakage current creates power
consumption even in a steady state.

The beta ratio determines the relative size of parallely arranged transistors within
a single book. By changing the relative sizes, either the rising or the falling signal
at the output can be accelerated.

The tapering characteristic is given for multiple input books with serially arranged
transistors, for example NANDs. Here the relative size of serially arranged transistors
is varied. This way the delays from individual input pins are decreased at the cost
of other inputs, again by changing relative sizes of the internal transistors.

As it is difficult and probably impossible to provide strict definitions for the four
categories, they are considered to be part of the input. For each characteristic there
is a partition of B into its equivalence classes.

This section considers the optimization of the circuit sizes, which has the biggest
impact on the path delays and electrical integrity, among the four categories. Varying
beta ratio and tapering provide only small improvements of 5–10% of the worst path
delay and will be considered shortly in Section 4.5, as a postoptimization routine.
The threshold voltage assignment will be modeled and optimized as a Time-Cost
Tradeoff Problem later in Chapter 6.

A widely used problem formulation for circuit sizing is to minimize the overall



4.2 Previous Work 63

circuit power or size, while maintaining all late mode timing constraints:

min
∑
c∈C

weight(c, β(c)) (4.1)

such that (2.12), (2.20), and (2.22) are fulfilled for all late mode constraints between
two signals (d, σd) and (c, σc). Here weight : C × B → R+ is some weighted
sum of power, area, or other possible resources. Often weight depends only on
the second parameter β(c), but we want to allow that weights might be adjusted
for individual circuits, for instance based on the local placement densities or the
switching frequencies.

In practice global sizing of all circuits is mostly applied when no feasible solution
with respect to the timing constraints (2.12) exists. A practical objective is to
maximize the worst slack, but also push less critical negative slacks as far as possible
towards the slack target, that is, find a leximin maximum vector of negative endpoint
slacks. Such a solution would limit the need for other more resource-consuming
optimization operations.

4.2 Previous Work
Circuit or transistor sizing is one of the key tasks during physical design and exten-
sive literature exists on this subject. Here an overview of the most important, as well
as recent results, is given. Most authors consider only single output circuits, called
gates. Therefore, the problem is often called the gate sizing problem. The mathe-
matically best-founded approaches rely on geometric programming formulations and
assume continuously sizable circuits. Delay and slew functions are approximated by
posynomial functions. A posynomial function f : Rn → R is of the form

f(x) =
K∑
k=1

ckx
a1k
1 xa2k

2 · · ·xankn , (4.2)

where ck > 0 and aik ∈ R. A geometric program is an optimization problem of the
form

min f0(x) (4.3)
such that fi(x) ≤ 1, i = 1, . . . ,m, (4.4)

gi(x) = 1, i = 1, . . . , p, (4.5)

were fi are posynomial functions, and gi are monomials. A monomial is a posynomial
with only one summand. The objective (4.3) reflects some power or area minimization
while delay and circuit size constraints are modeled by (4.4) and (4.5). Many
authors consider the gain-based delay model which falls into a special class of
posynomials, where exponents are restricted to aik ∈ {−1, 0, 1}. Gain-based delays
result from modeling not only wire delays by the Elmore delay formula, but also the



64 4 Circuit Sizing

circuits/transistor delays. Slews are not considered in this model, only the delay
through a circuit is approximated. Let βgain : C → R+ specify a continuously sizable
realization of a book. The gain-based delay ϑgain of a timing edge e = (v, w) ∈ ET
depends only on the size of a circuit and the sizes of its successors. It is given by

ϑgaine = ϑintre +
γe + ∑

c′ successor ofw
δe,c′ · βgain(c′)

βgain(c) , (4.6)

where ϑintre denotes some intrinsic delay and γe, δe,c′ are appropriate adjust factors.
A posynomial formulation for the circuit/transistor sizing problem was introduced

by Fishburn and Dunlop [1985]. A globally optimum solution to the transistor sizing
problem based on geometric programming was first given in Sapatnekar et al. [1993].
The nice property of geometric programs is that they can be turned into convex
programs by variable transformation (yi = log xi). Therefore, a local optimum is
always a global optimum.
However, solvable instance sizes for general purpose geometric programming

solvers, which typically implement an interior point method for convex programs,
have at most 10 000 variables according to Boyd et al. [2005], who also give a detailed
tutorial on geometric programming approaches.

Therefore, they are unemployable for full chip instances with multi-million circuits.
Marple [1986] proposed Lagrangian relaxation methods for transistor sizing. Here
the timing constraints are relaxed and equipped with Lagrangian multipliers. He
combined an augmented Lagrangian method to obtain a globally near-optimum
solution with a projected Lagrangian method for local refinement. Chen et al. [1999]
gave a detailed theoretical analysis of the Lagrangian relaxation formulation. One
key result is that the Lagrangian multipliers must form a combinatorial network
flow. Thus the search for Lagrangian multipliers can be restricted onto the space
of network flows. Langkau [2000] and Szegedy [2005b] applied that approach to
standard circuit designs. Rautenbach and Szegedy [2007] proved that a subtask of
the subgradient method—the optimization for fixed Lagrangian multipliers—can
be done with linear convergence by cyclic relaxation for general networks. Though
the Lagrangian relaxation formulation tends to handle larger instances than general
purpose solvers it is based on an inaccurate timing model. Furthermore it can only
be shown that the limes inferior converges towards the optimum solution. High
sensitivity to step size multipliers and initial points were reported by Tennakoon
and Sechen [2002]. Similar observations were made by Szegedy [2005a].

The rounding of a continuous solution to books from a circuit library was recently
improved through dynamic programming by Hu et al. [2007]. However, the running
times of dynamic programming are too large for global application on multi-million
circuit instances. In that work an overview on the sparse literature for the rounding
step can be found.
All geometric programming formulations have the disadvantage of low accuracy,

which comes along with the simplified delay models that enable the convex problem
formulation. Conn et al. [1998, 1999] proposed non-convex optimization based on



4.3 New Approach 65

accurate circuit simulations. Based on the simulation results, the local optimum is
found by gradient descent.
The fastest known algorithms for large scale gate sizing rely on delay budget

heuristics. In a first step a delay budget is assigned to each circuit or transistor
and then in a second step each circuit is assigned to a minimum size solution that
maintains this budget. Under the RC-delay model and by ignoring slews, the actual
sizing can be performed in backward topological order of the circuit graph. The
first delay budgeting approaches were proposed in Chen and Kang [1991], Dai and
Asada [1989], Heusler and Fichtner [1991] for transistor sizing. Newer approaches
can be found in Sundararajan et al. [2002], Kursun et al. [2004], Ghiasi et al. [2006].
The latter start with a feasible solution that preserves all timing constraints, and
then distribute positive timing slacks of non-critical paths as an excess delay budget
to each individual circuit or transistor. The initial solution is found by local search
methods such as Fishburn and Dunlop [1985]. The budgets are used to minimize
power by reducing circuit or transistor sizing sizes. The optimality statements as
the one in Sundararajan et al. [2002] hold only under simplified delay models, where
especially the delay through a circuit does not depend on the size of the predecessor.
In the presence of slew propagation this is usually not true.

In the last years, most works on gate sizing considered the problem under statistical
timing constraints (see Agarwal et al. [2005], Sinha et al. [2006], Dobhal et al. [2007],
Singh et al. [2008]). Mani et al. [2007] consider combined statistical circuit sizing
and voltage threshold optimization for power and timing by an interior point
solver. A statistical gate sizing algorithm considering a postsilicon tunable clocktree
was proposed by Khandelwal and Srivastava [2008]. Statistical effects can be
approximated reasonably only after routing, therefore these models are of limited
relevance to the prerouting timing closure problem. After detailed routing is done,
the objective is to minimize rather the number of design changes, here circuit size
changes, because the necessary reroute is typically very running time intensive. A
global optimization that sizes all circuits at once is hardly possible in this stage.

4.3 New Approach
The mathematical beauty of geometric programming approaches lies in the com-
putability of a global optimum. The drawback of all geometric programming models
is that they can handle only small instances or rely on significant simplifications. In
addition, when applied to standard cell/circuit ASICs, the inaccuracy of the timing
model and the need for rounding to discrete circuits can undermine the advantage
of a globally optimum solution.

The drawback of existing delay budget heuristics is that they also used simplified
delay models and are especially ignoring slew effects, through which the predecessor
layout has an influence on the delays through the currently considered gate. Our
approach falls into the class of delay budget algorithms, but it overcomes the
limitation of unrealistic delay models. Instead of delay budgets, we assign slew



66 4 Circuit Sizing

targets, which is principally equivalent. But the slew targets are not only used to
size the circuits to which a slew target is assigned, but to deliver reasonable slew
estimate when sizing the successors. Thus our approach enables more accurate local
refinement. Using a fast lookup-table based refinement we are able to size multi-
million circuit designs within one hour on a Xeon processor. Throughout the course
of the algorithm real (discrete) circuit sizes are maintained. Delays are computed
by static analysis according to Section 2.4. We do not focus on the globally critical
paths but make choices mainly based on the local criticality of circuits compared to
their predecessors. Therefore, our algorithm tolerates incomplete timing assertions,
which often occur in early design stages and cause unreasonable bad slacks.

As timing analysis is time consuming it avoids incremental timing updates,
but analyzes the complete timing of the chip, once all circuit sizes were refined.
Furthermore it takes full advantage of a timing engine that performs parallel timing
analysis. The algorithm itself can be parallelized easily.
After the fast global sizing, we apply local search to each circuit on the critical

paths by evaluating the layout changes exactly. To enable optimization of less
critical paths, it memorizes locally optimum circuits which could not be improved,
to hide them from further processing.

We demonstrate the quality of our algorithms by comparing the results with lower
bounds for the minimum achievable area and worst path delays. On average the
results are within 16% of the minimum possible area consumption and within 2% of
the lower bound on the achievable worst path delay.

4.4 Fast Circuit Sizing
The idea of the algorithm is that slews and delays have to be small on critical paths
and can be relaxed on non-critical paths. A simple approach of forcing each slew to
a tight value already gives reasonable slack results, but consumes too much area
on non-critical paths. Additionally, critical circuits with more critical predecessors
should be sized rather small, to reduce the load capacitances of the predecessors.
We assume that driver strength and input pin capacitance correlate. In rare cases
this assumption might not be valid, for example if a next larger equivalent circuit
contains two more internal inverters at the output pin. Such situations will be
absorbed by the subsequent local search described in Section 4.5.
Starting with some initial slew target slewt(p) ∈ R+ for each output pin p on a

circuit, Algorithm 3 iteratively chooses smallest possible circuit sizes such that the
targets are met. Based on the slack values the slew target slewt(p) is then relaxed
or tightened based on the global and local criticality of p.

The algorithm avoids incremental timing updates to prevent propagation of timing
information through the forward and backward cone of each changed circuit. Instead,
timing is updated for the complete design in line 4. This way the algorithm can
take full advantage of a parallel timing engine. The actual optimization, line 3 and
line 5, can also be parallelized.



4.4 Fast Circuit Sizing 67

As seen in Section 2.4, circuit delay and output slew are correlated and monoton-
ically increasing functions in the two delay calculation parameters load capacitance
and input slew. Therefore, we can equivalently assign either delay targets, slew
targets, or any combination of them. The output slew is an input parameter of the
delay calculation in the next stage, in which upper slew limits are given by design or
technology rules. Furthermore slew values have a similar range for all books in the
library B while delays vary with the internal logical depths. But most importantly,
we can use the slew target at the predecessor circuits to obtain good estimates for
the input slew when assigning circuits to books in line 3.

Algorithm 3 Fast Gate Sizing
1: Initialize slew targets for all circuit output pins;
2: repeat
3: Assign circuits to books;
4: Timing analysis;
5: Refine slew targets;
6: until Stopping criterion is met
7: Return best assignment of all iterations;

The stopping criterion is met in line 6 when the current circuit assignment in
comparison to the last iteration

1. worsens the worst slack, and

2. increases a weighted sum of −1 times the absolute value of the worst negative
slack, the absolute value of the sum of negative slacks divided by the number
of endpoints, and the average circuit area.

If the criterion is met, the assignment of the previous iteration, which achieves
the best present objective value, is taken. The criterion is never met while the
worst slack is improving. A lower worst slack is tolerated if it is accompanied by
sufficiently large gains in the total negative slack or average circuit area.

4.4.1 Circuit Assignment
The task here is to assign each circuit c ∈ C to a logical equivalent book B ∈ [β(c)]
with smallest weight weight(c, B) such that each slew target slewt(p), p ∈ Pout(c)
is met. As primary sizing constraints the load capacitance limits caplim(p, ζ), ζ ∈
{rise, fall} in p must be met, as well as the slew limits at the sinks of the net
N ∈ N , p ∈ N . If the limits cannot be met, the amount of the violation is to be
minimized. As VLSI engineers often assign low slew limits that are rather intended
to be targets, capacitance violations are prioritized in case of conflicts between
capacitance and slew violations.
The difficulty here is that circuits cannot be assigned independently, as the

slews in p depend—besides on β(c)—on the input slews and the load capacitances



68 4 Circuit Sizing

downcap(p, late), which in turn depends on the successor input pin capacitances.
Algorithm 4 summarizes the circuit assignment.

Algorithm 4 Fast Gate Sizing—Circuit Assignment
1: β(c) := arg min{size(B)|B ∈ [β(c)]};
2: repeat
3: for c ∈ C in order of decreasing d(c) do
4: for (p, q) ∈ GT , q ∈ Pout(c) do
5: Estimate input slews slew(p, σ) for all σ ∈ S(p);
6: B(p,q) := arg min{size(B)|B ∈ [β(c)],slew targets in q met};
7: end for
8: β(c) := arg max{size(B(p,q))|(p, q) ∈ GT , q ∈ Pout(c)};
9: end for
10: until β(c) unchanged ∀c ∈ C

We traverse the circuits in a cyclic order. Let the circuit graph GC be defined as the
directed graph that contains a vertex for each c ∈ C and an edge e = (c, c′) ∈ E(GC),
if there is a net connecting a pin p ∈ Pout(c) with a pin p′ ∈ Pin(c′). We assume that
the circuit graph would become acyclic when removing all edges entering register
vertices. This is usually true. In exceptional cases, where some cycles do not contain
a register, we iteratively assign an arbitrary circuit from such a cycle to the set of
registers until each cycle contains at least one assigned register.
Circuits are processed in order of decreasing longest distance from a register in

the acyclic subgraph, which arises by removing the edges entering register vertices,
as described above, and where all edge lengths are chosen as one. Let us first assume
the assignments β(r) of registers r ∈ C to be fixed. Thus when assigning a circuit
c ∈ C, d(c) > 0 the successors of c are already assigned and downcap(p, late) is
known for all p ∈ Pout(c). The exact input slews are not known as the predecessors
are still to be processed. We estimate the input slews by a weighted sum of the
worst input slew computed by the last timing analysis and the anticipated input
slew based on the predecessor slew targets. The weighting gradually shifts from
pure predecessor target to “real” timing analysis results with each global iteration.
Initially it is assumed that the predecessors will be sized such that their output
slews are close to their targets. Later, when a change in the predecessor size is less
likely, the real slew values dominate.
The load capacitance and the estimated input slew influence the circuit timing.

Based on these values, circuits are assigned in line 6 to the smallest book that
maintains the slew targets or to the largest book if no feasible book exists. Line 6
can be approximated efficiently via table look-up. For the pair ([p], [q]) of classes of
pin definitions we subdivide the feasible ranges of

• downstream capacitances [0,max{caplim(q′)|q′ ∈ [q]}],

• input slews [0,max{slewlim(p′)|p′ ∈ [p]}]



4.4 Fast Circuit Sizing 69

• target slews [0,max{slewlim(p′)|p′ ∈ [p]}]

into discrete sets and compute the smallest feasible layout B(p,q) ∈ [β(c)] for all
discrete target slew, input slew, and downstream capacitance triples. In an actual
assignment the three input values are then rounded to their next discrete value.
The minimum book is then looked-up in the table. To guarantee the slew target,
we can force rounding to the next pessimistic values, that means to round down the
slew target, and to round up the input slew and the downstream capacitance. By
refining the discretization arbitrary approximation guarantees can be achieved. In
practice we use 20 discrete values for the slew ranges and up to 150 values for the
cap values. We vary the latter with the number |[β(c)]| of equivalent books.
To preserve the input slew limits at the successor gates, these limits minus the

slew degradation on the wire may trim the output slew target. Therefore, it is not
only necessary to provide valid load capacitances at all times, but also wire delays.
After a level of circuits with equal distance labels is processed, we recompute wire
delays for all input nets of altered circuits.
As the circuit graph is cyclic, the assignment algorithm needs to traverse the

circuits several times until no more registers are altered. Registers usually have only
a small set of 3 or 4 equivalent books, and their assignment does not change often.
In practice only a few circuits are reassigned even in the second iteration. To speed
up the overall algorithm, we perform only a single iteration, leaving it to the next
global iteration to remove slightly suboptimum or illegal assignments.

4.4.2 Refining Slew Targets
In line 5 of Algorithm 3, the slew target slewt(p) is refined for each output pin p on
a circuit c based on what we call the global and local criticality of p. For simpler
notation, we assume without loss of generality Stgt

l = 0 throughout this section. The
global criticality is simply the worst slack

slk+(p) := min{slack(p, σ)|σ ∈ S(p)} (4.7)

at p. The pin p is globally critical if slk+(p) < 0.
The local criticality indicates whether the worst slack at p and any direct pre-

decessor pin of c can be improved either by accelerating c, that is, by decreasing
slewt(p), or by decreasing the input pin capacitances on c, that is, by increasing
slewt(p). We define the local criticality as the difference between the slack at p and
at a worst-slack direct predecessor p′ of c (see Figure 4.2).

Note that we consider p′ even if it is not in the backward cone of p (in the timing
graph), which is possible if c is a complex circuit and the internal timing graph is
not a complete bipartite graph. Formally, we define the predecessor criticality of
the circuit c by

slk−(c) := min{slack(p′, σ′) | p′ direct predecessor pin of c, σ′ ∈ S(p′)}. (4.8)



70 4 Circuit Sizing

c

p′

p

Figure 4.2: Local criticality: slack difference of p and the worst predecessor p′.

Obviously, slk+(p) ≥ slk−(c) for all circuits but registers, since a path that de-
termines the slack in p must contain one of the predecessor pins. Registers may
have smaller output slacks than their predecessors as inputs and outputs may
belong to different data paths. Therefore, we define the effective predecessor slack
for the output pin p ∈ Pout(c) by slk−(p) := min{slk−(c), slk+(p)}. This implies
slk−(p) = slk−(c) for non-register circuits. Finally the local criticality lc(p) ≥ 0 of
p is defined by

lc(p) := slk+(p)− slk−(p). (4.9)

If lc(p) = 0 then p is either located on a worst-slack path through a most critical
predecessor of c, or p is an output pin of a register whose output path is at least as
critical as any path through its predecessors. We call p locally critical if lc(p) = 0.

Algorithm 5 shows how the slew targets of the circuit c are updated in an iteration
k ∈ N. If p is globally and locally critical, we decrease slewt(p) by subtracting
a number that is proportional to |slk+(p)|, but does not exceed some constant
max_change (line 8). Otherwise we increase slewt(p) by adding a number that is
proportional to max{lc(p), slk+(p)} (line 10).

The constant γ can be thought of as an estimate for ∂slewt(p)
∂slk+ . Thus, if slewt(p) is

tightened, γ · |slk+| expresses the required slew change to reach the slack target in
p. If slewt(p) is relaxed, γ ·max{slk+, lc} expresses the required slew change, either
to align the slack in p with the worst predecessor slack (if slk+ ≤ lc), or to decrease
the slack to the target (if slk+ > lc). As we modify all circuits in each iteration, γ
should be in the range of a fraction of ∂slewt(p)

∂slk+ . It could even be set individually for
each output pin definition.
The other multiplier θk is a damping factor defined as θk = (log(k + const))−1.

Following the subgradient method for continuous optimization, it damps the slew
target change and prevents potential oscillation. However, we observed that damping
does not have a considerable influence on our algorithm.

To avoid too big changes, slewt(p) is furthermore changed by at most max_change.
The slew target is never increased above the slew limits given by the rules or
assertions. Slew targets of locally non-critical circuits are relaxed, which indirectly



4.4 Fast Circuit Sizing 71

decreases the load capacitance at the more critical predecessors. Slew targets of
globally non-critical circuits are increased to save power.

In this scenario, the slew targets on the critical path would converge towards zero.
Such a target is not realizable by any book and would lead to a very slow growth
of the slew target if a critical circuit becomes non-critical in subsequent iterations.
To avoid unrealistically small slew targets, a lowest allowed slew target slewt([p]) is
computed, where [p] denotes the class of corresponding output pins on equivalent
books in the library. This is done by constructing a long chain of equally sized
circuits for all equivalent books. The circuits are placed in small distance to each
other. Then stationary slews are computed as in Section 3.3.1. If several input pins
exist, we always connect p to the one that achieves the largest output slew at the
end of the chain. As slewt([p]) the minimum over all output slews of the elements
in [p] is chosen.

Algorithm 5 Fast Gate Sizing—Refining Slew Targets
Input: A circuit c and an iteration number k
1: procedure RefineSlewTargets(c, k)
2: θk = 1/ log(k + const);
3: slk− ← min{slack(p)|p ∈ Γ−(Pin(c))};
4: for all p ∈ Pout(c) do
5: slk+ ← slk(p);
6: lc← slk+ −min{slk−, slk+};
7: if slk+ < 0 and lc < 0 then
8: slewt(p)← slewt(p)−min{θk · γ · |slk+|,max_change};
9: else

10: slewt(p)← slewt(p) + min{θk · γ ·max{slk+, lc},max_change};
11: end if
12: Project slewt(p) into feasible range [slewt([p]), slewlim([p])];
13: end for
14: end procedure

If no sizing has been performed yet, the slew targets are initialized by a multiple
of the lowest allowed target in line 1 of Algorithm 3: slewt(p) = α× slewt([p]) for
all circuit output pins p in the design. Otherwise, when running on a preoptimized
input, the slew targets are initialized by the currently computed slews.

The algorithm is quite stable with respect to α. The variation of final worst path
delays stays within 10% when scaling α between 1 and ∞. If α =∞, slew targets
are initialized by the slew limits. For running time reasons, α should be set to
a value from which the lowest allowed slew targets as well as the slew limits, are
reachable within a few iterations.



72 4 Circuit Sizing

4.4.3 Enhanced Slew Targets
As described so far, Algorithm 3 yields already good results. The main disadvantage
is that the sizing step assumes that predecessors can be enlarged sufficiently. In
some cases this can lead to overloaded circuits that cannot be enlarged further, or
to locally non-critical circuits that cannot be down-sized sufficiently because of too
large successors, which in turn are locally critical. In the overall timing optimization
flow, the gate sizing is interrupted by a repeater insertion step that absorbs such
situations.
However, this can lead to unnecessary repeaters or to poor results on nets that

must not be buffered for some reason. One solution would be to consider the
predecessor driver strengths directly when sizing a circuit c. Unfortunately, the
exact predecessor sizes and their load capacitances are unknown.
We propose a different approach that fits well into the sizing paradigm. When

refining the slew target of an output pin p on a circuit c, we compute an estimated
slew slew− at the worst predecessor output pin p′ of the circuit c. This is done
by a weighted sum of slewt(p′) and slew(p′) as estimated in Section 4.4.1. If
slew− > slewt(p), we increase the slew target in p by

slewt(p) := λ · slewt(p) + (1− λ) · slew−,

with 0 < λ ≤ 1. The increased target will lead to a smaller circuit size and smaller
input pin capacitances, and thus smaller loads in p′. The effect of an extraordinary
high value of slew− declines exponentially in the number of subsequent stages.

The local search described in Section 4.5 is called after the fast global gate sizing
in our timing closure flow (see Chapter 7). It improves the slacks on the most
critical paths based on exact timing evaluation.

4.4.4 Power Reduction
If the circuit area after fast gate sizing exceeds the available placement area or
the power limit is violated, circuit sizes have to be decreased to obtain a feasible
solution. One possible approach would be to iteratively increase the targets for all
circuits equally. But for effective size reduction, especially low slew targets have to
be relaxed. Another point is that the knowledge obtained during power reduction
should be transferred to subsequent circuit sizing calls within the timing closure
flow.
We choose the following approach. Slews are relaxed by increasing the lowest

allowed slew targets slewt([p]) for all classes of output pin definitions. This prevents
too small slew targets and too large circuits. In an area recovery mode Algorithm 3
tests whether one of the area and power constraints is violated, and, if so, increases
the lowest allowed slew targets before refining the slew targets. The algorithm is
continued until the area and power constraints are fulfilled. If the circuit sizing is
called the for next time, the increased lower allowed slew targets will prevent a too
high area and power consumption from the very beginning.



4.5 Local Search Refinement 73

4.4.5 Electrical Correction

A special circuit sizing task is the electrical correction, which is the removal of load
capacitance or slew limit violations, while slacks are ignored. In general, line 3 of
Algorithm 3 chooses circuit sizes that preserve these limits on the output nets if
possible. Combined with repeater insertion it usually does not leave any violations.
However, a subsequent placement legalization can disturb the previously estimated
wire capacitances and introduce capacitance and slew violations. Algorithm 3 can
be adapted so that in each iteration only driver circuits of currently violated nets
are sized with respect to a feasible slew target.

One potential problem of applying Algorithm 3 for the task of electrical correction
is that it does resolve electrical violations on a net only by sizing-up driver circuits.
In principle electrical violations could also be eliminated by sizing sinks to smaller
books. However, there are reasons not to perform sink down sizing. First, the sink
sizes were intended by the previous gate sizing, either to resolve electrical violations
on their output nets, or to preserve positive slacks. Down sizing a sink might create
too late arrival times that can only be resolved by a subsequent up-sizing. Second,
for many violations the impact of the sink pin capacitances is too small to resolve it.

4.5 Local Search Refinement

The global circuit sizing heuristic from Section 4.4 creates worst slacks that are
already close to optimum. However, they usually can be refined by local search,
which improves book assignments based on exact effect evaluation. The local search
in Algorithm 6 iteratively collects the most critical nets and sizes the attached
circuits individually to a local optimum. The local objective for a circuit c is to
maximize the worst slack of a pin in P (c) and predecessor pins of c. If circuits
are already at their local optimum the algorithm should proceed with less critical
circuits in the next iteration. For this purpose unchanged circuits are marked as
non-optimizable and neglected in the next iteration. Of course a non-optimizable
circuit c ∈ C can become optimizable when circuits in its neighborhood changed or
the slacks or slews of the signals in this neighborhood changed.
We first propose an algorithm that only looks at physical changes in the neigh-

borhood, ignoring slack and slew changes.
In line 3 we sort the nets by increasing worst slack and collect all connected circuits

until K circuits were selected. With a hard limit of K there may be uncollected
circuits connected to a net with the same last slack slackK . In order to obtain a
deterministic algorithm that selects the same set of circuits regardless of the order
in which they are stored, further circuits are added if they are connected to a net
with source pin slack equal to slackK . The selection of Ccrit in line 3 of Algorithm 6



74 4 Circuit Sizing

Algorithm 6 Local Search Circuit Sizing
1: Mark all c ∈ C optimizable;
2: repeat
3: Select a set Ccrit of critical and optimizable circuits;
4: Mark all c ∈ Ccrit as non-optimizable;
5: for c ∈ Ccrit do
6: Map c to locally best solution;
7: Mark neighborhood of c optimizable;
8: end for
9: until Worst slack unchanged

is summarized by following formula

Ccrit := arg min
{
|C ′| : C ′ ⊆ C, |C ′| ≥ K, there are no c′ ∈ C ′, c ∈ C \ C ′,

such that: wslack(P (N(c))) ≤ wslack(P (N(c′)))
}
,

where wslack(Q) := min{slk(p, σ) | p ∈ Q, σ ∈ S(p)} for a set of pins Q ⊆ P .
The locally best solution in line 6 of Algorithm 6 is a solution that achieves the

maximum worst slack among pins of c and its predecessors. To determine the best
solution βopt(c), β(c) is set to all B ∈ [β(c)] and the slack is evaluated. If this slack
is above a given slack threshold Stgt

l the most power efficient solution that achieves
the Stgt

l is chosen. If the predecessor c′ has more critical slacks than c, c is located
on a less critical side branch of a most critical path through c′. In this case c should
be kept as it is or sized down in order to decrease load capacitances of c′.
Besides slack also load capacitance and slew violations need to be prevented or

removed, though they occur rather seldom on critical paths. For this purpose load
capacitance or slew violations at a pin p ∈ P are multiplied by high numbers and
then added to the slack slack(p). This is a Lagrangian relaxation of capacitance and
slew constraints. It allows to tradeoff between slack and small electrical violations.

The neighborhood in line 7 is defined by the set of all circuits that are adjacent to
c via a net N ∈ N . Slacks can change in the complete forward and backward cone
of the predecessors of a changed circuit. In order to revisit all improvable circuits in
the next iteration it would be necessary to mark all circuits as optimizable, which
are located in these cones and where a slack change happened. To limit the running
time, we mark only the direct neighbors, where the changed circuit size has the
biggest impact.

Remark 4.1. (Beta Ratio and Tapering Optimization)
The local search method can naturally be applied to optimize beta ratios and tapering
characteristics by also considering these alternatives in line 6 of Algorithm 6.



4.6 Quality of Results 75

Chip Min Area Fast Area LS Area LS/Min
Fazil 548 648 642 1.171
Franz 655 786 766 1.170
Lucius 222 339 336 1.515
Felix 646 884 875 1.354
Julia 3 038 3 135 3 129 1.030
Minyi 4 699 4 804 4 805 1.023
Maxim 4 704 6 640 6 629 1.409
Tara 5 728 6 067 6 058 1.058
Bert 17 473 19 634 19 605 1.122

Karsten 38 968 39 590 39 572 1.016
Ludwig 41 616 42 376 42 356 1.018
Arĳan 62 468 65 536 65 505 1.049
David 60 088 63 901 63 841 1.062

Valentin 77 766 96 951 96 911 1.246
Trips 69 097 79 719 79 615 1.152
Avg. 1.160

Table 4.1: Deviation from Area Bound

4.6 Quality of Results
To demonstrate the quality of our gate sizing approach, we compare the results
of the gate sizing algorithms with lower bounds for the achievable area, and lower
bounds for the achievable delay of the most critical path.

4.6.1 Area Consumption
A lower bound for the area consumption can be computed by starting with mini-
mum sizes for all circuits and iteratively increasing the sizes of driver gates whose
capacitance or output slew limit is violated. Table 4.1 shows the minimum feasible
area consumption, the area consumption after fast gate sizing, the area consumption
after local search refinement, and the ratio of the local search area over the minimum
possible area. The reported area numbers are given in design specific units. On
average the minimum area bound is exceeded by 16%. For the chips Lucius, Felix,
and Maxim the area increase is significantly larger. These chips are small RLMs
of very critical timing, where all logic paths have essentially the same criticality,
leaving hardly room to safe area.

4.6.2 Delay Quality
For a lower bound on the worst delay, we identify the worst slack path P crit after
gate sizing. Then we size all circuits in the design to a minimum size as in the
area bound computation above, fulfilling only capacitance and slew limits. We
ignore and remove any arrival times and required arrival times on pins that are not



76 4 Circuit Sizing

PO

PI

Registers
Pin with ignored timing
Critical Path

Figure 4.3: Lower Delay Bound Computation

located on P crit as shown in Figure 4.3. This way, the arrival times and required
arrival times on P crit are independent from any other side-input or side-output of
that path. Now the total delay of P crit is reduced further by Algorithm 6 until
no more improvement can be found. The gates on any branching from P crit are
set to a minimum possible size and therefore have a minimum impact on the load
capacitances and delays on P crit. The application of Algorithm 6 for minimizing
the delay on the critical path is justified by following theorem.

Theorem 4.2. Assuming posynomial delay functions and continuously sizable cir-
cuits, Algorithm 6 computes the minimum possible delay for the path P crit.

Proof. If all delays are posynomials, the minimization of the path delay corresponds
to the minimization of a posynomial function f : Rn

+ → R, with the circuit sizes
(xi)1≤i≤n, n := |C ∩ P crit| as variables. The sizes are restricted to a (compact
and convex) box X ⊂ Rn

+ defined by lower (li)1≤i≤n ∈ Rn
+ and upper bounds

(ui)1≤i≤n ∈ Rn
+ with l ≤ u. The problem can be formulated as a geometric program:

min f(x) := ∑K
k=1 ckx

a1k
1 xa2k

2 · · ·xankn

such that li ≤ xi ≤ ui for all 1 ≤ i ≤ n,

where ck > 0 and αik ∈ R for 1 ≤ i ≤ n and 1 ≤ k ≤ K.
After variable transformation y := log x := (log xi)1≤i≤n the function F (y) :=

f(ey) with ey := (eyi)1≤i≤n is a convex function (Fishburn and Dunlop [1985])
restricted to the (compact and convex) box Y ⊂ Rn defined by: log li ≤ yi ≤
log ui, 1 ≤ i ≤ n. As the logarithm is strictly increasing and continuous, each local
minimum x? ∈ X of f corresponds to a local and global minimum y? := log x? :=
(log x?i )1≤i≤n ∈ Y of F and thus is a global minimum of f on X. In this scenario,
Algorithm 6 is a coordinate descent method that determines a global optimum of f
on X.

2

In practice delay functions are not given as posynomials and sizes must be chosen
from a discrete set. However, by complete enumeration on a huge number of paths
with lengths bounded by 10, we verified empirically that the local search on P crit

finds the solution with minimum total delay in practice.



4.6 Quality of Results 77

Chip Fast Gate Sizing Local Search Sizing
Delay Bound Ratio Delay Bound Ratio

Fazil 6.65 5.85 1.14 4.38 4.30 1.02
Franz 4.47 4.25 1.05 4.75 4.69 1.01
Lucius 1.25 1.20 1.04 1.66 1.60 1.03
Felix 2.51 2.21 1.13 2.39 2.15 1.11
Julia 1.28 1.19 1.08 1.12 1.12 1.01
Minyi 3.01 2.96 1.02 2.96 2.96 1.00
Maxim 2.61 2.49 1.05 2.52 2.47 1.02
Tara 1.65 1.54 1.07 1.51 1.48 1.01
Bert 1.74 1.52 1.14 1.46 1.38 1.06

Karsten 9.36 9.00 1.04 8.68 8.66 1.00
Ludwig 12.18 11.97 1.02 11.80 11.80 1.00
Arĳan 3.29 3.25 1.01 3.20 3.20 1.00
David 5.21 4.96 1.05 5.00 4.86 1.03

Valentin 4.69 4.55 1.03 4.56 4.48 1.02
Trips 6.71 6.00 1.12 5.89 5.64 1.04
Avg. 1.07 1.02

Table 4.2: Critical Path Delays and Lower Bounds (in ns)

The delay of the most critical path after fast gate sizing and the delay of the
most critical path after the subsequent local search, as well as the respective path
delay bound, are given in Table 4.2. The most critical paths and therefore the
delay bounds can be different after fast gate sizing and after local search sizing.
In particular the lower delay bound after fast gate sizing needs not to be a delay
bound for the worst slack path after local search sizing. On the chip Felix the worst
path delay after local search sizing misses the lower bound by 11%, which is much
more than in the other cases. Here, the critical path contains several critical high
fanout nets and trees with almost equally critical sinks. In the lower bound all less
critical sinks are sized down aggressively, while this is not possible in the original
problem. Thus, the lower bound is likely to be weak on this chip.

4.6.3 Running Time
The running times for the gate sizing in Table 4.3 were obtained on a 2.93 GHz Intel
Xeon E7220. All computations were performed sequentially. Columns 2 and 6 show
the number of iterations of fast gate sizing and refine gate sizing respectively. The
timing analysis takes more than 50% of the total running time for fast gate sizing.
It includes wire delay re-calculations for inputs nets of altered circuits. The circuit
assignment needs a slightly higher percentage of the remaining running time than
the slew target refinement. The number of fast gate sizing iterations was limited to
15.

In the experiments we have chosen λ = 0.85 (see Section 4.4.3) and a slew target
initialization value of α = 2.5. Empirically this yields a fast convergence to tight



78 4 Circuit Sizing

Chip Fast Gate Sizing Local Search
Total Timing Analysis

Iter. Run. Time Run. Time % Iter. Run. Time
Fazil 8 0:00:45 0:00:22 49.29 15 0:00:49
Franz 8 0:00:52 0:00:29 55.79 20 0:01:28
Lucius 11 0:01:12 0:00:28 39.25 40 0:01:25
Felix 14 0:01:35 0:00:49 51.57 15 0:00:47
Julia 15 0:02:21 0:01:17 55.01 10 0:00:27
Minyi 15 0:03:52 0:02:18 59.48 10 0:00:41
Maxim 15 0:08:37 0:03:25 39.74 15 0:01:53
Tara 15 0:09:48 0:04:53 49.74 10 0:01:15
Bert 14 0:21:14 0:10:29 49.35 15 0:05:36

Karsten 7 0:40:38 0:19:17 47.48 10 0:05:19
Ludwig 7 0:31:49 0:19:50 62.30 10 0:03:56
Arĳan 15 1:09:25 0:40:51 58.86 10 0:04:26
David 15 1:30:47 0:54:28 60.00 25 0:19:15

Valentin 15 2:14:05 1:21:16 60.61 5 0:04:10
Trips 13 2:03:50 1:02:42 50.64 40 0:50:33

Table 4.3: Gate Sizing Running Times (hh:mm:ss)

slews on critical paths and relaxed slews on non-critical paths.
The local search sizing was run in blocks of 5 iterations with K =

(
|C|

1000 + 1000
)
.

This explains why all reported iteration numbers for the local search sizing are
multiples of 5. After each block, the markers for optimizability were reset and the
local search was restarted from the scratch, to account for those timing changes
that are not recognized by the marking mechanism. The local search stopped if the
worst slack was not improved within a block. The corresponding limit of 50 local
search iterations was not attained in any run.

4.7 Circuit Sizing in Practice
We close this chapter with an example that demonstrates how the gate sizing
approach works in practice on the chip “Karsten” with about 3 million sizeable
circuits. Figure 4.4 shows six pairs of chip plots on the top and slack distribution
histograms in the bottom. Each histogram contains one entry per circuit classified
by the worst slack on one of its pins. The circuits in the plot are colored by slack
with the same color as their corresponding histogram bar.

The first pair shows the slacks of a power optimal solution, where only electrical
violations were optimized. The slack distribution quickly improves. After three
iterations only a very few critical circuits are left. These are mainly eliminated
after eight iterations of fast gate sizing. An extensive local refinement optimizes the
worst slacks to almost zero, which is within 5% of the achievable optimum worst



4.7 Circuit Sizing in Practice 79

path delay. The final area increased by 1% in comparison to the minimum size area.
Please note that these pictures were obtained on a slightly different placement than
the results for Karsten in Table 4.2.



80 4 Circuit Sizing

Slacks after Initialization Slacks after 1. Iteration Slacks after 2. Iteration

Slacks after 3. Iteration Slacks after 8. Iteration Slacks after Local Search

Figure 4.4: Slack distributions on the chip Karsten in the course of Algorithm 3
and after local search.



5 Clock Skew Scheduling
For several decades the target of the clock distribution on computer chips was a
zero skew tree or network, where all registers open and close simultaneously. In such
a scenario timing optimization is restricted to modify delays on data paths, and
the cycle-time is restricted by the slowest data path. Recall the setup constraint
(2.12) between a late data signal σd at the data input pin d and an early testing
clock signal σc at the clock pin c

at(d, σd) + setup (slew(d, σd), slew(c, σc)) ≤ at(c, σc) + adj(σd, σc).

A closer look at the above inequality shows that it can potentially be resolved by
increasing the clock arrival time at(c, σc) or by decreasing the arrival time of the
clock signal that triggered σd. Clock skew scheduling is the optimization of clock
signal delays instead of data path delays.

2

1 3

4

1.2

1.1

0.8
0.8 0.4

0.9

Figure 5.1: Example of a register graph.

We motivate the effectivity of clock skew scheduling by a simple example consisting
of flip-flops only. The simple register graph GR is defined as the directed graph
whose vertex set is the set of flip-flops. Figure 5.1 shows an example of a register
graph with four registers. Each v ∈ V (GR) represents the single triggering signal
at the clock input of the flip-flop that is also the testing signal for the data input.
GR contains an arc (v, w) if the netlist contains a path from the data output of
the register v to the data input of register w. The register graph defined here is
called simple, because we will refine the definition of a register graph to account
for further constraints in Section 5.2.1. Let ϑ(v, w) denote the maximum delay
of a path from v to w. In the figure the delays are given by the edge labels. If
all registers receive the same periodic clock signal with cycle time T , a zero skew

81



82 5 Clock Skew Scheduling

clocktree will be feasible if and only if all delays are at most T . We simplify the
setup constraints from (2.12) by assuming setup ≡ 0 and adj ≡ T .
In this example the minimum cycle time with a zero skew tree would be 1.2,

bounded by the path 3 → 1. With clock skew scheduling this condition can be
relaxed. Let register 3 in the above example switch earlier by 0.2 time units. Now
signals on path 3 → 1 could spend 0.2 more time units per cycle. In turn the
maximum allowed delay for signals on path 4→ 3 would decrease by 0.2 time units,
which would not harm the overall cycle time, as the path delay of 0.4 is very fast.
Now path 2→ 4 determines a limit for the minimum cycle time of 1.1.
Motivated by this observation, the question arises what is the best achievable

performance for given delays? We ask for arrival times at(v) of the triggering clock
signals at all registers v such that

at(v) + ϑ(v, w) ≤ at(w) + T (5.1)

holds for each arc (v, w) of the register graph. We call such arrival times feasible.
In fact, the best achievable cycle time T due to clock skew scheduling is given by
following theorem.

Theorem 5.1 (Szymanski [1992],Shenoy et al. [1992]).
Given a simple register graph GR with arcs delays ϑ, the minimum cycle time T , for
which feasible arrival times at : V (GR)→ R for the triggering clock signals exist,
equals the maximum mean delay

T = ϑ(E(C))
|E(C)|

of a directed cycle in C in GR, where ϑ(E(C)) := ∑
e∈E(C) ϑ(e).

Proof. T is feasible if and only if there are arrival times at such that:

at(v) + ϑ(v, w) ≤ at(w) + T ∀(v, w) ∈ E(GR).

From shortest path theory it is known that such arrival times (node potentials)
exist if and only if (

←−
GR, c) does not contain any cycle with negative total cost,

where
←−
GR := (V (GR), {(w, v) | (v, w) ∈ E(GR)} and c(w, v) := T − ϑ(v, w) for all

(w, v) ∈
←−
GR (see Korte and Vygen [2008], Theorem 7.7). Now,∑

(v,w)∈E(C)
(T − ϑ(v, w)) =

∑
(v,w)∈E(C)

c(w, v) ≥ 0 ∀ cycles C ⊆ GR

⇔

T ≥

∑
(v,w)∈E(C)

ϑ(v, w)

|E(C)| ∀ cycles C ⊆ GR.

Thus the minimum possible T equals the longest average delay of a cycle.
2



5.1 Previous Work 83

In the example of Figure 5.1 this gives an optimum cycle time of 0.9, which can
be computed easily by enumerating all three cycles. In general the optimum feasible
cycle time T and feasible clock signal arrival times at can be computed in strongly
polynomial time by minimum mean cycle algorithms, for example by those of Karp
[1978] or Young et al. [1991].

However, this simple situation is unrealistic. Today systems on a chip have multiple
frequencies and often several hundred different clock domains. The situation is
further complicated by transparent registers, user-defined timing tests, and various
advanced design methodologies.

Moreover, it is not sufficient to maximize the frequency only. The delays that are
input to clock skew scheduling are necessarily estimates. Detailed routing will be
done later and will lead to different delays. Thus one would like to have as large a
safety margin—positive slack—as possible. In analogy to the slack definition from
Section 2.4.8 the arc slack slk(v, w) for given T and arrival times a : V (GR)→ R
is defined as slk(v, w) := at(w)− at(v)− ϑ(v, w) + T for every arc (v, w) ∈ E(GR).
Note that (at(w) + T ) defines a required arrival time for signals entering latch w. It
turns out that maximizing the worst slack by clock skew scheduling is equivalent to
minimizing the cycle time:

Lemma 5.2. Let GR be a simple register graph with arc delays d. Let T ′ be the
minimum possible cycle time for (GR, d), T > 0, and

slk′(T ) = max
at

min
(v,w)∈E(GR)

(
at(w)− at(v)− ϑ(v, w) + T

)
be the maximum achievable worst slack for the cycle time T . Then

T ′ = T − slk′(T ).

Proof. Analogously to the proof of Theorem 5.1, slk′(T ) is the maximum value such
that ∑

(v,w)∈E(C)
(T − ϑ(v, w)− slk′(T )) ≥ 0 ∀ cycles C ⊆ GR

⇔

T − slk′(T ) ≥

∑
(v,w)∈E(C)

ϑ(v, w)

|E(C)| ∀ cycles C ⊆ GR.

This shows that the minimum possible cycle time T ′ is given by T ′ = T − slk′(T ).
2

5.1 Previous Work
Clock skew scheduling was first considered by Fishburn [1990]. He formulated the
problem of finding a schedule that minimizes the cycle-time as a linear program.



84 5 Clock Skew Scheduling

Sakallah et al. [1990] proposed a similar linear program, and furthermore proposed
an iterative algorithm for timing verification, which turned out to be a variant of the
Moore-Bellman-Ford Algorithm (see Korte and Vygen [2008], Chapter 7).
The correspondence between the existence of a feasible clock skew schedule and

non-positive delay cycles in the register graph was first mentioned by Szymanski
[1992] and Shenoy et al. [1992]. Both approaches, as well as Deokar and Sapatnekar
[1995], apply binary search on T combined with a longest path computations to
decide whether the current T is feasible. All of them also consider early mode
constraints. They differ in slightly modified ways to check the feasibility of a cycle
time T .

Albrecht et al. [1999, 2002] minimize T , and additionally optimize the overall slack
distribution of late and early mode path constraints. As early mode constraints
can be solved by adding delay buffers, they first optimize only late and then early
mode constraints while late mode constraints are not worsened below a late slack
target. They do not only compute singular feasible clock arrival times for each
register but they determine a maximum feasible time window. This window allows
more freedom during clocktree construction. They apply the strongly polynomial
minimum balance algorithm by Young et al. [1991] on the register graph.
This approach was modified in Held [2001] to work directly on the signal graph

instead of the register graph. The advantage of the signal graph model is its size,
and the simpler inclusion of constraints such as user defined tests. In Held et al.
[2003] the efficiency for the application on real ASICs was demonstrated.

Albrecht [2006] proposes a modified version of Albrecht et al. [1999, 2002], which
creates the register graph incrementally on critical paths. It has the same worst
case running time but tends to be much faster in practice.
Another approach to optimize the slack distribution was given by Kourtev and

Friedman [1999]. They formulate a quadratic program that minimizes the sum of
quadratic slacks. Early and late mode slacks are treated equally. The worst slack,
which limits the cycle time and, therefore, the speed of the chip, is not necessarily
maximized by this approach. For instances which consist only of transparent
latches, the worst slack is limited by the longest average delay cycle in the (cyclic)
propagation graph, independently of the actual register switching times. Here this
approach is well-suited to optimize the robustness.

Rosdi and Takahashi [2004] considered clock skew scheduling under the presence
of multiple clock domains and multi-cycle paths. They solved this problem by binary
search of the smallest feasible reference cycle time. The approach was extended
in Takahashi [2006] to minimize the estimated realization cost of the tree as a
postoptimization step. The cost of a schedule is measured as the sum of differences
between the scheduled clock latencies and some predefined target latencies, which
could, for instance, refer to a zero skew realization.

Finally, we mention the work by Ravindran et al. [2003], who consider clock skew
scheduling under the additional constraint that only a discrete set of large latency
differences is realizable. They use a mixed integer linear programming formulation
to split the clock domain into a set of discrete latency classes.



5.2 Slack Balance Problem 85

In Section 5.2 we describe traditional approaches by Albrecht et al. [1999], Held
[2001], and Held et al. [2003] based on combinatorial algorithms. These results
will also be used later in Chapter 6. In Section 5.2.3, we apply the Algorithms
from Section 5.2 to obtain the first known strongly polynomial time algorithm for
cycle time minimization on instances with multiple clock domains and multi-cycle
paths. In Section 5.3 an iterative algorithm is described that was known for long by
electrical engineers as a clock skew scheduling heuristic. We give the first proof that
the iterative algorithm maximizes the worst late slack within an arbitrary accuracy
ε > 0 if the clock latencies are bound to some closed interval. In Section 5.3.5 we
enhance the iterative approach to a hybrid approach that approximates an optimum
slack distribution with arbitrary accuracy.

As all delays, slews, and arrival times that are computed during static timing
analysis are of limited accuracy such an arbitrary accuracy result is sufficient in
practice. Moreover, it turns out that it is much faster than the combinatorial
algorithms and can absorb delay variations due to scheduling by incremental delay
recalculations. Such delay variations occur, because varying clock arrival times lead
to varying signals that determine which slews are propagated (see Section 2.4.4).

5.2 Slack Balance Problem

The primary task of clock skew scheduling is to find clock input arrival times at
the registers, that maximize the worst slack. But also less critical slacks should be
high to anticipate delay uncertainties, for example due to placement legalization,
routing detours. With other words we want to find a schedule that yields a leximin
maximal slack ordering.

The mathematical problem formulation that solves this problem is the Slack
Balance Problem. We extend definitions from Held [2001] and Vygen [2001,
2006] by a slack target. Slacks above this target are sufficiently large and not
further distinguished. The edge set E(G) is divided into a subset Ep, where a
non-negative slack is a hard requirement, and a subset Et, where slack is to be
distributed. Furthermore, slacks are weighted by positive real numbers, and the
edge set Et is partitioned into sets, where only the most critical slack within each
partition is of interest:



86 5 Clock Skew Scheduling

Slack Balance Problem
Input:

• a directed graph G with edge costs c : E(G)→ R

• a set Ep ⊆ E(G) such that (V (G),Ep, c) is conservative

• a partition F of Et := E(G) \ Ep

• weights w : Et → R+

• a slack target Stgt

Output: A node potential π : V (G)→ R with cπ(e) := c(e) + π(x)− π(y) ≥ 0
for e = (x, y) ∈ Ep such that the vectormin

{
Stgt,min

{
c(e) + π(x)− π(y)

w(e) | e = (x, y) ∈ F
}}

F∈F

is leximin maximal with respect to Stgt.

Special cases of the Slack Balance Problem are the classic Minimum Ratio
Cycle Problem (F = {E(G)}), with a further specialization the Minimum
Mean Cycle Problem (F = {E(G)}, w ≡ 1), and the Minimum Balance
Problem (F = {{e1}, {e2}, . . . , {e|E(G)|}}, w ≡ 1) by Schneider and Schneider
[1991] (Stgt =∞ for all special cases).

The relation to the Minimum Balance Problem can be seen by the following
theorem. It generalizes formulations from Albrecht [2001] (special case: Stgt =
∞,F = {{e} | e ∈ Et = E(G)}, and w ≡ 1) and Vygen [2001] (special case:
Stgt =∞):

Theorem 5.3.
Let (G, c, w,F , Stgt) be an instance of the Slack Balance Problem, let π :
V (G)→ R with cπ(e) ≥ 0 for e ∈ Ep, and let

Eπ :=
{
f ∈ F ∈ F | cπ(f)

w(f) = min
{
cπ(e)
w(e) | e ∈ F

}
≤ Stgt

}
.

Then π is an optimum solution of the Slack Balance Problem with |Eπ|
minimum if and only if for each X ⊂ V (G), with Eπ ∩ δ−(X) 6= ∅:

min
e∈Eπ∩δ−(X)

cπ(e)
w(e) ≥ mine∈Eπ∩δ+(X)

cπ(e)
w(e)

or min
e∈δ+(X)∩Ep

cπ(e) = 0,
(5.2)

where min ∅ :=∞. Furthermore, the sets Eπ and the vector (cπ(e))e∈Eπ are identical
for all optimum solutions π for which |Eπ| is minimum.



5.2 Slack Balance Problem 87

X

π− = ǫ
cπ+ = ǫ cπ− = ǫ

Figure 5.2: Reducing π within X.

Proof. Any optimum solution π of the Slack Balance Problem with minimum
|Eπ| satisfies (5.2). Otherwise we could decrease π(v) for all v ∈ X by a sufficiently
small ε (see Figure 5.2). Thereby, cπ(e) for e ∈ δ−(X) (blue edges) would be
increased, and either a better solution would be found or at least one edge could be
removed from Eπ ∩ δ−(X) without adding an edge to Eπ ∩ δ+(X).
To show the reverse direction, let π, π′ : V (G) → R be two vectors, with

cπ(e), cπ′(e) ≥ 0 for e ∈ Ep, that satisfy (5.2). It suffices to show that cπ(e) = cπ′(e)
for all e ∈ Eπ ∪ Eπ′ .
Suppose there exists an edge f = (x, y) ∈ Eπ ∪ Eπ′ (which implies Stgt ≥

min{ cπ(f)
w(f) ,

cπ′ (f)
w(f) }) with π(y)− π(x) 6= π′(y)− π′(x). Among such edges, we choose

an f that minimizes min{ cπ(f)
w(f) ,

cπ′ (f)
w(f) }. Without loss of generality cπ(f) < cπ′(f) or

equivalently π(y)− π(x) > π′(y)− π′(x).
This implies f ∈ Eπ. Otherwise, if f 6∈ Eπ, let F ∈ F be the partition set with

f ∈ F . As cπ(f)
w(f) ≤ Stgt, there must be an f ′ ∈ F with cπ(f ′)

w(f ′) <
cπ(f)
w(f) . Now, by the

choice of f , cπ′ (f
′)

w(f ′) = cπ(f ′)
w(f ′) <

cπ(f)
w(f) <

cπ′ (f)
w(f) , and thus, f 6∈ Eπ′ , which contradicts our

choice of f ∈ Eπ ∪ Eπ′ .
Let Q be the set of vertices that are reachable from y via edges in {e ∈ Ep | cπ(e) =

0} ∪ {e ∈ Eπ | cπ(e)
w(e) ≤

cπ(f)
w(f) }. As π fulfills (5.2) (with X = Q), we have x ∈ Q.

Accordingly, there exists a y-x-path P in G that consists of edges e ∈ Ep ∩E(P )
with cπ(e) = 0 ≤ cπ′(e) and edges e ∈ Eπ ∩ E(P ) with cπ(e)

w(e) ≤
cπ′ (e)
w(e) . Summation

of the reduced costs over all edges in E(P ) yields π(y) − π(x) ≤ π′(y) − π′(x), a
contradiction.

2

Remark 5.4. A slack balance problem (G, c, w,F , Stgt) can be transformed into an
equivalent problem with slack target 0. By modifying the costs on all test edges
e ∈ Et by c′(e) := c(e)− w(e) · Stgt, and using the original costs c′(e) := c(e) for all
e ∈ Ep, the modified slack balance problem (G, c′, w,F , 0) with a slack target of 0 is
equivalent to (G, c, w,F , Stgt).

We generalize the classic Minimum Ratio Cycle Problem as follows:



88 5 Clock Skew Scheduling

Minimum Ratio Cycle Problem
Input:

• a directed graph G with edge costs c : E(G)→ R

• a set Ep ⊆ E(G) such that (V (G),Ep, c) is conservative

• weights w : Et → R+ with Et = E(G) \ Ep

Output:
min

{
c(C)
w(C) | C ⊆ G is a cycle with w(C) > 0

}
,

where c(C) :=
∑

e∈E(C)
c(e) and w(C) :=

∑
e∈Et ∩E(C)

w(e).

The Minimum Ratio Cycle Problem is an important subtask when solving
the Slack Balance Problem. It can be solved in strongly polynomial time:
Theorem 5.5 (Held [2001]).
The Minimum Ratio Cycle Problem can be solved in strongly polynomial time

O(n3 log n+ min{nm, n3} · log2 n log log n+ nm logm),
or in pseudo-polynomial time

O(wmax(nm+ n2 log n))
for integral weights w : E(G)→ N with wmax := max{w(e) | e ∈ Et}.
Proof. Here, we only point to the underlying core algorithms. Details can be found
in Held [2001].
The running time of O(n3 log n + min{nm, n3} · log2 n log log n + nm logm) is

achieved by variants of Megiddo’s strongly polynomial minimum ratio cycle algorithm
for simple graphs (Megiddo [1983]). The last term O(nm logm) is needed to reduce
a general graph to a simple one. It is only relevant for the running time if the
number of weighted edges is not polynomially bounded in the number of vertices,
as otherwise O(logm) = O(log n) if m ≤ O(nq) for a q ∈ N.

The running time of O(wmax(nm+ n2 log n)) is obtained by the parametric short-
est path algorithm of Young et al. [1991], which was introduced for Ep = ∅ and
w ≡ 1, but works also in the generalized case.

2

A key task for solving the Slack Balance Problem is to maximize the worst
weighted reduced cost. This can be done by a minimum ratio cycle computation:
Lemma 5.6. Given an instance of the Minimum Ratio Cycle Problem, the
value λ? of the minimum ratio cycle equals

max
π:V (G)→R

cπ(e)≥0 ∀e∈Ep

min
e∈Et

cπ(e)
w(e) . (5.3)



5.2 Slack Balance Problem 89

Proof. The proof works analogously to the proof of Theorem 5.1. For λ ∈ R, define
edge costs cλ : E(G) → R by cλ(e) = c(e) if e ∈ Ep, and cλ(e) = c(e) − λ · w(e)
if e ∈ Et. The value of (5.3) is given by the maximum λ such that (G, cλ) has a
feasible potential. A feasible potential for (G, cλ) exists if and only if∑

e∈E(C)
cλ(e) ≥ 0 for all cycles C ⊆ G

⇔ ∑
e∈Ep ∩E(C)

c(e) +
∑

e∈Et ∩E(C)
(c(e)− λw(e)) ≥ 0 for all cycles C ⊆ G

⇔
c(C)
w(C) ≥ λ,

for all cycles C ⊆ G with w(C) > 0. The last equivalence holds because (V (G),Ep, c)
is conservative.

2

The next theorem generalizes a result from Held [2001] and shows how the Slack
Balance Problem can be solved.

Theorem 5.7. The Slack Balance Problem can be solved in strongly polynomial
time

O(I · (n3 log n+ min{nm, n3} · log2 n log log n+ nm logm)),
where I := n+ |{F ∈ F ; |F | > 1}|, or in pseudo-polynomial time

O(wmax(nm+ n2 log n) + I(n log n+m))

for integral weights w : E(G)→ N with wmax := max{w(e)|e ∈ Et}.

Proof. Certainly, the overall worst weighted slack must be maximized in an optimum
slack distribution. Then, keeping the worst reduced cost unchanged, the second
worst reduced cost must be maximized, and so forth. By Lemma 5.6, the maximum
possible minimum weighted slack can be determined by a minimum ratio cycle
computation.
The slack balance algorithm (Algorithm 7) iteratively determines a minimum

ratio cycle C ⊆ G, which defines the maximum possible minimum weighted reduced
cost λ? := c(C)

w(C) . This will also be the final minimum reduced costs for all involved
partitions F ∈ F , with F ∩ E(C) 6= ∅. To obtain a leximin maximal solution, no
weighted reduced cost of any edge from such a partition F needs to be increased
above λ?. Instead, the weighted reduced costs λ? can simply be guaranteed in
further iterations by modifying their costs to

c(e)← c(e)− λ?w(e), (5.4)

and canceling the weights:

Et := Et \F and F := F \ {F}. (5.5)



90 5 Clock Skew Scheduling

Algorithm 7 Slack Balance Algorithm
1: repeat
2: Compute Minimum Ratio Cycle C in (G, c, w);
3: λ? ← c(C)

w(C) ;
4: for F ∈ F with E(C) ∩ F 6= ∅ do
5: for f ∈ F \ E(C) do
6: c(f) ← c(f)− λ?w(f);
7: w(f)← 0;
8: end for
9: F ← F \ F ;

10: end for
11: Contract C; adapt costs according to (5.6),(5.7), and remove irrelevant loops;
12: until F = ∅ or λ? ≥ Stgt

To reduce the graph size for the next iteration, the minimum ratio cycle C can
be contracted to a new node v? (line 11), after anticipating the costs of any path
through C by modifying incident edge costs:

c(x, y)← c(x, y)− π(y) for all (x, y) ∈ δ−(V (C)), and (5.6)
c(x, y)← c(x, y) + π(x) for all (x, y) ∈ δ+(V (C)). (5.7)

This contraction is dispensable if C consists of a loop (C = (v, (v, v))). After the
contraction, there may be loops in G. If such a loop e = (v, v) ∈ E(G) fulfills one
of the following three conditions, (i) e ∈ Ep, (ii) cπ(e) = λ?, or (iii) {e} ∈ F , the
contribution of e to the global slack distribution is fixed and the loop e can be
removed. We call such loops irrelevant. Note, in the case cπ(e) = λ? and e ∈ F ∈ F
with |F | > 1, lines 5–8 must of course be applied to F when removing e.

Otherwise, if a loop consists of an edge e ∈ F ∈ F , |F | > 1, and cπ(e) > λ?, e
might define the minimum reduced cost within F , and must remain in E(G).
The running time of the cost adjustment plus the contraction (lines 4–11) is

obviously O(n + m). The next iteration starts with computing a new minimum
ratio cycle in the modified graph.

In each iteration either a cycle with several nodes is contracted into a new node,
or a loop consisting of an edge e ∈ F ∈ F , |F | > 1, determines the current minimum
ratio cycle. In the first case, the number of nodes is reduced by one, because
at least two nodes are replaced by a new one. In the second case, the number
|{F ∈ F ; |F | > 1}| is decreased by one.
Thus, there will be at most I := n+ |{F ∈ F ; |F | > 1}| iterations of the outer

loop. Applying Theorem 5.5 yields the desired strongly polynomial running time.
In the pseudo-polynomial case we apply the parametric shortest path algorithm of

Young et al. [1991]. This algorithm computes a (finite) sequence (T0, λ0), (T1, λ1), . . . ,
(TK , λK) of trees Ti and increasing λi ∈ R (0 ≤ i ≤ K), such that Ti (0 ≤ i < K) is
a shortest path tree with respect to edge costs cλ for all λi ≤ λ ≤ λi+1, where cλ



5.2 Slack Balance Problem 91

is defined as in the proof of Lemma 5.6. Whenever (G, cλi) contains a zero length
cycle, this is the next minimum ratio cycle.
The clue is that the tree remains a shortest path tree in the modified and

contracted graph. Thus, the algorithm can be continued after updating some edge
labels, vertex labels in the subtrees of contracted or modified edges and vertices,
and updating a heap, which provides the minimum vertex label. These updates
take O(m+ n log n) per iteration. For details see Held [2001], or similarly Young
et al. [1991].

In the worst case analysis, the bound for the total running time equals that of a
single minimum ratio cycle computation plus O(I(m+ n log n)) for data structure
updates in the parametric shortest path tree through all iterations.

2

For small weights, especially wmax = 1 the pseudo-polynomial algorithm yields
the best known bound for the Slack Balance Problem. In an empirical study
Dasdan et al. [1999] determined Howard’s algorithm, to be the fastest choice for
practical minimum ratio cycle computations, although only an exponential worst
case running time bound is known for this algorithm. A detailed description of
Howard’s algorithm can be found in Cochet-Terrasson et al. [1998].

We observed in Held [2001] that the parametric shortest path algorithm of Young
et al. [1991] yields comparable running times on sparse graphs but much faster
running times on dense graphs.

Remark 5.8. In some scenarios the Slack Balance Problem is extended
to allow for negative weights w : Et → R. This complicates the computation of
the initial minimum ratio cycle. The two minimum ratio cycle algorithms from
Theorem 5.5 rely on the fact that a lower bound λ ∈ R for the value λ? of the
minimum ratio cycle such that (G, c − λw) is conservative is known or can be
computed efficiently.
If the total weight of each cycle C ∈ G is non-negative, w(E(C)) ≥ 0, any λ ≤ λ?

fulfills this requirement. This is especially given if all weights are non-negative.
Without this constraint on the total weight of all cycles, the problem of finding λ
becomes very difficult. However, both algorithms can be used if a feasible lower bound
λ is given.

Remark 5.9. (Cycles in the Propagation Graph)
The slack balance algorithm (Algorithm 7) can be used to analyze the timing

constraints in the presence of cycles in the propagation graph. Recall that the signal
propagation in static timing analysis, as described in Section 2.4.4, requires an
acyclic propagation graph. Such cycles can be induced only by transparent latches if
these latches are analyzed with non-conservative constraints according to Remark 2.1.
Define a slack balance instance by the signal graph GS = (V S, ES) with edge costs

cS from Section 2.4.9. Choose the test edges Et as the signal graph test edges ES
t

plus the set of flush propagation edges in ES. Furthermore, set F :=
{
{e} | e ∈ Et

}
,

Ep = ES \ Et, and w : Et → {1}.



92 5 Clock Skew Scheduling

Now the maximum possible worst reduced cost of a test edge from Et defines the
worst slack in the design. Required arrival times can be propagated backwards, as
usual, along the now acyclic propagation graph. This model ignores varying delays,
when arrival times are re-scheduled and, therefore, slews are propagated differently.
In practice it is sufficient to iterate delay-calculation and slack balancing for a few
iterations.
Note that we need not add all flush edges to Et. Actually, we only need to find a

feedback arc set within the flush edges, so that (V S,Ep) becomes acyclic. However,
finding a feedback arc set of minimum size is NP-hard (Karp [1972]), but heuristics
could be used to choose a small feedback arc set.

5.2.1 Graph Models
In this section two models for clock skew scheduling as a Slack Balance Problem
are presented. The timing constraints are either modeled by a register graph (Albrecht
et al. [2002]) similar to the introductory example, or by a slightly modified signal
graph (Held et al. [2003]), which was defined in Section 2.4.9. We modify the register
graph model such that it can handle multi-frequency trees, where signals of different
domains may arrive at a single clocktree sink. Based on this we invent a method
to optimize the reference cycle time on a multi-frequency chip, with multi-cycle
adjusts.

Modeling Clocktree Sinks

The clocktree sink model is the same for both graph models. It models implicit
timing constraints between the clock signals arriving at a register, or a set of coupled
registers, and bounds on feasible schedule values.

Definition 5.10. The input to clock skew scheduling consists of

• a timing graph GT on a netlist (C, P, γ,N ) containing all information needed
for static timing analysis,

• a set Pcs ⊂ P of clocktree sinks, and

• lower and upper bounds, π(p, x) ∈ R ∪ {∞} and π(p, x) ∈ R ∪ {∞}, for the
signal arrival time at(p, σ), of a signal starting at a signal source x ∈ V T start,
and arriving in p ∈ Pcs:

π(p, x) ≤ at(p, σ) ≤ π(p, x) (5.8)

for all p ∈ Pcs, σ = (x, η, ζ) ∈ S(p), η ∈ {early, late}, ζ ∈ {rise, fall}.

The elements from Pcs might belong to different trees, usually these are the clock
inputs of the registers. Given a clocktree sink p ∈ Pcs, we add all vertices from
the signal graph GS (see Section 2.4.9) that represent signals in S(p). Restated, a
vertex vσ is added for each signal σ ∈ S(p). The set of these vertices is named Vcs.



5.2 Slack Balance Problem 93

fallrise

late

early

early-late–separation

time-window-constraints

v0

pulse-width–separation

Figure 5.3: Graph model for clock sink signals.

Let now (x, early, rise), (x, late, rise), (x, early, fall), (x, late, fall) ∈ S(p) be four
signals with a common origin x ∈ V T start. There are two types of implicit constraints
for these four signals. First, early mode arrival times must not be higher than late
mode arrival times:

at(p, (x, early, rise)) ≤ at(p, (x, late, rise)) (5.9)

and

at(p, (x, early, fall)) ≤ at(p, (x, late, fall)). (5.10)

Second, the clock signal arrival times represent an oscillating clock signal. Thus the
given pulse-width pw(x) between rising and falling edge (usually half the cycle time)
must be maintained:

at(p, (x, early, rise)) + pw(x) = at(p, (x, early, fall)) (5.11)

and

at(p, (x, late, rise)) + pw(x) = at(p, (x, late, fall)). (5.12)

These constraints can be modeled by adding edges with adequate costs between the
representing clock nodes as in Figure 5.3. Note, only a single early-late-separation
edge is needed, because the pulse-width-separation implies that the other inequality
is fulfilled. In the signal graph these constraints are given implicitly by the asserted
clock arrival times at their start nodes in V T start and the propagation inequalities
on the path to the clocktree sinks. We denote the set of all pulse-width-separation
edges for all clocktree sinks by Eζ and the set of all early-late-separation edges by
Eη.
At a clocktree sink p ∈ Pcs, clock signals σ, σ′ ∈ S(p) with different origins

x, x′ ∈ V T start may arrive. For example if the register is driven with varying clock
frequencies. Multiplexers within the clock network determine which of the different
clock signals is propagated to the sink p, when the chip is operating.



94 5 Clock Skew Scheduling

Usually these multiplexers are located at the root level of the clock network and
different signals are propagated through a common physical clocktree. In this case
the clocktree can only realize a single schedule for the sink p, and all clock signals
of different origins, but equal transition and equal timing mode, must be scheduled
equally.

Theoretically the multiplexers could be placed directly in front of each register. In
this case there could be an individual tree and an individual schedule for each clock
signal entering p. However, such a resource consumptive design is hardly applied.
In addition, there might be different clocktree sinks p, p′ ∈ Pcs that must be

scheduled synchronously, for example the master and slave clock input pins of a
master-slave-latch, which must receive exactly inverse signals. Such fixed time
differences can be modeled by introducing two arcs between the corresponding
vertices as for the pulse-width-separation.

As an additional constraint a maximally allowed time window [π(v), π(v)] is given
for each clock sink node v. Recall that v represents a pin signal pair (p, σ) with
signal source x, such that π(v) is given by π(p, x) and π(v) is given by π(p, x) from
Definition 5.10. Its purpose is to bound the maximum difference between earliest and
latest clock sink arrival times in a clocktree, and indirectly the power consumption
of the clocktree. The constraints π(v) ≤ π(v) ≤ π(v) can be modeled by using an
extra vertex v0 ∈ GR that represents the central time 0, and adding edges (v, v0),
with edge cost c(v, v0) = −π(v), and (v0, v), with edge cost c(v0, v) = π(v), as
indicated by the magenta edges in Figure 5.3. The set of these time-window edges
is denoted Ew. Summarizing, there are

1. early-late separation edges,

2. cluster edges ensuring fixed arrival time differences between signals, and

3. maximally allowed time window edges.

A set C ⊆ Pcs that is connected by such clock constraint edges is called a clock sink
cluster. We assume that all intervals [π(v), π(v)] preserve feasibility. With other
words, there are no negative cycles in the subgraphs modeling clock sink constraints.

Remark 5.11 (Clock Sink Contraction).
Cluster edges within each clock sink cluster (2. item in the above list), like pulse-
width constraints (5.11) and (5.12), induce zero-length cycles that can be contracted
once the slack balance graph construction is completed, similar to critical cycles
in Algorithm 7, and before any slack balance algorithm starts running. Costs of
incoming and outgoing edges in the slack balance graph need to be modified as in
(5.6) and (5.7).

After this contraction a clock sink cluster is represented by two nodes ve and vl.
The node vl, representing latest signals, and ve, representing earliest signals, are
connected by an edge (vl, ve).



5.2 Slack Balance Problem 95

Signal Graph Model

In the signal graph model the weighted signal graph (GS, cS) from Section 2.4.9 is
expanded by the weighted clock sink edges from the last subsection. Furthermore,
propagation edges in ES

p representing timing graph edges that enter clocktree sinks
are removed because they would predefine the schedule. More precisely, for a
node v ∈ V S that represents a late clock signal at a clocktree sink, we remove all
propagation edges from δ+

(V S,ES
p )(v). Analogously, we remove all propagation edges

from δ−(V S,ES
p )(v), if v represents an early clock signal at a sink. Recall that late

mode propagation edges in GS are reverse to the signal direction. Without removal,
the clock sink signal arrival times would be predetermined by the signal propagation
constraints within the clock network.
Remark 5.12 (Clock Gating).
By the removal of the above edges, clock gating constraints will be hidden. Clock
gates are used to switch off parts of the clocktree and the combinatorial logic to safe
power, while the chip is operating. A clock gate can be realized by an AND-gate,
with the clock signal entering one input and the gating signal entering the other
input. If the gating (input) voltage is low the subsequent clocktree is switched off. If
the gating voltage is high, the clock signal determines the output and the clocktree is
operating. Timing tests ensure that the gating signal arrives while the clock signal
is low, to keep a potentially high output signal stable within the current cycle. The
problem is that these gating tests can be evaluated only after the clocktree is inserted.
The register launching the gating signal and the gated registers must be scheduled

such that a feasible realization of the clocktrees behind the gates and the gating tree,
which distributes the gating signal to the clock gates, can be found. That is, if a
gated register is scheduled to a very early clock arrival time and the gating register
to a very late one, it might be impossible to construct the gated tree and the gating
signal tree such that the gating constraints can be preserved.
If a sufficiently large estimate for the expected sum of the two latencies is known,

user defined tests, with the setup time set to the estimated sum of latencies, could be
inserted between the output pin of the register, which is launching the gating signal,
and the registers, which are gated. During clock skew scheduling, these tests reserve
time for the latencies of the two trees.

Register Graph Model

The register graph model GR (Albrecht et al. [2002]) filters longest and shortest
paths between any pair of registers, as in our introductory example. In contrast to
the simple register graph from the introduction, we describe a model that considers
also early mode slacks and can apply final time window optimization. Furthermore
we extend the model in Albrecht et al. [2002] by user defined tests and allowing
multiple clock frequencies.

As for the signal graph model, clock sink vertices and edges are inserted into GR,
according to Section 5.2.1. Then, additional edges representing data paths between



96 5 Clock Skew Scheduling

clocktree sinks and primary IO-pins are added. Here, we must be aware that arrival
time tests, especially user defined tests, can be performed anywhere between two
data signals. Therefore, the construction of data path edges must be performed
carefully.
For every test edge (v1, v2) ∈ ES

t and every two nodes

c1, c2 ∈ Vcs ∪ {v0}

such that there is a c1-v1-path and a v2-c2-path in (V S, ES
p ) without internal vertices

in Vcs, we insert a test edge (c1, c2) into ERt . Here we assume that no path contains
a clocktree sink as an internal vertex, that is, the signal graph was prepared as for
the register graph model. Its edge cost are chosen as

cR(c1, c2) := cS(v2, c2) + cS(c1, v1) + cS(v1, v2), (5.13)

where cS(v, w) denotes the length of a shortest v-w-path in the (GS, cS). The signal
graph was used to construct the register graph only for simpler notation. In practice
the register graph could be created directly. For instance, if (v1, v2) represents a
setup test, (5.13) will correspond to the sum of the delay of a longest late-mode
delay path from c2 to v2 and setup and adjust times of the underlying timing test.
If the setup test occurs at a simple latch or flip-flop, the c1-v1-path will be of length
zero.
Note that by construction each edge that arises from (5.13), represents exactly

one timing test. But each timing test can be represented by many edges in the
register graph.

5.2.2 Late, Early and Window Optimization
Given a slack balance graph (G, c), which can either be constructed according to
the signal graph model or the register graph model, Algorithm 7 on page 90 could
be applied immediately, with Et as the set of edges that represent a setup test, hold
test, user defined test, or predefined required arrival time test.

However, timing tests and slacks are of different relevance. For instance, an early
mode slack can still be removed after clock skew scheduling by increasing the delay
on the data path. This process of inserting delay to eliminate early mode problems
is widely called early mode padding. In contrast, we assume that late mode delay
optimization is fully exploited, and all late mode delays are minimum. Therefore,
late mode slacks should be prioritized over early mode slacks.

We call the set of late mode test edges Elate and the set of early mode test edges
by Eearly, for both, the signal graph model and the register graph model. Elate is
composed of those edges that represent setup tests, flush propagation edges, or
late mode predefined required arrival time tests, while Eearly consists of edges that
represent hold tests, and early mode predefined required arrival times.

In principle, user defined test slack can be improved by adding delay on the path
to the early mode test pin. However, signals that must leave the chip simultaneously



5.2 Slack Balance Problem 97

must do this within each process corner. Therefore, such paths from the registers to
the primary output pins are constructed with a large amount of regularity, which
does not allow extensive delay insertion. Usually scheduling of registers feeding user
defined tests, is even forbidden by the designers. If not, they should be added to
Elate or Eearly, depending on the ability to add delay to the early signal paths.

In the end, the computed schedule has to be realized by a clocktree. When each
clock signal must arrive at a singular arrival time, the clocktree construction is quite
difficult. Actually, clocktrees meeting exact arrival times cannot be constructed in
practice. Instead, slight violations of the prescribed arrival times must be tolerated.
It would be beneficial if information about uncritical registers, where such violations
could be absorbed by large positive slacks, would be available.
The quality and power consumption of a clocktree improves if the clock signals

are allowed to arrive within time windows instead of single arrival times. Clock
skew scheduling can also be used to reallocate positive slacks at non-critical sinks
for time windows for the clock signals. These considerations result in a three step
clock skew scheduling scheme.

1. Late Mode Optimization of slacks below some target Stgt
l ∈ R that cannot

be improved by early mode padding.

2. Early Mode Optimization of slacks below some target Stgt
e ∈ R that can be

improved by early mode padding, while not worsening the slack distribution
of late slacks with respect to Stgt

l .

3. Time Window Optimization for clock signal sinks, while not worsening
the slack distribution of late slacks with respect to Stgt

l and early slacks with
respect to Stgt

e .

For late mode optimization we set Et := Elate, F :=
{
{e} | e ∈ Et

}
, and w ≡ 1.

According to Remark 5.4, the costs on all (late) test edges are reduced by Stgt
l and

then, Algorithm 7 is run until λ? ≥ 0.
The early mode optimization continues on the graph G, as it was contracted by

Algorithm 7 during late mode optimization. To preserve the leximin maximality of
the late slack distribution above the slack target, the reduced costs on these edges
must be non-negative. Higher slacks than zero on any non-contracted edge from
Elate are irrelevant. For early mode optimization the test edge set Et is redefined
as Et := Eearly, and w is restricted to the new test set Et. Again the edge-costs
of (early) test edges are reduced by Stgt

e , and then Algorithm 7 is continued until
λ? ≥ 0.
Finally, during time window optimization, the leximin maximality of the late

mode and the early mode slack distribution with respect to their slack targets have
to be preserved, that means the reduced costs must be non-negative, cπ(e) ≥ 0
for all e ∈ Elate ∪ Eearly. Thus to compute time windows, the set Et is redefined
as Et := Eη, and its edge-costs is set uniformly to some large negative constant
c(e) = −K, which corresponds to a maximum desired time window size. In the



98 5 Clock Skew Scheduling

presence of maximally allowed time window constraints, K could be chosen as the
maximum length of all time window constraints. Finally, the node potentials on the
incident nodes of each early-late-separation edge (vl, ve) ∈ Eη define an admissible
window [π(ve), π(vl)].

5.2.3 Multi-Domain Cycle Time Minimization
In the presence of multiple clock frequencies or multi-cycle paths, Lemma 5.2 does
not apply any more, because there is no one-to-one correspondence between the
worst slack improvement and the cycle time reduction. In this Section we give
a detailed model for realistic cycle time minimization. It maximizes a weighted
worst slack that corresponds one-to-one to a reduction of the reference cycle time of
the design. Furthermore, we prove that a feasible reference cycle time will exist if
IO-constraints and user defined tests follow certain rules.

We assume that all interacting clock domains are derived from a common reference
clock with cycle time T ref . More precisely, for a clock definition 0 ≤ tlead < ttrail ≤ T
there are numbers ṫlead, ṫtrail, Ṫ ∈ Q≥0 such that

tlead = ṫlead · T ref , (5.14)
ttrail = ṫtrail · T ref , (5.15)

and

T = Ṫ · T ref . (5.16)

Signals from asynchronous sources obviously cannot be tested against each other
(see also Section 2.4.6). Furthermore we exclude the hypothetical case that two
pairwise asynchronous signals are propagated into a common clock subnetwork, and
are controlling a common set of registers. Thus we can schedule all clock domains
that are derived from a common reference clock independently from other reference
clocks. Figure 5.2.3 shows an example of a reference clock signal generated by
an oscillator and propagated to a phase locked loop (PLL). The PLL generates
oscillating output clock signals, whose cycle times are rational multiples of the input
cycle time. The PLL output signals are then propagated to the registers. On their
way several clock signals might be merged. For instance, multiplexers in the clock
network allow for running the subsequent registers with varying frequencies.
During the description of the routine, we consider only paths between registers.

These paths usually represent the frequency-limiting constraints of a chip-core. In
the end of this subsection we show under what conditions and how predefined
required arrival times and user defined tests can be incorporated as well. Recall,
the setup test equation (2.12):

at(d, σd) + setup
(
slew(d, σd), slew(c, σc)

)
≤ at(c, σc) + adj(σd, σc).



5.2 Slack Balance Problem 99

Oscillator PLL
T ref

2 · T ref

1
2 · T ref

1
4 · T ref

Figure 5.4: Example of clock signals generated by a PLL.

We need to investigate how this equation transforms under a variable reference
cycle time T ref . Let ˙adj(σd, σc) denote the partial derivative of adj(σd, σc) in T ref .
Then

˙adj(σd, σc) := ∂ adj(σd,σc)
∂T ref

= ṫd − ṫc + ∂mpd(σd,σc)
∂T ref

+ (mcσd,σc − 1)
= ṫd − ṫc

+ min
{
ṫc + iṪc − (ṫd + jṪd)

∣∣∣ i, j ∈ N0; ṫc + iṪc − (ṫd + jṪd) > 0
}

+ (mcσd,σc − 1).

(5.17)

With ṫd, ṫc, Ṫd, Ṫc ∈ Q≥0 we have ˙adj(σd, σc) ∈ Q. The adjust values of late mode
test must be adapted proportionally to ˙adj(σd, σc) when changing the reference
cycle time T ref , and (2.12) transforms to

at(d, σd) + setup
(
slew(d, σd), slew(c, σc)

)
≤

at(c, σc) + ˙adj(σd, σc) · T ref .
(5.18)

Because of (5.14) and (5.15), also the pulse-width tests (5.11) and (5.12) will
change with varying T ref . Thus (5.11) and (5.12) must be rewritten as

at(p, σlead) + (ṫtrail − ṫlead)T ref ≥ at(p, σtrail) (5.19)
at(p, σtrail) + (ṫlead − ṫtrail)T ref ≥ at(p, σlead) (5.20)

where σlead and σtrail refer to either early mode or late mode clock signals. If signals
from different clock sources arrive in p or signals at several clock sinks need to be
coupled, analogous constraints between leading (or trailing) edge pins need to be
added.

Summarizing, for each edge e ∈ E(G) in the slack balance graph G that is a setup
test edge, flush propagation edge (in the signal graph model), or a pulse width test
edge, there is a constant w(e) ∈ Q such that the edge costs are variable costs

c(e) + w(e) · T ref (5.21)



100 5 Clock Skew Scheduling

in the reference cycle time T ref . The higher T ref , the higher are the variable costs.
In the register graph model flush propagation edges are not explicitly visible. The

variable adjusts of flushing edges on a path must be accumulated and added to
the variable costs of the corresponding register graph edges. Doing this, it might
happen that different paths with different accumulated weights need to be merged
during the creation of the register graph. This introduces piecewise linear costs that
can be modeled by parallel edges with linear costs functions on each edge.

Note that (5.19) and (5.20) induce cycles C with zero total weight w(E(C)) = 0
and zero total variable costs c(E(C)) + w(E(C)) · T ref = 0 for any choice of T ref .
Here the weights w for pulse-width edges of type (5.20) are negative. However, we
can state that the total weight of any cycle in the slack balance graph is non-negative.

Lemma 5.13. Let C ⊆ G be a cycle in the slack balance instance (G, c, w). Then
C has non-negative total edge weight: w(E(C)) ≥ 0. If C contains a setup test edge
or flush propagation edge, the total weight is strictly positive: w(E(C)) > 0.

Proof. Let C be a cycle in G. If w(e) = 0 for all e ∈ E(C), the statement is clear.
Let there be an edge e ∈ E(G) with w(e) 6= 0. Then C can be divided into paths
P0, P1, . . . , Pk−1, where the end vertices of the paths represent exactly the clock
signals in V (C), and the end vertex of Pi equals the start vertex of P(i+1) mod k,
with 0 ≤ i ≤ k − 1. Each path contains either at least a setup test edge, a flush
propagation edge, or a pulse-width edge.
Furthermore, let ṫi be the slope of the clock edge reference time at the endpoint

of Pi. Then the weight w(Pi) = ∑
e∈E(Pi) w(e) of path Pi is the sum of the difference

ṫi − ṫ((k+i−1) mod k) and some value δi ≥ 0. The latter is zero if the path consists of
a pulse-width edge, or δi = ˙mpd(σi, σ′i) + (mcσi,σ′i − 1) > 0 if Pi contains a setup
test or flush propagation edge. Here σi and σ′i shall be the underlying signals, and

˙mpd(σi, σ′i) is given by

˙mpd(σi, σ′i) = min
{
ṫc + iṪc − (ṫd + jṪd)

∣∣∣ i, j ∈ N0; ṫc + iṪc − (ṫd + jṪd) > 0
}
> 0.

Now the differences ṫi − ṫ((k+i−1) mod k) cancel out in the total weight w(C):

w(C) =
∑

e∈E(C)
w(e) =

k−1∑
i=0

∑
e∈E(Pi)

w(e)

=
k−1∑
i=0

(
ṫi − ṫ((k+i−1) mod k) + δi

)
=

k−1∑
i=0

δi ≥ 0,
(5.22)

and w(C) > 0 if and only if E(C) contains a setup test edge or flush propagation
edge.

2

Now, according to Theorem 5.5 and Remark 5.8 we obtain the following result on
the computation of the minimum reference cycle time.



5.3 Iterative Local Balancing 101

Theorem 5.14. Let G be a slack balance graph, c : E(G)→ R and w : E(G)→ Q
be defined as for (5.21), Et := {e ∈ E(G) | w(e) 6= 0}, and F = {Et}. Then the
minimum feasible reference cycle time T ref equals the negative minimum ratio cycle

−min
{
c(e)
w(e)

∣∣∣∣∣ e ∈ E(C), C ∈ G cycle , w(E(C)) > 0
}
. (5.23)

It can be computed in strongly polynomial time

O(n3 log n+ min{nm, n3} · log2 n log log n+ nm logm),

or in pseudo-polynomial time

O(wmax(nm+ n2 log n)),

for integral weights w : E(G)→ Z with wmax := max{w(e)|e ∈ Et}.

Proof. The proof is the same as for Theorem 5.1, with ∑
(v,w)∈E(C)(T − ϑ(v, w))

being replaced by ∑(v,w)∈E(C)(T refw(v, w)+ c(v, w)). The running times follow from
Theorem 5.5.

2

The set Elate contains also edges that represent user defined tests, or late mode
predefined required arrival times. Often, the involved edges in the slack balance
graph do also have edge costs proportional to the reference cycle time T ref . As long
as such an edge does induce

• neither a cycle of negative total weight,

• nor a cycle of zero weight and negative costs,

such constraints do not limit the computation of the minimum T ref .
A cycle C of negative weight, w(E(C)) < 0, would be relaxed, when increasing

T ref , which is very unlikely for practical situations. In the second case, w(E(C ′)) = 0
and c(E(C ′)) < 0, the timing constraints could not be met by any reference cycle
time T ref .

5.3 Iterative Local Balancing
The idea behind the iterative local clock balancing is to iteratively schedule each
clock sink arrival time to its local optimum. To illustrate a locally optimum
schedule, let r ∈ C be a (non-transparent) register with a single clock input c ∈
P (r) ∩ Pcs, a single data input d ∈ P (r), and a single data output y ∈ P (r),
and let slko := min{slk(y, σ) | σ ∈ S(y)} be the worst late slack at y and let
slki := min{slk(d, σ) | σ ∈ S(d)} be the worst late slack at d. When shifting all
clock arrival times in c by

∆ at(c) = slko− slki
2 ,



102 5 Clock Skew Scheduling

B

A

1 −1

Figure 5.5: Example for iterative clock skew scheduling.

the resulting worst late slacks at y and d will be equal, and c will be scheduled to a
locally optimum solution, assuming fixed delays (no slew effects).

The algorithm can be carried out in a Jacobi-style, where first ∆ at(c) is computed
for each clock sink c ∈ Pcs, and then the arrival times at all sinks are updated
simultaneously by

at(c, σc) = at(c, σc) +

ξ ·∆ at(c) if ∆ at(c) ≥ 0
(1− ξ) ·∆ at(c) if ∆ at(c) < 0

,∀σc ∈ S(c), (5.24)

given some movement rate 0 ≤ ξ ≤ 1.
The restriction of the local balancing through ξ is necessary to guarantee con-

vergence and maximization of the worst (late) slack. The example in Figure 5.5
shows two registers A and B, a data path A→ B with slack −1, and a data path
B→ A with slack 1. The local optimum schedule changes are ∆ at(A) = −1, and
∆ at(B) = 1. At a Jacobi-like simultaneous shifting, the full shifts would lead to an
A→ B-slack of 1, and a B→ A-slack of −1. Evidently, this procedure would end up
in an equivalently unbalanced situation. In contrast, when applying limited shifts
according to (5.24), both path slacks would be 0 and the cycle would be optimally
balanced after a single iteration.
This method has been used for a while as a heuristic in industrial tools, such

as IBM EinsTimerTM. The question on the quality of the result was theoretically
unsolved, and will be answered in the next subsections.

There is also link to the task of matrix balancing, for example as a pre-conditioning
technique, which we shortly point out. Schneider and Schneider [1991] defined the
combinatorial minimum balance problem to balance matrices with respect to the
l∞-norm, which is also known in algebraic optimization under the name algebraic
flow. Matrix balancing with respect to any other norm lp-norm, 1 ≤ p <∞, can be
solved optimally with a local search method very similar to that described above
(see Osborne [1960]).



5.3 Iterative Local Balancing 103

5.3.1 Quality of Iterative Local Balancing
The procedure can be formalized as an algorithm working on the register graph
GR (see Algorithm 8). Due to Remark 5.11, the set of clocktree nodes can be
represented by cluster pairs (v1

e , v
1
l ), (v2

e , v
2
l ), . . . , (vke , vkl ) and an additional node v0

representing the time-origin, where k ∈ N is the number of clusters. During late and
early optimization the reduced costs of the early-late separation edges must simply
be non-negative: cπ(vil , vie) = π(vil) − π(vie) ≥ 0. Only during the time window
optimization cπ(vil , vie) is of interest. Thus, these node-pairs can be considered as
single nodes during late and early mode optimization. The maximally allowed
time window edges are removed from GR. Instead, these constraints are handled
explicitly in line 11 and line 12 of Algorithm 8.

Now an instance for the iterative scheduling consists of a weighted directed graph
(G, c), where the set E(G) = Elate ∪ Eearly consists of late mode constraints Elate
and early mode constraints Eearly. Furthermore, legitimated by Remark 5.4, we
assume Stgt

l = Stgt
e = 0 throughout this section. The iterative algorithm for late- and

early-mode optimization is given in Algorithm 8. Depending on the optimization
mode η ∈ {early, late}, we denote

Et(η) :=

Elate if η = late,
Eearly if η = early .

During early mode optimization (η = early) late slacks must be preserved.
Lines 13–18, first compute the maximum allowed reduction −c+,late

π (v) and the
maximum allowed augmentation c−,late

π (v) of π(v), and then restrict ∆π(v) to
[−c+,late

π (v), c−,late
π (v)]. Although Algorithm 8 is a greedy algorithm, which does

not solve the Slack Balance Problem, we can show that, during late mode
optimization, the worst slack converges towards the best achievable worst slack if
the movement rates ξ are chosen adequately.

To analyze the algorithm we make following notations. Let πj , j ∈ N, denote the
node potential after the j-th iteration of the outer loop (lines 3–26), and π0 the
initial node potential, before the loop is entered. Furthermore, let

λj := min{cπj(e) | e ∈ Elate},

j ∈ N≥0, be the worst reduced cost after the j-th iteration, and be ∆πj(v), ξj the
values of ∆π(v), ξ in the j-th iteration, that is, πj(v) = πj−1(v) + ξj∆πj(v).

The convergence of the worst slack towards the maximum possible value, and
therefore the finiteness of Algorithm 8, can be guaranteed for a sufficiently balanced
choice of the movement rate ξ.

Definition 5.15. A sequence (ξj)j∈N, with values ξj ∈ [0, 1], is called sufficiently
balanced with respect to some constant N ∈ N if there is a constant K ∈ N such that
any set Ξ = {ξi, ξi+1, . . . , ξi+K} of K consecutive sequence elements can be separated
into two sets Ξ = Ξ1∪̇Ξ2, with |Ξ1| ≥ N − 1, |Ξ2| ≥ N − 1, Ξ1 ⊂ {ξ ∈ Ξ | ξ ≥ 1

2},
and Ξ2 ⊂ {ξ ∈ Ξ | ξ ≤ 1

2}. Such a K is of sufficient length for N .



104 5 Clock Skew Scheduling

Algorithm 8 Iterative Local Balancing Algorithm
Input: (G, c), η ∈ {early, late}, ε.
1: π(v0) = 0;
2: π(v) = 1

2

(
π(v) + π(v)

)
;

3: repeat
/* Compute locally optimum shifts ∆π(v). */

4: for v ∈ V (G) \ {v0} do
5: c+

π (v)← min{cπ(v, w) | (v, w) ∈ δ+(v) ∩ Et(η)};
6: c−π (v)← min{cπ(v, w) | (v, w) ∈ δ−(v) ∩ Et(η)};
7: ∆π(v)← 1

2(c
−
π (v)− c+

π (v));
8: end for

/* Chose ξ (for instance with respect to objective function).*/
9: Chose ξ ∈ [0, 1];

10: for v ∈ V (G) \ {v0} do
/* Bound ∆π(v) to feasible region */

11: ∆π(v)← min{∆π(v), π(v)− π(v)};
12: ∆π(v)← max{∆π(v), π(v)− π(v)};

/* Do not worsen late slacks below 0. */
13: if η = early then
14: c+,late

π (v)← max{0,min{cπ(v, w) | (v, w) ∈ δ+(v) ∩ Elate}};
15: c−,late

π (v)← max{0,min{cπ(u, v) | (u, v) ∈ δ−(v) ∩ Elate}};
16: ∆π(v)← min{∆π(v), c−,late

π (v)};
17: ∆π(v)← max{∆π(v),−c+,late

π (v)};
18: end if

/* Apply shifts. */
19: if ∆π(v) ≥ 0 then
20: π(v)← π(v) + ξ∆π(v);
21: else
22: π(v)← π(v) + (1− ξ)∆π(v);
23: end if
24: end for
25: λ = min{cπ | e ∈ E(η)};
26: until λ ≥ 0 or λ is ε-optimal



5.3 Iterative Local Balancing 105

Theorem 5.16. Let G = (V,E) be a graph with edge costs c and lower and upper
bounds for the node potentials π, π : V (G)→ R, and let

λ? = max
π:V (G)→R
π≤π≤π

min{cπ(e) | e ∈ E(G)}

be the maximum achievable minimum reduced cost. Furthermore, let Algorithm 8
be run in late mode (η = late) with a sequence (ξj)j∈N of movement rates that is
sufficiently balanced with respect to |V | − 1. Then the worst reduced costs converge
towards the best possible worst reduced costs:

lim
j→∞

λj = λ?. (5.25)

The special case π ≡ −∞ and π ≡ ∞ was recently proved by Kleff [2008]. The
proof of Theorem 5.16 is rather technical. We will split it into a series of lemmas
and corollaries. Throughout this subsection we consider only late mode edges:
E = Elate, Eearly = ∅.

First, we show how the reduced costs of an edge and its “neighboring” edges are
related after a single balancing iteration.

Lemma 5.17. Let cπj+1(v, w) be the reduced costs of an edge (v, w) ∈ E after
the (j + 1)-th (late mode) iteration of the main loop in Algorithm 8. Then, with
γ := min{c−πj(v), c

+
πj(w)}, either the inequality

cπj+1(v, w) ≥ 1
2
(
γ + cπj(v, w)

)
(5.26)

holds, or γ > cπj(v, w) and one of ∆πj+1(v),∆πj+1(w) attains its limit, that is,
∆πj+1(v) = π(v)− πj(v) or ∆πj+1(w) = π(w)− πj(w).

Proof. Let us first assume π ≡ ∞ and π ≡ −∞, that is, line 11 and line 12 are
ignored. We denote b := 1

2(γ − cπj(v, w)). Then the following inequalities hold:

∆πj(v) = 1
2(c−πj(v)− c

+
πj(v)) ≥

1
2(γ − c+

πj(v)) ≥
1
2(γ − cπj(v, w)) = b. (5.27)

The first inequality uses the definition of γ, and the second the definition of c+
πj(v).

Analogously, it can be shown that ∆πj(w) ≤ −b.
First, if γ ≤ cπj(v, w), we have to bound the potential decrease from cπj(v, w) to

cπj+1(v, w) from below. The highest (absolute) decrease occurs if ∆πj(v) ≤ 0 and
∆πj(w) ≥ 0. Thus cπj+1(v, w) is bounded from below by

cπj+1(v, w) ≥ cπj(v, w) + (1− ξj)∆πj(v)− ξj∆πj(w)
≥ cπj(v, w) + (1− ξj)b− ξj(−b)
≥ cπj(v, w) + 1

2(γ − cπj(v, w)) = 1
2(γ + cπj(v, w)).

(5.28)

If we add the bounds for π to this case, which means π 6≡ ∞ and π 6≡ −∞, the
decrease from cπj(v, w) to cπj+1(v, w) can only be lessened, and the inequality will
still hold.



106 5 Clock Skew Scheduling

Second, if γ > cπj(v, w), we have ∆πj(v) ≥ 0 and ∆πj(w) ≤ 0, and thus

cπj+1(v, w) ≥ cπj(v, w) + ξj∆πj(v)− (1− ξj)∆πj(w)
≥ cπj(v, w) + ξjb− (1− ξj)(−b)
≥ cπj(v, w) + 1

2(γ − cπj(v, w)) = 1
2(γ + cπj(v, w)).

(5.29)

Now the increase from cπj(v, w) to cπj+1(v, w) can be restricted if we add bounds
π 6≡ ∞ and π 6≡ −∞. However, (5.29) will remain valid, if none of the involved
inequalities becomes tight, which means ∆πj+1(v) < π(v)− πj(v) and ∆πj+1(w) >
π(w)− πj(w).

2

As a consequence of this Lemma we obtain the (preliminarily weak) monotony
and convergence of the sequence (λj)j∈N of worst reduced costs.

Corollary 5.18. The sequence (λj)j∈N is non-decreasing, bounded from above by
λ?, and convergent.

Proof. If the reduced cost of an edge (v, w) ∈ Elate decreases from an iteration j to
an iteration j+1, that is, cπj+1(v, w) < cπj (v, w), there must have been a preceding or
succeeding edge with less reduced cost, that is, cπj (v, w) > γ := min{c−πj (v), c

+
πj (w)},

and by Lemma 5.17

cπj+1(v, w) ≥ 1
2
(
γ + cπj(v, w)

)
≥ λj.

Thus we have λj+1 ≥ λj.
2

It remains to show that limj→∞ λ
j = λ?, which means that λj does not grow too

slowly. First, we show how the reduced costs cπj+1(e) of an edge e ∈ E after an
iteration j + 1, which are now close to the previously worst reduced cost λj , depend
on the reduced costs after the previous iteration j.

Corollary 5.19. Let (v, w) ∈ E be an edge with cπj+1(v, w) ≤ λj + ε, for some
ε > 0. Then the following inequalities hold for the reduced costs after the previous
iteration

cπj(v, w) ≤ λj + 2ε, (5.30)

and either

γ := min{c−πj(v), c
+
πj(w)} ≤ λj + 2ε. (5.31)

or one of ∆πj+1(v),∆πj+1(w) attains its limit, that is, ∆πj+1(v) = π(v)− πj(v) or
∆πj+1(w) = π(w)− πj(w).



5.3 Iterative Local Balancing 107

Proof. First, to show (5.30), assume cπj(v, w) > λj + 2ε > cπj+1(v, w). Thus
γ < cπj(v, w) and by Lemma 5.17 we get cπj+1(v, w) ≥ 1

2(γ + cπj(v, w)) > λj + ε,
a contradiction. Second, if γ > λj + 2ε, then γ > cπj(v, w), and according to
Lemma 5.17 either cπj+1(v, w) > λj + ε, a contradiction, or ∆πj+1(v) = π(v)− πj(v)
or ∆πj+1(w) = π(w)− πj(w).

2

Slightly weaker inequalities as (5.31) can be restricted to one of c−πj (v) and c
+
πj (w),

when taking the movement rate ξj into account:

Lemma 5.20. Let (v, w) ∈ E be an edge with cπj+1(v, w) ≤ λj + ε, for some ε > 0.
Then,

• if ξj ≥ 1
2 , c

−
πj(v) ≤ λj + 4ε or π(v)− πj(v) < 2ε, and

• if ξj ≤ 1
2 , c

+
πj(w) ≤ λj + 4ε or πj(w)− π(w) < 2ε.

Proof. We set e = (v, w) and b := 1
2(λ

j − cπj(e)) ≤ 0. The following inequalities
hold independently from ξj: ∆πj+1(v) ≥ 1

2(λ
j − cπj(e)) = b and ∆πj+1(w) ≤

1
2(cπj(e)− λ

j) = −b.
First, we consider the case ξj ≥ 1

2 . Assume c−πj(v) > λj + 4ε. By construction,
either ∆πj+1(v) > 1

2(λ
j + 4ε − cπj(e)) = b + 2ε, or, if this inequality is invalid,

∆πj+1(v) = π(v)− πj(v). In the second case, we have

0 ≤ π(v)− πj(v) = ∆πj+1(v) ≤ 1
2(λj + 4ε− cπj(e)) ≤ 2ε.

If ∆πj+1(v) is not constrained by π(v) we show that cπj+1(v, w) > λj + ε, which
would be a contradiction. Because of b ≤ 0, we have πj+1(w) − πj(w) ≤ ξj(−b).
As the sign of (b + 2ε) is unknown, we apply a case differentiation to estimate
cπj+1(v, w). First, if b+ 2ε ≥ 0, then

cπj+1(v, w) ≥ cπj(v, w) + ξj∆πj+1(v)− ξj(−b)
> cπj(v, w) + ξj(b+ 2ε) + ξj(b) = cπj(v, w) + 2ξjb+ 2ξjε
= ξjλj + (1− ξj)cπj(v, w) + 2ξjε ≥ λj + ε.

Second, if b+ 2ε < 0, then

cπj+1(v, w) ≥ cπj(v, w) + (1− ξj)∆πj+1(v)− ξj(−b)
> cπj(v, w) + (1− ξj)(b+ 2ε) + ξjb = cπj(v, w) + b+ 2(1− ξj)ε
≥ cπj(v, w) + b = λj − b > λj + 2ε.

The second case ξj ≤ 1
2 is proven analogously.

2

Lemma 5.21. If (ξj)j∈N is sufficiently balanced with respect to |V |, then for all
ε > 0 there is an iteration j and



108 5 Clock Skew Scheduling

• a cycle C ⊆ G such that cπj(c) ≤ λj + ε for all e ∈ E(C), or

• a path P ⊆ G from a node s ∈ V (G) to a node t ∈ V (G) such that cπj(c) ≤
λj + ε for all e ∈ E(P ), and π(s) ≥ π(s)− ε and π(t) ≤ π(t) + ε.

Proof. The idea behind this proof is to construct an edge progression, which either
contains a cycle or a path with the required properties. Let K be of sufficient
length for the given sequence (ξj)j∈N and the vertex set cardinality |V |, according
to Definition 5.15. Based on the given ε > 0, we choose a smaller constant
0 < ε′ < 41−Kε. As (λj)j∈N is a convergent sequence, there is an iteration j′ such that
0 ≤ λj − λj′ < ε′ for all j > j′. Let Ξ1, Ξ2 be a separation of {ξj′ , ξj′+1, . . . , ξj

′+K}
as in Definition 5.15, with |Ξ1|, |Ξ2| ≥ |V | − 1. Starting with P0 = v0,0, e0,0, v0,1,
where e0,0 = (v0,0, v0,1) := arg min{cπl(e) | e ∈ E} with l := j′ +K, we construct a
sequence (Pk)k={0,...,K} of edge progressions with P0 ⊆ P1 ⊆ · · · ⊆ PK .

Thereby Pk+1 is constructed from Pk, either by leaving it unchanged, Pk+1 = Pk, or
by augmenting Pk by an edge at one or both of its end vertices due to following rule.
We start with Pk+1 ← Pk = (vk,0, ek,0, vk,1, . . . , vk,|E(Pk)|−1, ek,|E(Pk)|−1, vk,|E(Pk)|).

If ξl−(k+1) ≥ 1
2 and Pk has an incoming edge (u, vk,0) with

cπ(l−(k+1))(u, vk,0) ≤ λj
′ + 4k+1ε′,

we redefine Pk+1 ← (u, (u, vk,0), Pk+1), and
if ξl−(k+1) ≤ 1

2 and Pk has an outgoing edge (vk,|E(Pk)|, w) with

cπ(l−(k+1))(vk,|E(Pk)|, w) ≤ λj
′ + 4k+1ε′,

we redefine Pk+1 ← (Pk+1, (vk,|E(Pk)|, w), w). Note that only if ξl−(k+1) = 1
2 , both

ends may be augmented.
Each edge progression Pk, k ∈ {0, . . . , K}, fulfills the following property:

cπl−k(e) ≤ λj
′ + 4kε′ for all e ∈ E(Pk).

The prove is by induction on k. The claim is certainly true for the initial edge
progression P0, which contains the single edge e0,0 with cπl(e) = λl ≤ λj

′+ε′. An edge
progression Pk+1 contains all edges from Pk and potentially one or two additional
edges. For all e ∈ E(Pk) we have by induction hypothesis and Corollary 5.19

cπl−(k+1)(e) ≤ λj
′ + 2 · 4kε′ < λj

′ + 4k+1ε′.

If Pk+1 contains a new edge e ∈ E(Pk+1) \E(Pk), then by construction cπl−k+1(e) ≤
λj
′ + 4k+1ε′. As a consequence the reduced costs of the edges in PK with respect to

the node potential πj′ after the j′-th iteration fulfill cπj′ (e) = cπl−K (e) ≤ λj
′+4Kε′ <

λj
′ + ε.
As ξj is sufficiently balanced, there were at least |Ξ1| ≥ |V | − 1 attempts to

augment the current edge progression by an incoming edge as well as |Ξ2| ≥ |V | − 1
attempts to augment by an outgoing edge. If PK contains a cycle, we are done.



5.3 Iterative Local Balancing 109

Otherwise, there must have been decisions not to add an incoming edge and decisions
not to add an outgoing edge, and PK is an s-t-path with s, t ∈ V .
Let k1 ∈ {0, . . . , K} be the maximum index such that ξl−k1 ∈ Ξ1, and let

s = vk1−1,0 be the first vertex in Pk1−1. By Lemma 5.20, π(s)−πl−k1(s) ≤ 2·4k1−1ε′ <
4k1ε′. We have to show that this potential difference cannot grow above 4kε′ for
k > k1. Assume π(s)−πl−k2(s) > 4k2ε′, for some K ≥ k2 > k1, and let k2 be smallest
possible. Then π(s)− πl−(k2−1)(s) ≤ 4k2−1ε′, and by combining both inequalities

πl−(k2−1)(s)− πl−k2(s) > 3 · 4k2−1ε′.

We show that this large increase would push the reduced costs cπl−(k2−1)(s, w) of
the first edge (s, w) in Pk2 above λj′ + 4k2−1ε′, a contradiction. We need to find an
upper bound for ∆πl−(k2−1)(w). The largest increase of π(w) can occur if it is not
limited by π(w):

∆πl−(k2−1)(w) = 1
2(c
−
πl−k2 (w)− c+

πl−k2 (w)) ≤ 1
2(c
−
πl−k2 (w)− λj′)

≤ 1
2(cπl−k2 (s, w)− λj′) ≤ 1

24
k2ε′ = 2 · 4k2−1ε′.

With the bounds for the potential changes in s and w we obtain.

cπl−(k2−1)(s, w) ≥ cπl−k2 (s, w) + πl−(k2−1)(s)− πl−k2(s)− ξl−k2∆πl−(k2−1)(w)
> cπl−k2 (s, w) + 3 · 4k2−1ε′ − 2 · 4k2−1ε′

≥ λj
′ + 4k2−1ε′.

It follows that π(s)− πj′(s) ≤ 4Kε′ < ε.
Analogously, it is shown that for the last vertex t in PK with πj′(t)− π(t) ≤ ε.

2

With this lemma Theorem 5.16 follows straight away:
Proof of Theorem 5.16: According to Lemma 5.21, for every ε > 0 there is an
iteration j where λj is within an ε-neighborhood from an upper bound, which is
given either as the average cost of a cycle in G or by the average cost of an s-t-path
which is optimally balanced between its potential bounds at the endpoints π(s) and
π(t).

2

Nevertheless, the overall reduced cost distribution may not converge towards an
optimum distribution as defined in the Slack Balance Problem, as the example
in Figure 5.6 shows. Let the edge labels denote the reduced costs on each edge.
In this scenario the local balancing would do nothing, because the loops with a
reduced cost of −2 (magenta edges) prevent any node potential changes. In an
optimally balanced solution the blue edges would be balanced as well and end up
with a reduced cost of 0 on both edges, for instance by shifting the node potential of
A by +1. The hybrid approach described in Section 5.3.5 overcomes this limitation.



110 5 Clock Skew Scheduling

B

A

1 −1

−2

−2

Figure 5.6: An unfavorable instance for iterative local balancing.

5.3.2 Convergence Rate
In general the convergence rate of Algorithm 8 is rather poor. For instance, when
choosing the sufficiently balanced sequence (ξj)j∈N = (1

2)j∈N it cannot be better
than linear. Recall the example from Figure 5.5, and consider the clock arrival time
in B as fixed by upper and lower bounds. So that only A can be scheduled. Then
the local shifts ∆πj(A) of the clock input of A will be 1

2j , and the convergence rate is

lim
j→∞

|λ∗ − λj+1|
|λ∗ − λj|

= 1
2 .

Kleff [2008] showed that with increasing cycle sizes this rate gets even worse. Let
CN be a cycle with N vertices and ξj = 1

2 for all j ∈ N. Then

lim
N→∞

lim
j→∞

|λ∗ − λj+1|
|λ∗ − λj|

= 1.

However, in our experimental results in Section 5.4, we will see that the cycles in
chip design are rather short, in the range of one to three vertices. In practice the
worst slack is maximized very quickly.

5.3.3 Iterative Time Window Optimization
For the time window optimization, where the reduced costs of the early-late-
separation edges is to be increased, the merge of early and late vertices must
be reversed such that the set of nodes is {v0, v

1
e , v

1
l , v

2
e , v

2
l , . . . , v

k
e , v

k
l }. Recall the

notation of the early-late-separation edges Eη = {(vil , vie) | 1 ≤ i ≤ k}. The iterative
time window optimization in Algorithm 9 first computes for each pair (vil , vie) ∈ Eη
the maximally allowed local increase of cπ(vil , vie) = π(vil) − π(vie), in terms of a
maximum feasible increase of π(vil) and and maximum feasible decrease of π(vie).



5.3 Iterative Local Balancing 111

Then based on a damping factor ξ ∈ [0, 1], these node potential changes are limited
to globally feasible ones. Evidently this approach does not create a distribution of

Algorithm 9 Iterative Time Window Optimization
1: repeat

/* Compute maximally allowed (local) time-window augmentations.*/
2: for (vl, ve) ∈ Eη do
3: c−π (vl)← min

η∈{early,late}
min{cπ(u, vl)− Stgt

l | (u, vl) ∈ δ−(vl)};
4: ∆π(vl) = max{0, c−π (vl)};
5: c+

π (ve)← min
η∈{early,late}

min{cπ(ve, w)− Stgt
e | (ve, w) ∈ δ+(ve)};

6: ∆π(ve) = max{0, c+
π (ve)};

7: end for
/* Carry out globally feasible time-window augmentations.*/

8: for (vl, ve) ∈ Eη do
9: π(vl) = π(vl) + ξ ·∆π(ve);
10: π(ve) = π(ve)− (1− ξ) ·∆π(ve);
11: end for
12: until

∑
v∈V (G)

|∆π(v)| < ε

time windows that is leximin maximal. But it converges towards a solution were no
window can be widened further.

5.3.4 Implicit Implementation
The local shifts of a vertex potential π(v) are computed based on the minimum
reduced cost c−π (v) of an incoming and the minimum reduced cost c+

π (v) of an outgo-
ing edge (Algorithm 8 lines 5 and 6 and Algorithm 9 lines 3 and 5). Assume there
are no (user-defined) tests between signals in the combinatorial logic. Furthermore,
consider clock sinks to be contracted according to Remark 5.11 on page 94. Then
c−π (v) and c+

π (v) are given by the smallest slacks of the test arcs entering a clock
pin v and the smallest slacks of the propagation arcs leaving the clock pin.
We do not need to construct the register graph explicitly but we can use the

slacks on the arcs in the timing graph to compute the local shifts. Thereby only
a small amount of data needs to be stored with each register. We give a slightly
more flexible description that we will also use later in Section 5.3.5. The objects we
consider are clusters and defined as follows.

Definition 5.22. A cluster in iterative local clock skew scheduling consists of a set
of pins and four edge sets (C,Li, Lo, Ei, Eo), where

• C ⊂ Pcs is the set of clocktree sinks,

• Li ⊂ ETt is the set of test edges to compute c+
π (C) if η = late,



112 5 Clock Skew Scheduling

• Lo ⊂ ETp is the set of propagation edges to compute c−π (C) if η = late,

• Ei ⊂ ETt is the set of test edges to compute c−π (C) if η = early, and

• Eo ⊂ ETp is the set of propagation edges to compute c−π (C) if η = early.
The edges in Li ∪ Lo ∪ Ei ∪ Eo are called cluster edge.

The worst reduced costs of an incoming edge and an outgoing edge are now com-
puted implicitly through the worst slacks on the timing arcs. Recall the definitions
(2.31), (2.32), and (2.33) in Section 2.4.8 of a timing arc slack slk(p, σp, q, σq) of
two signals σp ∈ S(p), σq ∈ S(q), (p, q) ∈ ET . Then the worst slack of an arc
(p, q) ∈ ET is min{slk(p, σp, q, σq) | σp ∈ S(p), σq ∈ S(q)}.

Initially a cluster is created for each pin p ∈ Pcs. Some multi-sink clusters might
be predefined. For instance, the two clock inputs of master-slave latches might form
a common cluster (see Section 5.2.1 for a short description of master-slave latches).
Lo and Eo are the triggering propagation edges that are reached by a forward

breadth-first or depth-first search in the propagation graph starting at the pins in
C. This search is stopped whenever a triggering propagation segment is reached,
which will be added to the sets Lo and Eo depending on the timing mode. Recall
Section 2.4.2 for the definition of a triggering propagation segment. The input test
arc sets Li and Ei are the test arcs that enter some pin that was marked during
the forward search. The set Li consists of the late mode test arcs, where the head
vertex is the early test end, while for Ei the head vertices are the late test end.

For a simple latch such as the one in Figure 2.5, this procedure would exactly
create the sets C = {c},
Lo = δ−GT (c) ∩ {e ∈ ETt | e is labeled (late, ζ, ζ ′)},
Eo = δ+

GT (c) ∩ {e ∈ ETp | e is labeled (early, ζ, ζ ′)},
Li = δ+

GT (c) ∩ {e ∈ ETp | e is labeled (late, ζ, ζ ′)}, and
Ei = δ−GT (c) ∩ {e ∈ ETt | e is labeled (early, ζ, ζ ′)}.
During the course of the algorithm the local optimum schedules are computed

based on the relevant edge sets. The arrival time changes (∆π(C)) are then applied
to all signals in {σ ∈ S(c) | c ∈ C}. After all clusters were re-scheduled, a full
timing analysis is performed, to obtain new valid slack values on the edges.
Remark 5.23. For non-transparent flip-flops, the arrival times at the data output
and the required arrival times at the data input depend only on the clock pin. In our
implementation we measure simply the worst slacks at these pins instead of using
the timing arcs.

Note that this procedure measures the slack of loops, too. If the slack of a loop is
the smallest slack of a cluster, the cluster will not be shifted.
Remark 5.24. The algorithm balances the reduced costs of incoming and outgoing
edges regardless of their values being already larger than zero. To improve the
running time in practice, line 7 could be refined such that ∆π(v) is set to zero if
c−π (v) ≥ 0 and c+

π (v) ≥ 0. Thereby the node potential is unchanged if the worst
reduced costs at the input and output are already above the slack target.



5.3 Iterative Local Balancing 113

User defined tests are not considered properly in this implicit implementation.
To consider them correctly, they must be represented by explicit edges, as in the
following hybrid balancing model.

5.3.5 Hybrid Balancing
The idea of the hybrid clock skew balancing is do combine iterative local balancing
with the critical cycle contraction, and on-the-fly creation of the register graph
edges. Algorithm 9 can be applied as a minimum mean cycle algorithm within the
framework of Algorithm 7. Formally, we run Algorithm 8, where shift bounds are
handled explicitly, until the worst slack is within an ε-neighborhood of the optimum
worst slack. According to Lemma 5.21, the subgraph induced by the edges that are
within an ε-neighborhood of the optimum consists of paths and cycles. Iteratively,
each such path and cycle can be contracted into a new node v? with initial node
potential π(v?) = 0 and shift bounds

[π(v?), π(?)] :=
⋂

v∈V (C)
[π(v)− π(v), π(v)− π(v)].

Costs of edges incident to v? are adapted as in (5.6) and (5.7). Then Algorithm 8 is
run to maximize the next worst slack.

Algorithm 10 Hybrid Local Minimum Balance Algorithm
Input: (G, c), η ∈ {early, late}, ε.
repeat

Run Algorithm 8 until worst slack is maximized;
λ = min{cπ | e ∈ E(η)};
while ∃ a path or cycle with an upper reduced cost bound below (λ+ ε) do

Contract that path or cycle into a new node v?;
end while

until λ ≥ 0

Theorem 5.25.
Let G = (V,Elate) be a graph with edge costs c and lower and upper bounds on the
node potentials π, π : V (G) → R, and let π? be an optimum solution with respect
to the Slack Balance Problem, which is defined as the Minimum Balance
Problem on (G, c) extended by additional unparameterized arcs that model the
hard lower and upper bounds on the node potential.
Furthermore, let ε? > 0 and π be the solution of the hybrid iterative local clock

skew scheduling, running with ε < ε?

|V | . Then the reduced costs with respect to π are
at most

cπ(e) ≤ cπ?(e) + ε? for all e ∈ Elate (5.32)



114 5 Clock Skew Scheduling

Proof. For paths and cycles that are contracted first (5.32) is certainly true. The
sum of the reduced cost of the edges on any contracted sub-path of length k is at
most kε. This error propagates into the adapted costs of edges incident to the new
node according to (5.6) and (5.7).
By induction, the sum of reduced costs of each contracted subpath are within

ε · k′, where k′ is the path length in the uncontracted input graph. Thus in the end
the maximum deviation on a path and thus edge is ε · |V | < ε?.

2

As for the non-hybrid iterative local balancing algorithm this approach does not
require the knowledge of the full register graph in advance. Instead, the adjacency
edge-lists are needed only for the newly generated “contraction” nodes. In the
implementation, the register graph is not given explicitly, but Definition 5.22 is
extended to

Definition 5.26. A hybrid cluster is a quintuple (C,Li, Lo, Ei, Eo), where

• C ⊂ Pcs is the set of clocktree sinks,

• Li ⊂ ETt ∪ ER is the set of test edges to compute c−π (C) if η = late,

• Lo ⊂ ETp ∪ ER is the set of propagation edges to compute c+
π (C) if η = late,

• Ei ⊂ ETt ∪ ER is the set of test edges to compute c−π (C) if η = early, and

• Eo ⊂ ETp ∪ ER is the set of propagation edges to compute c−π (C) if η = early.

The edges in Li ∪ Lo ∪ Ei ∪ Eo are called hybrid cluster edges.

Now, a new contraction node v? is represented by a “hybrid” cluster, which is
created by joining all clock sink sets into a new set C?, and replacing all edges
by register graph edges from and to other clusters. For the new cluster we then
have Li ⊂ ER, Ei ⊂ ER, Lo ⊂ ER, and Eo ⊂ ER, while the edge sets of all other
clusters remain unchanged. With this construction the cluster-internal slacks of
paths between vertices in C? are hidden, and v? is scheduled with respect to the
less critical slacks to its exterior.

5.4 Experimental Results
5.4.1 Memory Consumption
A big drawback of both graph model approaches is their huge memory demand.
In case of the signal graph model it is still linear in the size of the static timing
memory requirement, but this can already be too much. On large designs with
more that 25 000 000 pins, and 4 signals for {late, early} × {rise, fall} per pin, this
results already in 100 000 000 nodes. Even after pruning the graph (replacing paths
by single edges and similar techniques) there would be about 20 000 000 nodes, with



5.4 Experimental Results 115

10 000 000 clock nodes and 80 000 000 edges. Note that the number of nodes in the
slack balance graph can double as a new node is inserted during each contraction in
Algorithm 7. The register graph grows even more dramatically (quadratically in
the number of registers in the worst case). In practice the number of edges tends to
be 20–60 times the number of registers. Keeping the complete slack balance graph
in memory is practically infeasible, besides the huge running time effort to compute
all its edges.

The advantage of the iterative local scheduling method is that there is no need to
generate a graph explicitly, but it can work on the timing graph directly without
further memory overhead. Though its convergence rate is at most linear, it turns out
that on clock scheduling instances the worst slack is maximized after a few iterations.
In our experiments we observed that the algorithm usually converges faster than we
can construct any slack balance graph. Table 5.1 shows a comparison of the memory
consumption when balancing slacks combinatorially in the signal graph or with
iterative local scheduling. For both cases the numbers include the memory demand
of the chip data and timing engine, which was HalfTimer, as described in Schietke
[1999], in the case of the signal graph and BonnTime, as described in Szegedy
[2005b], for iterative balancing. In the iterative case this base memory is dominating
the numbers, while the optimization structures require less then 2% of the memory
consumption. The memory consumption of the signal graph implementation keeps
a redundant intermediate data layer between the timing graph and the scheduling
graph, so that the reported memory numbers can potentially be halved. However,
the tendency is apparent. Based on these results the old implementations were

���� ������	�
� ����������� �
���
������������
��������	�
 ����������� �����������

��� ���� ����

����	�� ��� ���� ����

����	� ��� ���� ����

��� ���� ����� ����

 !���� ���� ���� ����

���� ����� ����

"���# ���� ����� ����

$	���

%	�!��	

Table 5.1: Memory Overhead of the signal graph model in comparison to the
iterative local scheduling.

discarded some years ago, so that we do not have numbers from current designs.

5.4.2 Running Times
Table 5.2 shows the running times of the iterative implementations on the designs
introduced in Section 2.7, obtained on a 2.93 GHz Intel Xeon E7220. The instances
consist of placed netlists with optimized data paths. The iterative local balancing



116 5 Clock Skew Scheduling

Chip Iterative Local Iterative Hybrid
Balancing Balancing

Late Early Clock Late Early Clock
Minyi 2 4 3790 6 4 3832
Franz 8 5 209 9 5 65
Lucius 19 20 12 30 17 49
Julia 20 25 134 24 26 172
Tara 22 1201 211 27 2178 265
Felix 42 0 91 51 0 118
Fazil 49 6 44 103 7 33
Arĳan 276 362 438 309 310 458
Maxim 617 26 315 1349 20 310
David 751 8678 279 1045 15434 307
Bert 826 372 47 1109 410 51

Ludwig 832 933 151 1063 1046 166
Karsten 1457 859 166 1749 880 192
Trips 3000 2341 251 3267 2357 252

Valentin 3672 1961 436 4189 1865 417

Table 5.2: Running Times in Seconds

was stopped after at most 250 iterations, when the maximum node-potential changes
decreased below 1 ps, or when the average node-potential change decreased below

1
1000 ps. The hybrid scheduling performed at most 250 contractions, which occurred
seldom. The largest total running times occurred on David. The iterative local
balancing takes 2 hours and 42 minutes, while the hybrid algorithm needs two more
hours. It can be useful to call the late mode optimization incrementally within a
late mode timing optimization flow. The running times for late mode optimization
remained within one hour. On Valentin, where the largest late mode running time
occurs, the worst slack was maximized already after half an hour, or 13 iterations
of the algorithm. The average number of iterations until no worst slack register is
scheduled any further is 9.5, with a maximum of 65 iterations on Fazil. Note that
this is a sufficient condition for the worst slack maximization, which can already be
maximized after a smaller number of iterations. However, we do not search for an
explicit cycle after each iteration. On most instances the critical cycle contains only
1-3 registers and is found within 5 iterations.

5.4.3 Quality of the Slack Distribution
All approaches maximize the worst slack. In the signal graph model the slack
distribution of the timing tests is optimized. The drawback of this approach is that
in an optimum solution potentially all paths entering the critical cycle will have this
same worst slack. Thus, the result can end up with many critical paths, which can



5.4 Experimental Results 117

degrade the sign-off timing results (see Section 2.5).
The register graph model creates a better distribution for sign-off timing, as

register to register connections are optimized instead of timing tests. The hybrid
iterative local scheduling does also optimize the slack distribution of register to
register paths within an ε-error. In our experiments, it turned out that the benefit of
the hybrid register graph generation over the non-hybrid local scheduling is negligible.
Table 5.3 shows how the worst late slack (WS) and how the sum of negative late
slacks (SNS), taken over all nets, are optimized by clock skew scheduling. The
table shows the respective numbers for a (non-optimized) zero skew solution and
after iterative local balancing (Algorithm 8) and after the iterative hybrid balancing
(Algorithm 10).

Table 5.4 shows the corresponding numbers for early mode slacks. As early
mode slacks might be impaired by late mode optimization, we added two additional
columns showing the early mode numbers after late mode optimization just before
early mode optimization. For the hybrid run these intermediate numbers look
similar and are omitted in the table.

In our runs the slack targets were chosen as Stgt
l = Stgt

e = 0.0. The accuracy was
chosen as the accuracy given by the timing rules, which is ε = 1 picosecond. Between
the non-hybrid and hybrid mode there is almost no difference. Only on Maxim and
Trips the SNS number is slightly improved through the hybrid algorithm.

The effect of the hybrid optimization can better be measured when considering
the slacks of the register graph edges. Figure 5.7 shows the 1 000 worst register
edges colored by slack without clock schedule optimization, after the non-hybrid,
and after the hybrid local scheduling for two of the instances. Apparently, there is
hardly a difference between the non-hybrid and hybrid mode. Equivalent pictures
could be drawn for any of the test cases. Observe the strongly connected critical
components being nicely visible in the optimized pictures.
The reason for this is that situations like in Figure 5.6 (page 110) are rather

hypothetical. In most cases there is only one or a few dominating clusters throughout
the course of the hybrid algorithm. After a contraction is performed, the next critical
cycle contains a single dominating cluster. This cycle will also be balanced optimally
if the schedule of the dominating cluster is fixed, because all remaining registers
on the cycle can move freely. The number of critical paths between two different
clusters is usually very small. As a consequence it is sufficient to run the fast and
memory efficient non-hybrid optimization in practice.
Early mode slacks might be significantly impaired by late mode scheduling.

Table 5.4 shows that the sum of negative early mode slacks was worsened for most
of the chips, compared to a zero skew schedule. For the chips Lucius, David, and
Trips the worst early slack was worsened too.

This enforces the insertion of routing detours or repeater insertion for delay
creation. However, this is very instance specific. To limit the worsening of early
mode slacks, the balancing approach could be modified to disallow the decrease
of early mode slacks below zero, as late constraints result in bounds during early
mode optimization. Early mode slacks that are already below the target might be



118 5 Clock Skew Scheduling

Chip Zero Skew Iterative Local Iterative Hybrid
Balancing Balancing

WS SNS WS SNS WS SNS
Franz -0.130 -0 -0.109 -0 -0.109 -0
Minyi -0.736 -0 -0.047 0 -0.047 0
Lucius -0.640 -6 -0.638 -5 -0.638 -5
Julia -2.066 -6 -0.055 -0 -0.055 -0
Tara -0.745 -8 -0.121 -0 -0.121 -0
Felix -0.891 -25 -0.858 -10 -0.858 -10
Fazil -1.525 -17 -1.216 -11 -1.216 -11
Bert -0.897 -33 -0.618 -3 -0.618 -3

Maxim -1.564 -222 -1.131 -21 -1.131 -19
Arĳan -2.155 -25 -2.155 -4 -2.155 -4
Ludwig -11.313 -622 -11.313 -223 -11.313 -223
David -1.795 -77 -1.610 -17 -1.610 -17
Karsten -4.465 -888 -3.463 -212 -3.463 -212
Trips -2.356 -692 -1.988 -233 -1.988 -232

Valentin -1.795 -1747 -1.625 -320 -1.625 -320

Table 5.3: Optimizing late mode slacks with WS in ns and SNS in µs (rounded)

Chip Zero Skew Iterative Local Balancing Iterative Hybrid
After Late Opt After Early Opt Balancing

WS SNS WS SNS WS SNS WS SNS
Franz -0.095 -0 -1.400 -5 -0.095 -0 -0.095 -0
Minyi -0.115 -0 -1.035 -1 -0.037 -0 -0.037 -0
Lucius -0.267 -1 -1.739 -38 -0.798 -4 -0.798 -4
Julia -1.335 -0 -3.061 -10 -0.935 -0 -0.936 -0
Tara -1.568 -42 -2.960 -60 -1.110 -35 -1.111 -36
Felix 0.103 0 -0.051 -0 0.000 -0 -0.001 -0
Fazil 0.128 0 -1.053 -0 -0.045 -0 -0.051 -0
Bert -5.035 -15 -5.035 -60 -5.035 -17 -5.035 -17

Maxim -0.146 -0 -0.146 -0 0.000 -0 0.000 -0
Arĳan -4.142 -0 -4.142 -68 -4.142 -0 -4.142 -0
Ludwig -31.618 -23 -31.618 -617 -31.618 -133 -31.618 -133
David -1.561 -151 -3.544 -685 -2.059 -149 -2.060 -149
Karsten -5.063 -1 -5.063 -962 -5.063 -157 -5.063 -157
Trips -0.562 -86 -3.454 -2127 -1.478 -138 -1.478 -139

Valentin -24.985 -1 -24.985 -948 -24.985 -160 -24.985 -161

Table 5.4: Optimizing early mode slacks (WS in ns and SNS in µs)



5.4 Experimental Results 119

Zero Skew Non-Hybrid Hybrid

Zero Skew Non-Hybrid Hybrid

Figure 5.7: Improvement of late mode slacks of 1 000 worst register edges on Maxim
(top) and Felix (bottom). Edges are colored by slack from red (critical) to blue
(above the target).



120 5 Clock Skew Scheduling

decreased further, because delay buffer need to be inserted anyway. Note that most
assertions emerge from a design stage, where early mode slacks were of no interest.
Thus they may contain some inaccuracies, for instance on the chips Ludwig and
Valentin.

5.4.4 Other Aspects
Another advantage of the iterative local scheduling approach is that it is tolerant
to varying delays. As described in Section 2.4.4, the slews propagated to a pin,
and thus the delays in the forward cone, vary with varying arrival times at the
predecessors. Consequently, the arc delays are not constant when applying clock
skew scheduling. The graph models do not account for this effect, and may end with
worse results than expected. In contrast, the iterative local clock skew scheduling
performs a new timing analysis after each iteration. Thus the delays and slacks are
always up-to-date, and the next iteration automatically compensates the effect of
varying delays.

Even more advantageous is the fact that the local scheduling can easily be called
incrementally with other tools that optimize the delays, such as gate sizing or
buffering. The graph models need to recompute the edge costs every time clock
scheduling is invoked. Especially for the register graph model this corresponds to a
re-computation of longest path delays between all connected register pairs, and thus
a complete rebuild of the graph. The iterative local scheduling can simply continue
based on its data structures given in Definition 5.22.
The advantage of the iterative time-window optimization in Algorithm 9 is that

time windows of non-critical registers are increased from the first iteration on. In
contrast, Algorithm 7 is wasting its running time in identifying and contracting the
smallest time-windows, which stay small anyway.

5.5 Notes on Clocktree Synthesis
Once an optimum schedule is computed it needs to be realized by a clocktree. This
problem is related to the Repeater Tree Problem, as in both cases a signal
has to be distributed by a repeater tree. However, the construction of clocktrees is
significantly more complicated as not only maximum required arrival times, but also
minimum required arrival times need to be preserved. For the sake of completeness,
we summarize existing approaches for clocktree construction in this section.

The input to clocktree construction is almost the same as the Repeater Tree
Instance on page 35. The most important difference is that there is no slew
dependent maximum required arrival time rat(s, ζ, slew) for each sink s ∈ S, but a
slew dependent arrival time window [ls(ζ, slew), us(ζ, slew)] for the required tree
latency, ζ ∈ {rise, fall}, slew ∈ R+. The windows for the individual sinks are defined
relative to each other, which means that a signal starting at the tree root r must
arrive at each sink s ∈ S within its time window, after adjusting the start time



5.5 Notes on Clocktree Synthesis 121

at r by an adequate latency value. The larger a sink slew is, the smaller its time
window will be, because the setup and hold times increase with the input slew, and
thus the underlying timing tests are tightened. Often the time window constraint is
restricted to a common window [ls, us] for rising and falling signals which is feasible
for all slews of transition ζ ∈ {rise, fall} which are below some slew limit.
The goal is to synthesize a clocktree which ensures that all clock signals arrive

within the specified time intervals. The robustness with respect to process variations,
which is often measured in terms of the tree latency, and the power consumption
are secondary and tertiary objectives. Depending on the application the order of
the objectives may change or some weighted mean is chosen.

In a variant of the problem there can be several tree roots instead of a single root,
for instance the endpoints of a toplevel H-tree or wires of a clock grid can be roots
of bottom-level clocktrees.

An additional constraint is the clock pulse width, which is the latency difference
between the rising and the falling signal. This difference must be kept small at
every pin within the clocktree.
Traditionally the individual delay constraints were met by balancing wires as

proposed by Chao et al. [1992]. This approach is known as the Deferred-Merge-
Embedding Algorithm (DME). A huge amount of literature is based on the DME-
Algorithm. Theoretically very exact delay targets can be met by tuning wire
delay. The drawback is that it often requires a lot of wiring resources, because
intended extra delay must be created by wiring detours. Furthermore, the prescribed
wiring layouts are hard to achieve in detailed routing, and due to increasing wiring
resistances in new technologies delays increase significantly.

Held et al. [2003] proposed a different approach, which assumes that all inserted
nets will be routed with minimum length. Delays are balanced by the constructed
tree topology and accurate cell sizing. We will explain this approach a bit more in
detail.
As inverters typically yield smaller latencies, we will consider only inverters and

no buffers. In a preprocessing step maximum inverter spacings as well as capacitance
and slew targets are computed according to Section 3.3. Furthermore, a blockage
grid is created as in Section 3.8.1. Then the approximate minimum delays to a
source from every point on the chip are computed, taking into account that some
macros can prevent the tree from going straight towards a source. This results in
a shortest delay tree on the grid tiles, which will guide the topology construction
towards the tree source.

The tree is constructed in bottom-up fashion summarized in Algorithm 11. While
the topology of the tree is constructed, placeholder inverters are inserted and placed
at every internal node. In contrast to Chapter 3, a preliminary topology T consists
of a branching with arbitrary high out-degrees. Furthermore, there is a bĳection
between the internal vertices and the inverters in the final solution. However, the
inverter sizes are not fixed before the complete topology is known. Instead a set of
solution candidates is maintained at each vertex v ∈ V (T ).
Each solution candidate sc is associated with an inverter size, an input slew, a



122 5 Clock Skew Scheduling

Algorithm 11 BonnClock-Algorithm
1: Active vertices Vact := S;
2: while Vact cannot be connected to r do

/* Clustering */
3: Create a new vertex v′;
4: Find a cluster V ′ ⊆ Vact for v′;
5: Vact ← Vact \ V ′;

/* Placement */
6: Find the final placement Pl(v) for all v ∈ V ′ within Plprelim(v);
7: Refine the feasible predecessor areas Plpred(v) for all v ∈ V ′;
8: Compute the preliminary placement area Plprelim(v′) :=

⋂
v∈V ′

Plpred(v);

9: Compute the predecessor placement area Plpred(v′);

/* Dynamic Programming Update */
10: Refine the solution candidates for v ∈ V ′ based on (the final) Pl(v);
11: Compute the solution candidates for v′;
12: end while
13: Chose the solution candidate at r that minimizes the objective function;

feasible arrival time interval [lsc, usc] for the input, and a solution candidate for each
successor. Dominated candidates, whose time intervals are contained in the time
intervals of other solution candidates with the same input slews, are pruned.

Given the set of solution candidates for each successor, a set of solution candidates
for a newly inserted inverter is computed as follows. For each input slew at the
successors we simultaneously scan the corresponding candidate lists in the natural
order and choose maximal intersections of their time intervals. For such a non-
dominated candidate set we try all inverter sizes and a discrete set of input slews
and check whether they generate the required input slews at the successors. If so, a
new candidate is generated. The input slew discretization enforces the acceptance
of solutions, whose discretized input slew is some ε off the real final slew, where ε is
the granularity of the discretization.
When an inverter (a new node v′ in the notation of Algorithm 11) is inserted,

its position Plprelim(v′) is not fixed to a single location, in order to maintain a
maximum freedom for the potential area Plpred(v′) of its predecessor, which will
be determined during a later clustering step. Instead Plprelim(v′) is given as the
intersection ⋂v∈Vact Plpred(v) of the predecessor areas of its successors. The area
Plpred(v′) is then defined as the set of octagons containing all feasible positions
(Figure 5.8). From all points that are within the maximum inverter spacing (magenta
bounded area) from the preliminary placement area Plprelim(v′) of v′ (blue area),
unusable areas (for instance, those blocked by macros) and points that are too far
away from the source are subtracted. The resulting area Plpred(v′) (green area) can



5.5 Notes on Clocktree Synthesis 123

���
���
���

���
���
���

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

admissible placement
area of predecessor

white area too far from

placement area of inverter

source

area of predecessor
preliminary placement

 source

Figure 5.8: Computation of Plpred(v′) for the newly inserted inverter v′ ∈ Vact.

again be represented as a union of octagons.
The inverter sizes are selected when the final topology is found by choosing a

solution candidate at the root. The best solution candidate with respect to

1. arrival time interval matching,

2. tree latency, and

3. power consumption

is chosen. Due to discretizing slews, assuming bounded RC delays, and legalization,
the timing targets may be missed by a small amount, in the order of 20 ps. But this
impacts the overall timing result only if the deviation occurs in opposite directions
at the ends of a critical path.
For the clustering (lines 3–5 in Algorithm 11), a greedy style clustering (Al-

gorithm 12) was proposed in Held et al. [2003]. For each vertex v ∈ Vact, the
interval [lv, uv] is defined as the bounding box of the time windows of its solution
candidates. The greedy algorithm tries to find a cluster of active vertices V ′ ⊆ Vact
that maximizes the intersection of predecessor areas times the intersection of the
time intervals:

volume
( ⋂
ṽ∈V ′∪{v}

Plpred(ṽ)×
⋂

ṽ∈V ′∪{v}
[lṽ, uṽ]

)
.

Maßberg and Vygen [2008] improved the greedy style clustering by modeling and
solving it as a special facility location problem that partitions all active vertices
from Vact into clusters. They proposed a constant factor approximation algorithm
that has still a very fast running time bound of O(|S| log |S|). This global clustering
improves the power consumption by 10–15 percent. It is especially effective in the
leaf levels, which account for most of the power consumption within a clocktree.

Figure 5.9 shows a gigahertz clock on the chip Bert. It was designed for 900 Mhz
but is used in hardware with 1033 Mhz. The speed of the chip was improved by more
than 30% using clock skew scheduling in form of Algorithm 7 on the timing graph
model, and by constructing the scheduled tree with BonnClock (Algorithm 11).
Each net in the figure is represented by a star connecting the source to all sinks.



124 5 Clock Skew Scheduling

Algorithm 12 BonnClock—Greedy Clustering
V ′ ← ∅;
Chose v ∈ Vact that has maximum [lv, uv];
while V ′ ∪ {v} is feasible do

V ′ ← V ′ ∪ {v};
Vact ← Vact \ {v};
Chose v ∈ Vact that
1) has the same parity as vertices in V ′ and
2) maximizes

volume
( ⋂
ṽ∈V ′∪{v}

Plpred(ṽ)×
⋂

ṽ∈V ′∪{v}
[lṽ, uṽ]

)
;

end while

Colors indicate the arrival times of the signals at each circuit. They range from
very early times (blue) close to the source over green and yellow to very late times
(red). The leaf level arrival times vary (intendedly) by 600 ps, while the tree latency
is roughly 3 ns, which means that signals from three subsequent clock cycles travel
through the tree simultaneously.



5.5 Notes on Clocktree Synthesis 125

Figure 5.9: Gigahertz clock on the chip Bert.





6 Time-Cost Tradeoff Problem
In this section we present a new method to compute the time-cost-tradeoff curves of
linear time-cost tradeoff instances in general graphs with cycles. It is a generalization
of a method for acyclic instances by Phillips and Dessouky [1977].
We will apply this method as an approximation to discrete timing optimization

operations such as threshold voltage optimization or plane assignment. The clou
of this approach is that it integrates delay optimization and clock skew scheduling.
Other operations, especially circuit sizing, influence many arcs and do not fit well
into this scheme.

6.1 Problem Formulation
Traditionally linear acyclic time-cost tradeoff instances are given as partially ordered
sets (posets) of jobs or activities. However, they are usually transformed into
equivalent problem formulations on acyclic activity-on-edge networks.
Here, we consider the generalization to non-acyclic activity-on-edge networks,

which due to the cycles do not have an underlying poset formulation. The instances
we consider are already given as activity-on-edge networks. Therefore, we skip any
order theoretic formulation and start directly with a network formulation.

Definition 6.1. A time-cost tradeoff instance is a quadruple (G, T , (ce)e∈Ep , Et)
with following properties. G is a directed graph whose edges represent certain jobs
(activities). For each job e ∈ E(G) there is a non-empty set T (e) ⊆ R of possible
execution times or delays and a strictly decreasing cost function ce : T (e)→ R≥0.
Furthermore, there is a subset Et ⊆ E(G) of test edges. Every cycle C ⊆ G with∑
e∈E(C) maxδ∈T (e) δ > 0 must contain at least one test edge, |E(C) ∩ Et | > 0. The

edges from Ep := E(G) \ Et are called propagation edges.

An instance is called linear if T (e) = [le, ue], le, ue ∈ R with le ≤ ue, and ce is
linear for all e ∈ E(G). It is called discrete if T (e) is finite for all e ∈ E(G).

The edges (v, w) ∈ E(G) define some precedence relation with the meaning that
an event in w must not start before an event started in v plus some given delay
ϑ(v, w) ∈ T (v, w):

Definition 6.2. An assignment of start times at : V (G)→ R and execution times
ϑ : E(G)→ R is feasible if ϑ(e) ∈ T (e) and

at(v) + ϑ(v, w) ≤ at(w) (6.1)

for all e = (v, w) ∈ E(G) \ Et.

127



128 6 Time-Cost Tradeoff Problem

For test edges (v, w) ∈ Et, (6.1) may be violated. However, we are interested in
their slack slk(v, w):

slk(v, w) := at(w)− at(v)− ϑ(v, w). (6.2)

Given a feasible pair (at, ϑ) the worst slack slk(at, ϑ) is given by

slk(at, ϑ) := min
e∈Et

slk(e),

and the total cost c(at, ϑ) is given by

c(at, ϑ) = c(ϑ) =
∑

e∈E(G)
ce(ϑ(e)).

The following two problems are usually considered on time-cost tradeoff instances:
the Budget Problem and the Deadline Problem.

Budget Problem
Input:

A time-cost tradeoff instance (G, T , (ce)e∈E(G),Et), and
a budget B ∈ R+.

Output: Find a feasible pair (at, ϑ) that maximizes the worst slack among those
whose cost is at most B. We denote this maximum possible worst slack
by:

Sopt(B) := max slk(at, ϑ)
such that

(at, ϑ) is feasible and
c(ϑ) ≤ B .

(6.3)

Deadline Problem
Input:

A time-cost tradeoff instance (G, T , (ce)e∈Ep ,Et), and
a deadline or worst slack S ∈ R.

Output: Find a feasible pair (at, ϑ) that minimizes the costs among those whose
worst slack is at least S. We denote this minimum cost by

Bopt(S) := min c(at, ϑ)
such that

(at, ϑ) is feasible and
slk(at, ϑ) ≥ S .

(6.4)

Obviously, both problems are linear programs if (G, T , (ce)e∈Ep ,Et) is a linear
instance. The following definition characterizes solutions whose slack can only be
improved by increasing the cost, and whose cost can only be decreased by lowering
the slack.



6.2 Related Work 129

Definition 6.3. A feasible realization (at, ϑ) is called time-cost optimum if

slk(at, ϑ) = Sopt(c(ϑ)) (6.5)

and

c(ϑ) = Bopt(slk(at, ϑ)). (6.6)

The time-cost tradeoff problem is to find all time-cost optimum realizations:

Time-Cost Tradeoff Problem
Input: A time-cost tradeoff instance (G, T , (ce)e∈E(G),Et).
Output: Determine the set of feasible time-cost optimum realizations.

In the linear case, the cost/slack pairs of time-cost optimum solutions are located
on a piecewise linear so called time-cost tradeoff curve, within the compact interval
[S, S] for the slack, defined by the best possible slack S of a lowest-cost solution and
the best possible slack S at any cost. This curve is equivalently defined by Bopt or
Sopt respectively, as in the example in Figure 6.1. This property follows from the

Slack

Bopt
Cost

S
opt

SS

Figure 6.1: An example of a (linear) time-cost tradeoff curve. The points on the
piecewise linear solid green line are the time-cost optimum solutions.

simple fact that both functions Bopt and Sopt are parametric linear programs. The
linear time-cost tradeoff problem is to compute this curve.

6.2 Related Work
The traditional time-cost tradeoff problem was introduced by Kelley Jr. [1961] and
Fulkerson [1961]. It consists of activities that are related by a partial order, possible



130 6 Time-Cost Tradeoff Problem

execution times are closed intervals (T (e) = [le, ue] for all e ∈ E(G)) and costs are
linear functions. It was shown that they can be represented by an activity-on-edge
diagram, whose edge number is polynomially bounded in input size of the partial
order (see Skutella [1998] for details). Such an activity-on-edge diagram corresponds
to a time-cost tradeoff instance where the propagation graph (V (G),Ep) is acyclic
and |Et | = 1. There is a one-to-one correspondence between the worst slack on the
single test edge and the longest path delay through the acyclic propagation graph.
The name Deadline Problem originates from a given deadline for the project
finish time given by the longest path delay.

The linear deadline problem on acyclic graphs can be solved in polynomial time
by a minimum cost flow algorithm (for example see Lawler [1976] chapter 4.13).
This approach can be extended to cyclic graphs (see Levner and Nemirovsky [1994],
or Vygen [2001] chapter 5.5). The fastest algorithm for piecewise linear convex costs
was given by Ahuja et al. [2003].

Unfortunately a minimum cost flow formulation is only known for the Deadline
Problem. The Budget Problem could be solved by a linear programming solver
or by binary search over S and solving the Deadline Problem by a minimum
cost flow algorithm for each decision.

The discrete versions of the acyclic problem, where T (e) is a discrete set of points,
were shown to be strongly NP-hard by De et al. [1997]. Approximation algorithms
are currently only available for some special cases of the Budget and Deadline
Problem (see Skutella [1998]). Deineko and Woeginger [2001] considered the
hardness of the bicriteria (cost and slack) approximation problem.

6.3 A Combinatorial Algorithm
We present the first combinatorial algorithm to solve the linear Time-Cost Trade-
off Problem for (linear) instances (G, T , (ce)e∈Ep ,Et), where G may contain cycles.
From now on we consider each instance to be linear unless the instance type is noted
explicitly.
With this formulation we model and solve practical problems from VLSI-design.

Here the graph represents the signal propagation through the netlist. Cycles
are induced by registers whose switching times can be scheduled. Registers are
represented by test arcs where we measure whether the signal arrives before the
next cycle starts. Their delays will be negative as they contain a negative adjust by
the cycle time.

Improving the speed, that is, increasing the worst slack, involves a higher power
consumption. We want to stop improving speed if either a maximum budget is
reached, or all timing restrictions are met, and thus we have found a feasible delay
and start time assignment according to Definition 6.2.

Without loss of generality, we consider only instances where all test edges e ∈ Et
have a fixed delay T (e) = {0}. General instances can be transformed by replacing
each e = (v, w) ∈ Et by a new vertex v′ and two new edges e′ = (v, v′) ∈ E(G) \ Et



6.3 A Combinatorial Algorithm 131

and e′′ = (v′, w) ∈ Et with T (e′) := T (e), ce′ := ce, T (e′′) := {0}, and ce′′ := 0.
The function Bopt can be determined by a parametric linear programming problem

formulation, with S as parameter, and is therefore piecewise linear, convex, and
continuous. Analogously the inverse function Sopt is piecewise linear, concave and
continuous.

The algorithm combines ideas from Phillips and Dessouky [1977] with minimum
ratio cycle algorithms by Megiddo [1983] and Young et al. [1991]. Note that in
contrast to classic shortest path theory we deal with longest delay paths. Here
edge delays are feasible if no positive delay cycle exists. We start with some useful
Lemmata.

6.3.1 Preliminary Considerations
Given fixed delays, a start time assignment that maximizes the worst slack can be
computed by a minimum ratio cycle computation:

Lemma 6.4. Let (G, T , (ce)e∈Ep ,Et) be a time-cost tradeoff instance, and let ϑ be
a delay assignment. Then, the highest achievable worst slack S(ϑ) for ϑ is given by
the value of a minimum ratio cycle

min


∑
e∈E(C)−ϑ(e)
|E(C) ∩ Et |

| C ⊆ G cycle with E(C) ∩ Et 6= ∅
}
.

It can be computed in O(nm+ n2 log n) time.

Proof. Define p : E(G)→ {0, 1} by p(e) = 1 if and only if e ∈ Et. Then we look for
the largest value s such that there exists arrival times at : V (G)→ R, with

at(v) + ϑ(v, w) + s · p(v, w) ≤ at(w) ∀(v, w) ∈ E(G).

This is equivalent to
∑

e∈E(C)

(
ϑ(e) + s · p(e)

)
≤ 0

for all cycles C ∈ E(G) with E(C) ∩ Et 6= ∅. Resolving all inequalities by s
proves the statement. By Theorem 5.5 a minimum ratio cycle can be computed in
O(nm+ n2 log n) as wmax = 1.

2

With the above considerations we obtain the following corollary.

Corollary 6.5. Let (G, T , (ce)e∈Ep ,Et) be a time-cost tradeoff instance. Then the
highest achievable worst slack S is given by the minimum ratio delay of a cycle:

S = min
{∑

e∈E(C)−min{δ | δ ∈ T (e)}
|E(C) ∩ Et |

|C ⊆ G cycle with E(C) ∩ Et 6= ∅
}
(6.7)



132 6 Time-Cost Tradeoff Problem

The worst slack S of a lowest-cost solution is given by a the minimum ratio delay
cycle:

S = min
{∑

e∈E(C)−max{δ | δ ∈ T (e)}
|E(C) ∩ Et |

|C ⊆ G cycle with E(C) ∩ Et 6= ∅
}
(6.8)

The domain dom(Bopt) = [S, S] can be computed in O(nm+ n2 log n) time.
2

The next lemma allows us to consider only the subgraph of minimum ratio cycles
when we want to improve the worst slack.

Lemma 6.6. Let (G, T , (ce)e∈Ep ,Et) be a time-cost tradeoff instance and a let ϑ be
the delay assignment of a time-cost optimum solution. Then the delay ϑ(e) of an
arc e ∈ E(G) that is not located on a minimum ratio cycle, according to Lemma 6.4,
is assigned to its highest possible value, that is, ϑ(e) = max{ δ | δ ∈ T (e)}.

Proof. Assume there is an arc e′ ∈ E(G) for which the statement does not hold
(ϑ(e′) < max{δ | δ ∈ T (e)}) and e′ is not located on a minimum ratio cycle. If
E(C ′) ∩ Et = ∅ for all cycles C ′ ⊆ G with e′ ∈ E(C ′), ϑ(e′) does not influence any
slack. Therefore, ϑ(e′) can be increased to max{δ | δ ∈ T (e)}.
Let us now assume E(C) ∩ Et 6= ∅ for some cycle C ∈ G with e′ ∈ E(C). Let

C ′ ⊆ G be a cycle with maximum ratio delay among those which contain e′. We set
slk′ :=

∑
e∈E(C′)−ϑ(e)
|E(C′)∩Et | > S(ϑ). Now we can increase the delay of e′ by

min{ue − ϑ(e′), slk′− S(ϑ)} > 0,

without increasing the ratio delay of any cycle beyond − S(ϑ). As ce is a strictly
decreasing function we have found a solution of lower cost with the same worst
slack. Thus, ϑ cannot be the delay assignment of a time-cost optimum solution.

2

6.3.2 Modifying Delays
In this section the right-sided derivative of a time-cost optimum solution (at, ϑ)
with slk(at, ϑ) < S

B′opt(slk(at, ϑ), 1) := lim
h%0

Bopt(slk(at, ϑ) + h)−Bopt(slk(at, ϑ))
h

is computed. Obviously B′opt(slk(ϑ), 1) is induced by underlying arrival time and
delay changes. In fact, we will compute B′opt(slk(ϑ), 1) implicitly by computing
optimum arrival time and delay assignment changes. We will later use these
assignment changes to transform the current time-cost optimum solution into a
time-cost optimum solution with a higher worst slack.



6.3 A Combinatorial Algorithm 133

A worst slack improvement can only be achieved by decreasing the total delay
on each maximum ratio delay cycle, due to Lemmata 6.4 and 6.6. All remaining
edge delays must stay at their current maximum possible value. We therefore can
restrict the search for delays that must be modified to the critical subgraph which is
defined next.

Definition 6.7. Given a time-cost tradeoff instance (G, T , (ce)e∈Ep ,Et) and a solu-
tion (at, ϑ), we define G′ ⊆ G by V (G′) = V (G) and

E(G′) = {(v, w) ∈ Ep | at(v) + ϑ(v, w) = at(w)} ∪̇
{(v, w) ∈ Et | at(v) + slk(at, ϑ) = at(w)}.

The critical (sub-) graph Gcrit ⊆ G′ is the union of strongly connected components
in G′. For shorter notation we set

Ecrit := E(Gcrit),
Vcrit := V (Gcrit),
Eu := {e ∈ Ecrit ∩ Ep |ϑ(e) = ue}, and
El := {e ∈ Ecrit ∩ Ep |ϑ(e) = le}.

Eu ∩ El contains all edges e ∈ Ecrit \ Et with fixed delays (le = ue). We will
formulate the problem of optimum delay changes as a linear program. As we consider
an infinitesimal slack increase and therefore infinitesimal delay changes, we can
ignore relaxed delay constraints, and need to consider only tight delay constraints
of the type ϑ(e) = le or ϑ(e) = ue. We provide a linear program formulation for a
specific worst slack improvement of value one. But its solution can be scaled to
arbitrary positive slack improvements. For a sufficiently small slack improvement
all side constraints that were neglected in the linear program will be fulfilled, and a
time-cost optimum solution with a higher worst slack will be found.
We define costs for all e ∈ Ecrit ∩ Ep by

c̃e :=


−∂ce

∂ ϑ

∣∣∣∣∣
(le,ue)

if le < ue

0 if le = ue,

(6.9)

and introduce variables ye for all e ∈ Ep ∩Ecrit, and zv for all v ∈ Vcrit. The ye-
variables refer to the delay decrease of edge e ∈ Ep ∩Ecrit per unit worst slack
increase. If ye > 0, e will be accelerated. If ye < 0, e will be delayed. The new delay
will be given by ϑ(e)− εye for some appropriate ε > 0. The zv-variables refer to the
change in the start time per unit worst slack increase. The new start times will be
given by at(v)− εzv for the same ε > 0.



134 6 Time-Cost Tradeoff Problem

We want to minimize the total cost of decreasing delays, while increasing the
worst slack by one. This can be formulated as following linear program:

min
∑

e∈Ecrit∩Ep

c̃eye

ye ≥ 0 ∀e ∈ Eu,
ye ≤ 0 ∀e ∈ El,
zt − zs ≥ 1 ∀(t, s) ∈ Ecrit ∩ Et,
ye + zv − zw ≥ 0 ∀e = (v, w) ∈ Ecrit ∩ Ep .

(P)

We denote the vector of arrival time changes by z := (zv)v∈Vcrit and the vector of
delay changes by y := (ye)e∈Ecrit∩Ep . An optimum solution (z, y) for the worst slack
improvement of 1 can be transformed into an optimum solution for a worst slack
improvement of ε ≥ 0 by multiplying all variables in (P) by ε.

Lemma 6.8. Let (G, T , (ce)e∈Ep ,Et) be a time-cost tradeoff instance and (at, ϑ) be
a time-cost optimum solution with slk(at, ϑ) < S. Then the linear program (P) has
a finite optimum solution with positive value.

Proof. Due to our assumption—slk(at, ϑ) < S—there exist feasible arrival-time- and
delay-change variables y′, z′ that improve the worst slack in Gcrit by some value
ε > 0. Then (1

ε
y′, 1

ε
z′) is a feasible solution of (P).

Now assume (P) has a solution (y, z) with non-positive objective. Then we can
scale all values by a sufficiently small multiplier ε > 0 such that ϑ(e)− ye ∈ [le, ue]
and obtain solution with less or equal cost that is faster by ε. This contradicts the
time-cost optimality of (at, ϑ).

2

By linear programming duality the dual problem has a finite optimum. To
obtain the dual program we introduce dual variables µe, e ∈ Eu, for the first set of
inequalities, λe, e ∈ El, for the second set of inequalities, and fe, e ∈ Ecrit, for the
third and fourth set of inequalities. Then the dual is given by

max
∑

e∈Ecrit∩Et

fe∑
e∈δ+

Ecrit
(v)

fe −
∑

e∈δ−Ecrit (v)

fe = 0 ∀v ∈ Vcrit

fe = c̃e ∀e ∈ Ecrit \ (Eu ∪ El),
fe + µe = c̃e ∀e ∈ Eu \ El,
fe − λe = c̃e ∀e ∈ El \ Eu,
fe + µe − λe = c̃e ∀e ∈ Eu ∩ El,
fe ≥ 0 ∀e ∈ Ecrit,
µe ≥ 0 ∀e ∈ Eu,
λe ≥ 0 ∀e ∈ El.

After elimination of the slack variables µe and λe, and inverting the objective



6.3 A Combinatorial Algorithm 135

function, the dual program can be written as:

min
∑

e∈Ecrit∩Et

−fe∑
e∈δ+

Ecrit
(v)

fe −
∑

e∈δ−Ecrit (v)

fe = 0 ∀v ∈ V (Gcrit)

fe = c̃e ∀e ∈ Ecrit \ (Eu ∪ El),
fe ≤ c̃e ∀e ∈ Eu \ El,
fe ≥ c̃e ∀e ∈ El \ Eu,
fe ≥ 0 ∀e ∈ Ecrit.

(D)

The dual program (D) is, in fact, a minimum-cost-flow problem. An optimum flow
f can be found by an efficient minimum-cost-flow algorithm, for instance in strongly
polynomial time O(m logm(m+ n log n)) as described by Orlin [1993].

6.3.3 Choosing the Step Length
In the previous section we have computed the optimum delay change y per unit worst
slack increase, which induces a descent direction of B′opt(slk(ϑ), 1) with a minimum
cost increase. In the LP-formulation, we have ignored the constraints induced by
the feasible delay ranges [le, ue] for all e ∈ Gcrit, arc-constraints of type (6.1) in
Ep \Ecrit, and slack constraints in Et \Ecrit. In this subsection we determine the
maximum feasible step length ε of the slack improvement based on these constraints.
We look for the largest ε > 0 for which (ϑ(e)− ε · ye), e ∈ Ep is the delay assignment
of a time-cost optimum solution, where y is extended to all propagation edges Ep
by ye := 0 for all e ∈ Ep \Ecrit.

First, the delays have to stay within the allowed intervals: (ϑ(e)− ε · ye) ∈ [le, ue]
for all e ∈ Ep. This defines two upper bounds ε1 and ε2 on ε:

ε1 := min
{
ϑ(e)− ue

ye
| e ∈ Ecrit ∩ Ep, ye < 0

}
, (6.10)

ε2 := min
{
ϑ(e)− le

ye
| e ∈ Ecrit ∩ Ep, ye > 0

}
. (6.11)

Second, we have to satisfy arc-constraints not only in Gcrit but in G. Let ε3 be
the largest number such that there is a feasible arrival time assignment at′ for
delays ϑ′ defined by ϑ′(e) := ϑ(e)− ε3 · ye, e ∈ Ep, which achieves a worst slack of
slk(at′, ϑ′) = slk(at, ϑ) + ε3. Then ε3 is an upper bound on the feasible step length.
The next lemma summarizes the three types of bounds.

Lemma 6.9. The maximum ε by which we may increase the worst slack and modify
delays according to the subgradient (ye)e∈Ecrit, while maintaining time-cost-optimality
is given by

ε := min{ε1, ε2, ε3}, (6.12)



136 6 Time-Cost Tradeoff Problem

where

ε1 := min
{
ϑ(e)− ue

ye
| e ∈ Ecrit \ Et, ye < 0

}
, (6.13)

ε2 := min
{
ϑ(e)− le

ye
| e ∈ Ecrit \ Et, ye > 0

}
, (6.14)

ε3 := max {ε | ∃ feasible at′ with slk(at′, ϑ−εy) = slk(at, ϑ) + ε} (6.15)

It turns out that ε3 can again be computed by a minimum ratio cycle algorithm.
We define variable delays with argument ε and slopes p : E(G)→ R by:

p(e) = ye ∀e ∈ Ecrit \ Et (6.16)
p(e) = 0 ∀e ∈ E(G) \ (Ecrit ∪ Et) (6.17)
p(e) = −1 ∀e ∈ Et (6.18)

And fixed delays d : E(G)→ R by:

d(e) = ϑ(e) ∀e ∈ E(G) \ Et (6.19)
d(e) = slk(at, ϑ) ∀e ∈ Et (6.20)

Recall that we assumed fixed delays of ϑ(e) = 0 for test edges e ∈ Et, and note
that we want to guarantee at least the worst slack slk(at, ϑ) of the current solution
(at, ϑ). Now ε3 is the value of following linear program:

max ε
at′(v) + d(v, w)− ε · p(v, w) ≤ at′(w) ∀(v, w) ∈ E(G). (6.21)

This linear program is equivalent to a minimum ratio cycle problem:

Lemma 6.10. The largest ε that fulfills (6.21) equals the value of a minimum ratio
cycle:

ε3 = min
{∑

e∈E(C)−d(e)∑
e∈E(C) p(e)

∣∣∣∣∣ C ⊆ G cycle ,
∑

e∈E(C)
p(e) < 0

}
.

Assuming p(e) ∈ Z for all e ∈ E(G), it can be computed in pseudo-polynomial time
O(ymax(nm+ n2 log n)), where ymax := max{|p(e)− p(e′)|; e, e′ ∈ E(G)} and, or in
strongly polynomial time

O(n3 log n+ min{nm, n3} · log2 n log log n+ nm logm).

If ∑e∈E(C) p(e) ≥ 0 for all cycles C ∈ G, ε will be unbounded.

Proof. Equation (6.21) holds if and only if∑
e∈E(C)

d(e) ≤ ε ·
∑

e∈E(C)
p(e) for all cycles C ⊆ G. (6.22)



6.3 A Combinatorial Algorithm 137

For cycles C with ∑e∈E(C) p(e) ≥ 0, this is true for all ε ≥ 0, as the current solution
(at, ϑ) is feasible. Therefore, (6.22) can be replaced by

ε ≤
∑
e∈E(C) d(e)∑
e∈E(C) p(e)

for all cycles C ⊆ G, with
∑

e∈E(C)
p(e) < 0. (6.23)

Note, ∑e∈E(C) p(e) < 0 can only occur on cycles C ⊂ G, C 6⊂ Gcrit, because no cycle
in Gcrit is delayed. Therefore, also the numerator ∑e∈E(C) d(e) must be negative,
and the fraction is positive.

Given a feasible lower bound of ε ≥ 0 on the final value, this minimum ratio cycle
problem is solvable with the algorithms and running times used in Theorem 5.5.

2

In the next subsection we will see that we always can obtain a bounded integral
solution for (P) and provide p̃ = p.
The overall algorithm to solve the time-cost tradeoff problem is summarized in

Algorithm 13. It considers a slack target Stgt
l ∈ R, and computes the time-cost

tradeoff curve on the interval [max{S, Stgt
l },min{S, Stgt

l }].

Algorithm 13 Time-Cost Tradeoff Curve Computation
Input: A linear time-cost tradeoff instance (G, T , (ce)e∈Ep ,Et),

a slack target Stgt
l .

Output: Support points S0, S1, . . . , SK and values B0,B1, . . . ,BK of Bopt

1: Compute S;
2: Set all delays ϑ(e) to the lowest cost value;
3: Compute time-cost optimum solution (at, ϑ);
4: i = 0; S0 = slk(at, ϑ);B0 = c(ϑ);
5: while S(ϑ) < min{S, Stgt

l } do
6: Min-Cost-Flow in Gcrit =⇒ (ye)(e∈Ecrit);
7: ε1 := min{ϑ(e)−ue

ye
| e ∈ Ecrit \ Et, ye < 0};

8: ε2 := min{ϑ(e)−ue
ye

| e ∈ Ecrit \ Et, ye < 0};
9: Minimum-Ratio-Cycle in G =⇒ ε3, (zv)(v∈V );

10: ε := min{ε1, ε2, ε3};
11: Modify (at, ϑ) according to ε · y and ε · z;
12: i := i+ 1; Si = slk(at, ϑ);Bi = c(ϑ);
13: end while

6.3.4 Bounding the Running Time
The running time of a while-loop iteration (lines 6–12) in Algorithm 13 is dominated
by the minimum cost flow computation (line 6) and minimum ratio cycle computation
(line 9). For an analysis of the overall algorithm the maximum number of such
iterations must be determined. The problem is that ε may converge towards 0 and
the algorithm may get stuck.



138 6 Time-Cost Tradeoff Problem

First, it is shown that the LP-solutions in line 6 are integral and all variables can
be bounded by |V (G)|. Then, the recurrence of a solution vector y is suppressed.
Together this yields the termination of the algorithm.

Lemma 6.11. For integral c̃e ∈ Z, e ∈ Ep, the linear program (P) has an optimum
solution (y, z) with |ye|, zv ∈ {0, . . . , |V | − 1} for all e ∈ Ep, v ∈ V .

Proof. Hoffman and Kruskal [1956] proved that minimum cost flow problems have
integral optimum solutions for integral capacities, and the optimum solution of
the dual problem is integral for integral costs (see also Korte and Vygen [2008],
Section 5.4 on totally unimodular matrices). Here, in (P) and (D) capacities
correspond to c̃ and costs are zero-one vectors. Therefore, both (P) and (D) have
integral optimum solutions for c̃e ∈ Z, e ∈ Ep.

We show how to transform an optimum solution (z, y) of (P) into a solution (ẑ, ŷ)
in which the maximum difference of arrival time changes is limited by the number
of vertices in Vcrit:

max{zv | v ∈ Vcrit} −min{zv | v ∈ Vcrit} < |Vcrit|. (6.24)

After shifting all z-variables by the same value (−min{zv | v ∈ Vcrit}) there is
always a solution with min{zv | v ∈ Vcrit} = 0 and max{zv | v ∈ Vcrit} < |Vcrit|.
Given the limits of the z-variables, the limits of the y-variables follow immediately
from the fourth set of inequalities in (P) and the objective to minimize costs.

Assume (6.24) to be violated, and let the vertices v ∈ Vcrit be sorted by increasing
value zv: zv1 ≤ zv2 ≤ · · · ≤ zv|Vcrit| . Then there must be two subsequent vertices
vk, vk+1 ∈ Vcrit whose z-difference is at least two: zvk+1 − zvk ≥ 2.
We split the set Vcrit into the two sets Vcrit = V ′ ∪̇ V ′′ (see Figure 6.2) with

V ′ := {v ∈ Vcrit | zv ≥ zvk+1} and
V ′′ := {v ∈ Vcrit | zv ≤ zvk}.

We claim that we can increment all values zv, v ∈ V ′′ by one, while adapting some
y-variables, and obtain a feasible solution of (P) with equal costs. For this purpose
we categorize the edges in the cut δGcrit(V ′), which are indicated by the red and
blue arcs in Figure 6.2.

1. Red test edges: {(v′, v′′) ∈ δ+
Gcrit

(V ′) ∩ Et}. Here zv′ − zv′′ ≥ 2 and the
corresponding constraint in (P) will not be violated after increasing zv′′ by
one.

2. Tight red propagation edges:
Ered

p := {(v, w) ∈ δ+
Gcrit

(V ′) ∩ Ep; y(v,w) + zv − zw = 0}.
Here ye ≤ −2. Therefore, the first two inequalities in (P) allow to increase ye
by at least 2, and to decrease ye arbitrarily (e ∈ Ered

p ).



6.3 A Combinatorial Algorithm 139

y(v′,v′′) + zv′ − zv′′ ≥ 0

y(v′′,v′) + zv′′ − zv′ ≥ 0

V ′ V ′′

zv′ ≥ zk+1 zv′′ ≤ zk

Figure 6.2: Limiting the solution size of (P).

3. Relaxed red propagation edges: {(v, w) ∈ δ+
Gcrit

(V ′)∩Ep; y(v,w) + zv − zw > 0}.
Here ye must be bounded from below. Therefore, ye = 0 and y(v,w)+zv−zw ≥ 2
for all e ∈ {(v, w) ∈ δ+

Gcrit
(V ′) ∩ Ep; y(v,w) + zv − zw > 0}. These edges stay

valid when increasing zw, w ∈ V ′′ by up to 2. We do not consider these edges
during the increase step.

4. Blue propagation edges: Eblue
p := {(v′′, v′) ∈ δ−Gcrit(V

′) ∩ Ep}. Here y(v′′,v′) ≥
z′v − z′′v ≥ 2, and by cost minimization y(v′′,v′) = z′v − z′′v . Therefore, the first
two inequalities in (P) allow to decrease y(v′′,v′) by at least 2, and to increase
y(v′′,v′) arbitrarily.

5. There can be no blue test edges:
{(v, w) ∈ δ−Gcrit(V

′)∩Et} = ∅ as zv−zw ≤ −2 < 0 for all (v, w) ∈ δ−Gcrit(V
′)∩Et.

We claim ∑
e∈Ered

p

c̃e =
∑

e∈Eblue
p

c̃e.

Assume ∑e∈Ered
p
c̃e >

∑
e∈Eblue

p
c̃e. Then a feasible solution with less cost can be

found by decreasing zw and y(v,w) by 1 for all w ∈ V ′′ and all (v, w) ∈ Ered
p , and by

increasing y(v,w) by 1 for all (v, w) ∈ Eblue
p .

Analogously if ∑e∈Ered
p
c̃e <

∑
e∈Eblue

p
c̃e a feasible solution with less cost can be

found by increasing zw and y(v,w) by one for all w ∈ V ′′ and all (v, w) ∈ Ered
p , and

by decreasing y(v,w) by one for all (v, w) ∈ Eblue
p .

Therefore, we can obtain a feasible solution of the same cost by increasing zw
and ye by one for all w ∈ V ′′crit and all e ∈ Ered

p , and by decreasing ye by 1 for all
e ∈ Eblue

p .
2

Corollary 6.12. There is an optimum solution for (P) in which |ye| < |Vcrit| for
all e ∈ Ecrit ∩ Ep. This solution can be found by a minimum cost flow algorithm
with the same running time bound as (P).



140 6 Time-Cost Tradeoff Problem

Proof. Lemma 6.11 shows the existence of a bounded optimum solution. When
adding constraints −|Vcrit| + 1 ≤ ye ≤ |Vcrit| − 1 for all e ∈ Ecrit ∩ Ep to (P), we
obtain a new linear program (P’):

min
∑

e∈Ecrit\Et

c̃eye

ye ≥ 0 ∀e ∈ Eu,
ye ≤ 0 ∀e ∈ El,
ye ≤ |Vcrit| − 1 ∀e ∈ Ecrit ∩ Ep,
ye ≥ −|Vcrit|+ 1 ∀e ∈ Ecrit ∩ Ep,
zt − zs ≥ 1 ∀(t, s) ∈ Ecrit ∩ Et,
ye + zv − zw ≥ 0 ∀(v, w) ∈ Ecrit ∩ Ep .

(P’)

This program is again the dual of a minimum cost flow problem.
2

Note that the bounds on the variable sizes are independent from the costs. Thus,
we can scale fractional costs to integers and obtain a bounded integral solution. As
we apply strongly polynomial algorithms for the minimum cost flow problem and
the representation sizes of the scaled costs are bounded linearly in the number of
edges times the input sizes of the costs, this does not affect the running times.
The recurrence of a solution vector y can be prevented by a technique known

from preventing cycling in the simplex method for linear programming (see Charnes
[1952]): a slight cost perturbation. This cost perturbation will create unique costs
for every solution vector y. As the time-cost tradeoff curve is convex this prevents a
solution vector y of (P) to recur. As the entries in |y| are be bounded by |V (G)|,
the number of different y-vectors is limited by (2|(V G)| − 1)|Ep |.
The cost perturbation will only be applied when solving (P’). Assume that the

costs c̃e, e ∈ Ep are already scaled to integers. Let the edges be arranged in arbitrary
but fixed order e1, e2, . . . , e|E(G)|.

Lemma 6.13. Number the propagation edges Ep = {e1, e2, . . . , e|E(G)|}. For K ≥
2|V (G)| any optimum solution y of (P’) with respect to the perturbed costs ĉei :=
c̃ei + K−i, ei ∈ Ep, is also optimum with respect to the original costs c̃e, e ∈ Ep.
Furthermore, different integral solutions y and y′ have different values with respect
to ĉ:

∑
e∈Ep

ĉeye 6=
∑
e∈Ep

ĉey
′
e for all y 6= y′. (6.25)

Proof. Let y, y′ be two feasible integral solutions of (P’). If they have different
total cost with respect to c̃, this difference will be integral: ∑e∈Ep c̃e(ye − y′e) ∈ Z.
Furthermore, two different solutions y 6= y′ have different perturbation cost and the



6.3 A Combinatorial Algorithm 141

absolute perturbation cost difference is less than one:

0 <

∣∣∣∣∣∣
∑
ei∈Ep

K−i(yei − y′ei)

∣∣∣∣∣∣ ≤
∑
ei∈Ep

K−i(2|V (G)| − 1)

<
2|V (G)| − 1
K − 1

≤ 1 for y 6= y′.

It follows immediately that two integral solutions y 6= y′ have different objective
values with respect to ĉ. Assume, there is an optimum solution y with respect to
c̃ that is not optimum with respect to ĉ and let y′ be optimum with respect to ĉ.
Then ∑

ei∈Ep

ĉei(yei − y′ei) =
∑
ei∈Ep

c̃ei(yei − y′ei) +
∑
ei∈Ep

K−i(yei − y′ei) (6.26)

< −1 + 1 = 0. (6.27)

This contradicts the optimality of y′ with respect to ĉ and completes the proof.
2

After scaling the perturbated cost of each propagation edge to an integer by
multiplication with K |Ep |, the size of its representation increases from log c̃ei to
O(log c̃ei + |Ep | logK). Thus, the perturbation increases the total representation
size of the costs by O(|Ep |2 log |V (G)|). Again, this will not influence the worst
case running time, when applying strongly polynomial algorithms for the minimum
cost flow and the minimum ratio cycle computations.

Theorem 6.14. Given a linear time-cost tradeoff instance (G, T , (ce)e∈Ep ,Et),
the time-cost tradeoff curve Bopt can be computed in O(T (2n − 1)p) time, where
n = |V (G)|, p = |Ep |, and T is the running time of a minimum cost flow plus
a minimum ratio cycle computation. The currently best known bound for T is
O(min{m logm(m+ n log n), n2m+ n3 log n}) with m = |E(G)|.

Proof. The theorem follows from the previous considerations including scaling
and perturbating the slopes of the cost functions. Each y-variable can take at
most 2n − 1 different values. Thus, there are at most (2n − 1)p different delay
modification vectors. The running time bound for a minimum cost flow computation
is O(m logm(m+ n log n)) (Orlin [1993]). By Lemma 6.11 the absolute values of
the entries in the (integral) vector y are bounded by |V | − 1. Therefore, a minimum
ratio cycle computation can be done in O(n2m+n3 log n) according to Theorem 5.5
and Remark 5.8.

2

6.3.5 Piecewise Linear Convex Cost Functions
Algorithm 13 can be extended to handle piecewise linear convex costs instead
of linear costs. Let (G, T , (ce)e∈Ep ,Et) be a time-cost tradeoff instance, and let



142 6 Time-Cost Tradeoff Problem

le = p0
e < p1

e < · · · < pkee = ue be the support points of the piecewise linear cost
convex function ce of edge e. See Figure 6.3 for an example.

p0
e

c(p0
e)

c(p1
e)

c(pk−1
e )

c(pk
e)

Costs

Delayp1
e . . . . . .pi−1

e pi
e

c(pi−1
e )

c(pi
e)

pke
epke−1

e

Figure 6.3: A piecewise linear convex cost function

Now define a new instance (G′, T G′ , (ce′)e′∈E(G′)\Et ,Et) with linear cost functions.
The graph G′ is constructed from G by replacing each arc e ∈ Ep by a path Pe ⊂ G′

with (ke + 1) edges e′0e, e′
1
e, . . . , e

′ke
e . The cost function of an edge e′ie ∈ E(G′) is

denoted by cie.
The edge e′0e represents the minimum possible delay, T G′(e′0e) := {p0

e}, with
minimum possible costs c0

e(p0
e) = ce(ue). The other edges e′ie, i ∈ {0, . . . , ke − 1},

represent a segment of the piecewise linear function ce: the delay range is T (e′ie) :=
[0, pie − pi−1

e ], with linear decreasing costs cie : T (eie)→ [0, ce(pi−1
e )− ce(pie)].

Due to the convexity of ce the (negative) slopes of the linear pieces are increasing:
∂c1
e

∂ ϑ
< ∂c2

e

∂ ϑ
< · · · < ∂ckee

∂ ϑ
. Due to this ordering, the minimum cost delay assignment of

the path Pe with total delay equal to a given delay ϑ(e) on the original edge e ∈ Ep
has following property. There exists an index i? ∈ {1, . . . , ke} such that

ϑ(eie) = 0 for all i > i?,
ϑ(eie) = pie − pi−1

e for all i < i?, and
ϑ(ei?e ) = ϑ(e)− pi?−1

e (implying ϑ(ei?e ) ∈ [0, pi?e − pi
?−1
e ]).

(6.28)

Therefore, there is a one-to-one correspondence between time-cost optimum solutions
in (G, T , (ce)e∈Ep ,Et) and (G′, T G′ , (ce′)e′∈E(G′)\Et ,Et). The choice of i? is not unique:
if ϑ(e′i

?

e ) = 0 (or ϑ(e′i
?

e ) = pi
?

e − pi
?−1
e and i? < ke,), i? could be decremented

(incremented) by one.
The extended instance (G′, T G′ , (c′e′)e′∈E(G′)\Et ,Et) demonstrates that the piece-

wise linear convex problem can be transformed into an equivalent problem with
linear costs. Nevertheless the implementation, especially the solution of (D), can
be found without explicitly using the extended graph. During one iteration of the



6.3 A Combinatorial Algorithm 143

while-loop in Algorithm 13, at most one edge delay on the path Pe ⊂ G′ representing
e ∈ Ep will be modified, due to the convexity of ce. To compute these delay changes
we have to solve the dual minimum cost flow problem (D). The flow-constraints
induced by each path Pe can be represented equivalently by constraints on a single
edge:

In the case ϑ(e) ∈ (pi−1
e , pie) for some i ∈ {1, . . . , ke}, all delays on edges e′je ∈ E(Pe)

with j 6= i, will be unchanged and can be neglected by contraction. Otherwise,
ϑ(e) = pie for some i ∈ {0, . . . , ke}, either ϑ(e′i+1

e ) will be increased or ϑ(e′ie) will
be decreased in the current iteration, while all other edge-delays in Pe remain
unchanged. As the delay reduction variable ye′i+1

e
is not bounded from below, and

ye′ie is not bounded from above in (P), we have e′ie ∈ Eu \ El and e′
i+1
e ∈ El \ Eu.

In the dual problem this results in flow-constraints fe′ie ≤ c̃ie and fe′i+1
e
≥ c̃1

e. These
two constraints on two consecutive edges in Pe can equivalently be considered as
two constraints on a single edge.

It follows that (P) can solved by a minimum cost flow computation in the original
graph G. The computation of ε1, ε2 must be adapted such that no delay exceeds
a support interval, and the computation of ε3 is unchanged, because it does not
depend on the cost functions. However, this implementation detail does not affect
the worst case running time. This is given by the worst case running time for the
extended instance (G′, T G′ , (c′e′)e′∈E(G′)\Et ,Et). From Theorem 6.14 we derive the
following corollary.

Corollary 6.15. Given a time-cost tradeoff instance (G, T , (ce)e∈Ep ,Et) with piece-
wise linear convex costs, the time-cost tradeoff curve Bopt can be computed in
O(T (2n − 1)K) time, with n = |V (G)|, m = E(G) and K := ∑

e∈Ep ke, and
T = O(min{m logm(m+ n log n), n2m+ n3 log n}) is the running time bound for a
minimum cost flow plus a minimum ratio cycle computation.

2

6.3.6 Optimizing Weighted Slacks
In some applications the individual test edges might be of different importance, for
example if we want to minimize the reference cycle time as in Section 5.2.3. Let us
assume that a non-negative weight is assigned to each test edge by w : Et → R+,
and the worst weighted slack is to be maximized. Here the worst weighted slack
slkw(at, ϑ) for a feasible pair (at, ϑ) is defined as

slkw(at, ϑ) := min
e∈Et

slk(e)
w(e) . (6.29)

The Weighted Budget Problem, the Weighted Deadline Problem, and
the Weighted Time-Cost Tradeoff Problem arise from the non-weighted
definitions on pages 128 and 129, by replacing every occurrence of slk by slkw.
In presence of weights, Lemma 6.4 translates to following lemma.



144 6 Time-Cost Tradeoff Problem

Lemma 6.16. Let (G, T , (ce)e∈Ep ,Et,w) be a weighted time-cost tradeoff instance,
and let ϑ be a delay assignment. Then the highest achievable worst weighted slack
for ϑ is given by a minimum ratio negative-delay cycle:

min


∑
e∈E(C)−ϑ(e)∑
e∈E(C)∩Et w(e) | C ⊆ G, cycle, E(C) ∩ Et 6= ∅

}
.

By Theorem 5.5 it can be computed in strongly polynomial time. The delay
modification linear program (P) transforms to

min
∑

e∈Ecrit∩Ep

c̃eye

ye ≥ 0 ∀e ∈ Eu,
ye ≤ 0 ∀e ∈ El,
zt − zs ≥ w(t, s) ∀(t, s) ∈ Ecrit ∩ Et,
ye + zv − zw ≥ 0 ∀e = (v, w) ∈ Ecrit ∩ Ep .

(6.30)

Furthermore, the minimum ratio cycle computations in lines 3 and 9 of Algo-
rithm 13 need to be modified. Equation (6.18) needs to be changed in line 9. The
variable delay of −1 on test-edges needs to be replaced by

p(e) = −w(e) ∀e ∈ Et . (6.31)
The worst case running time of Algorithm 13 can increase because the bounds on
the optimum solutions y must be increased under weights.
Furthermore, the computations of the minimum ratio cycles may become more

costly. In Theorem 6.14 the bounds on the y-variables were used to yield a strongly
polynomial running time for the parametric shortest path algorithm. For arbitrary
weights w, a strongly polynomial running time can only be guaranteed using
Megiddos minimum ratio cycle algorithm as in Lemma 6.10.
Theorem 6.17. Given a time-cost tradeoff instance (G, T , (ce)e∈Ep ,Et) together with
weights w : Et → N, the weighted time-cost tradeoff curve Bw

opt can be computed in
O(T (2nwmax−1)p) time, where n = |V (G)|, p = |Ep |, wmax = max{w(e) | e ∈ Et},
and T is the running time of a minimum cost flow computation plus a minimum
ratio cycle computation.
Proof. The proof can be carried out as the proof of Theorem 6.14. The main
difference is that the values |ye|, e ∈ Ep, are bounded by |ye| < |Vcrit|wmax (instead
of |ye| < |Vcrit|). The proof of Lemma 6.11 needs to be adapted by replacing |Vcrit|
by |Vcrit|wmax (unless it specifies the index of the vertex with maximum z-value
zv|Vcrit|), and replacing 2 by (wmax +1) (unless it acts of an subtractor of a vertex
index).

2

In the weighted case the parametric shortest path algorithm provides a worst
case running time of O(wmax(nm+ n2 log n)) for computing a minimum ratio cycle,
which is not strongly polynomial in contrast to the non-weighted case. Valid strongly
polynomial running time bounds for the minimum ratio cycle computation can be
found in Theorem 5.5 on page 88.



6.3 A Combinatorial Algorithm 145

6.3.7 Optimizing the Slack Distribution
In many practical applications we are given both a slack target Stgt

l ∈ R and a budget
B ∈ R, and we are looking for a time-cost optimum solution (at, ϑ) that either
reaches the slack target Stgt

l or consumes the complete budget B. This problem can
be solved with Algorithm 13, when stopping the while-loop as soon as the slack
target is reached or the budget is consumed.
However, in most VLSI-scenarios this point is unreachable, because slk(at, ϑ) <

Stgt
l , and c(at, ϑ) < B for a time-cost optimum solution with slk(at, ϑ) = S. If this

is the case other potentially more resource or running time consuming optimization
routines, such as logic restructuring or replacement, have to be applied afterwards.
The workload for more costly routines is to be kept small. Therefore, not only the
maximization of the worst slack is of interest, but the computation of a minimum
cost vector (slk(e))e∈Et that is leximin maximal with respect to Stgt

l . However, it
is not clear how to optimize the slack distribution on uncritical parts at minimum
cost, as the example in Figure 6.4 shows.

CA B

D E F

(0,0,0)(1,0,−1) (1,0,−1)

Figure 6.4: An example showing that a time-cost tradeoff optimum delay assignment
might not yield a distribution-cost optimum solution.

Assume vertical (blue) edges to be propagation edges and horizontal (black) edges
to be test edges. The labels on the propagation edges specify (ue, le, c̃e). In the
beginning A→ D → E → B → A is the worst slack cycle with a slack of −1. This
slack can be improved at minimum cost by speeding up (A,D) to ϑ(A,D) = 0.
Afterwards all slacks would be −0.5. However, when choosing (E,B) instead of
(A,D) the slack of the other simple cycle B → C → F → E → B would have a
slack of 0. Therefore, the choice of (B,E) would lead to a better slack distribution
at equal cost.

Nevertheless, Algorithm 13 can be modified in the following way. When the worst
slack is reached, the second worst slack can be maximized while keeping the worst
slack unchanged. Just like the slack balance algorithm (Algorithm 7 in Section 5.2),
this can be done by fixing all slacks on those worst slack cycles whose edge delays



146 6 Time-Cost Tradeoff Problem

are all at their minimum possible value. All delays on these cycles are fixed and all
test edges are transferred from Et to Ep with a fixed delay of slk(ϑ).
Formally, given a time-cost optimum solution (at, ϑ), the subgraph Gfix

crit of non-
improvable worst slack cycles is the union of the strongly connected subgraphs of
(Vcrit, {e ∈ Ecrit|ϑ(e) = le}). Algorithm 14 describes how the slack distribution can
be optimized. The modified time-cost tradeoff instance maintains all worst slacks,

Algorithm 14 Slack Distribution Time-Cost Tradeoff Algorithm
Input: A linear time-cost tradeoff instance (G, T , (ce)e∈Ep ,Et),

a slack target Stgt
l .

1: Run Algorithm 13 ⇒ (at, ϑ);
2: while slk(at, ϑ) < Stgt

l do
3: Compute Gfix

crit;
4: ϑ(e)← slk(e) for all e ∈ E(Gfix

crit) ∩ Et;
5: Ep ← Ep ∪ (E(Gfix

crit) ∩ Et);
6: Et ← Et \E(Gfix

crit);
7: Run Algorithm 13 ⇒ (at, ϑ);
8: end while
9: return (at, ϑ);

and Algorithm 13 can be continued until there is a next worst slack cycle that
cannot be improved any more. This approach results in a sequence of solutions that
yield an optimum slack distribution on the subgraph of cycles, which are completely
assigned to the minimum delays.

Theorem 6.18. Given a time-cost tradeoff instance (G, T , (ce)e∈Ep ,Et), a slack tar-
get Stgt

l , an output (at, ϑ) of Algorithm 14, let Gfix
crit be defined with respect to (at, ϑ).

Then (at, ϑ) is a minimum cost solution such that the vector (slk(e))(e∈E(Gfixcrit))
∩Et)

is leximin maximal and slk(e) ≥ Stgt
l for all e ∈ Et \E(Gfix

crit).

Proof. By construction the slack distribution in Gfix
crit is equivalent to a slack dis-

tribution computed by Algorithm 7 in Gfix
crit, when all delays in Gfix

crit are lowest
possible.

2

6.3.8 Notes on the Acyclic Case
In the acyclic case, there is only a single test arc. The minimum cost flow instance
reduces to a maximum flow instance with upper and lower capacitances, and the
minimum ratio cycle instance reduces to a longest path computation. The worst-case
running time of a while-loop iteration is significantly smaller:
The maximum flow problem can be solved in strongly polynomial time

O(nm log(2+m/(n logn)) n) (King et al. [1994]), or in



6.4 Applications in Chip Design 147

O(min{m1/2, n2/3m}m log(n2/m) logC) (Goldberg and Rao [1998]), where
n = |V (G)|,m = |E(G)|, and C = ||c̃||∞. A longest path computation in an acyclic
graph runs in O(m) time. More details on the acyclic case and its applications to
threshold voltage assignment in VLSI-design can be found in Schmedding [2007].

6.3.9 Infeasible Maximum Delays
In the definition of a time-cost tradeoff instance, we required any positive delay
cycle to contain at least one test edge. This condition can be relaxed, to a condition
where just every cycle C ⊆ G, with ∑e∈E(C) minδ∈T (e) δ > 0, must contain at least
one test edge. But finding an initial time-cost optimum solution of minimum cost
becomes more difficult. However, once it is found, the time-cost tradeoff curve can
be computed by Algorithm 13.
First, we compute the minimum cost feasible solution (at, ϑ) that might not be

time-cost optimum.

Lemma 6.19. Given a time-cost tradeoff instance (G, T , (ce)e∈Ep ,Et), a feasible
solution (at, ϑ) of minimum cost can be found in O(m logm(m+ n log n)) time.

Proof. We formulate the problem as a linear program that ignores all slacks. Costs
(c̃e)(e∈E(G)) are defined as in (6.9) by the slopes of the linear cost functions. There
are variables ye for all e ∈ Ep and zv for all V ∈ V (G), where ye describes a delay
reduction yielding a final delay of ϑ(e) = ue − ye, and zv determines the arrival
times at(v) = zv. Now we can formulate the problem as:

min
∑

e∈Ecrit∩Ep

c̃eye

ue − le ≥ ye ≥ 0 ∀e ∈ Ep,
zw − zv + ye ≥ 0 ∀e = (v, w) ∈ Ep

(6.32)

This is the dual of a minimum cost flow problem, which again can be solved in
O(m logm(m+ n log n)) time (Orlin [1993]).

2

This gives a tight lower bound B := ∑
e∈Ep ce(ϑ(e)) for dom(Sopt), but another

delay assignment ϑ′ of equal cost might offer a higher worst slack. Therefore, we
have to solve the Budget Problem with budget B. So far no combinatorial
algorithm to this problem is known. Thus, we rely on a general purpose LP-solver,
such as the polynomial time algorithm by Karmarkar [1984].

6.4 Applications in Chip Design
In this section we model certain optimization techniques in chip design as time-cost
tradeoff problems. The general framework generates a set of alternative “local”
layouts, for example for a circuit or net. With each layout a delay and a cost is
associated. The cost is induced by the underlying resource consumption, for example



148 6 Time-Cost Tradeoff Problem

power or space. The goal is to find, with limited resources, a layout assignment that
yields a leximin maximum distribution of slacks with respect to a slack target.

The time-cost tradeoff problem is especially applicable where timing optimization
is bounded by limited resources, and where the optimization operations have only
a “local” influence on a small set of edges in the timing graph. This characteristic
holds for many optimization techniques, especially for threshold voltage assignment,
plane assignment, and repeater tree insertion, where a layout change influences
the delay through a single circuit or (buffered) net. Furthermore, the effect of an
operation is independent from other operations on a path and the delay changes on
the path can simply be added.

In contrast, changing the size of a circuit does not only influence the delay through
that circuit but also through its predecessor circuits in the opposite direction.
Algorithm 13 on page 137 serves as a heuristic for the discrete problem on non-

linear delay models. Starting from a least resource consuming layout it iteratively
selects a set of layout changes called operations that improves the slack distribution
of the design. Whenever a set of time-cost efficient operations is to be found, the
problem is linearly relaxed, and the minimum-cost flow as well as the minimum-ratio
cycle problem are solved as in a while-loop iteration of Algorithm 13. Guarded
by the delay modification y-vector, underlying operations are applied whenever
their y-value is non-zero. An iteration is finished by reoptimizing the arrival time
assignment.
One feature of Algorithm 13 is that the whole instance graph G need not be

created explicitly. The minimum cost flow computation is performed only on Gcrit.
The minimum ratio cycles can be computed by the incremental parametric shortest
path algorithm by Albrecht [2006]. The minimum ratio cycle computation would
first start constructing its structures on Gcrit only and the incrementally add the
most critical parts of G through callbacks. If |E(Gcrit)| � |E(G)| this can yield an
significant speed-up even for the Budget Problem, which could be solved by a
single minimum cost flow computation in G. In our VLSI-applications G will not
be created explicitly.
Another advantage of Algorithm 13 is its iterative nature. The error that is

introduced with every linearization can be (rewarded) in subsequent iterations.
Furthermore all local layout changes create small delay changes in the physical
and logical vicinity of the modified parts too. In practice these functions can be
reapproximated after each iteration during the course of the algorithm. This yields
an overall stable behavior and ensures that the final result matches with reality. In
a single linear programming optimization of the Budget Problem or Deadline
Problem the approximation error can get very large if delay-cost functions are
estimated only once at the beginning. Especially many electrical violations can
make the results useless.

A similar model was proposed in Schietke [1999] for the acyclic case. There, the
delay modification vector is computed heuristically by a minimum cut approach,
but without enabling simultaneous decreasing and increasing of delays. Thus, it
does not guarantee optimality even in the case of linear problems.



6.4 Applications in Chip Design 149

6.4.1 Delay Optimization Graph
The delay optimization graph GO, which corresponds to Gcrit, is defined such that
layout changes through a circuit or net can be identified by a single edge. Note
that we cannot use the timing graph GT directly because a layout change usually
affects several timing edges in ET . Such a coupling of jobs is not modeled in the
time-cost tradeoff problem. Instead of maintaining real edge delays we estimate
only the delay changes caused by layout changes.
For every circuit c ∈ C there is one vertex for every input pin from Pin(c), one

vertex for every output pin from Pout(c), and two internal vertices vinc and voutc .
There is an edge (vinc , voutc ) that represents the layout changes of c.

For every net N ∈ N there are |Pout(N)| edges as in the timing graph. Let
p ∈ Pout(c) ∩ Pin(N) be the source of N , and let vp be the vertex that represents
p. Layout changes of n are represented by the edge (voutc , vp). Figure 6.5 shows the
model of a two bit full adder and its output nets.

vin
c vout

c

Figure 6.5: An example of the delay optimization graph of a two bit adder. In
the left the complete bipartite timing graph of the adder plus two outgoing net
timing edges for each output pin are given. In the right the corresponding delay
optimization graph with a blue edge, representing circuit layout changes, and violet
edges representing net layout changes is shown. With black edges no operations is
associated. They are used to represent timing constraints only.

6.4.2 Operations
We call layout changes based on the current layout operations. For every e ∈ E(GO)
that represents layout changes, a set O(e) of potential operations is computed.
With every operation o ∈ O(e) we associate a local slack change −∆ slkoe and a cost
change ∆coe. The local slack change of (v, w) ∈ E(GO) is the difference of the worst
slack among all pins in w ∪ v ∪ Γ−GO(v) · · · ∪ Γ−kGO(v), where k = 0 for net operations
and k = 2 for circuit operations. Here Γ−G(V ′) := {v ∈ V (G) \ V ′|(v, v′) ∈ E(G)}
are the predecessor nodes of V ′ ⊂ V (G), and Γ−kG is defined recursively, by applying
the predecessor operator k times.



150 6 Time-Cost Tradeoff Problem

If operations would modify exactly one edge delay in GO, a local slack increase
is equivalent to a delay decrease. In practice it is more flexible to consider rather
slack changes, as this allows for accounting minor delay changes in the predecessor
cone and its successor cone.
We now give a list of operations that are in particular applicable, because they

effect the delays through the predecessors only marginally.

Threshold Voltage Assignment

As mentioned in the introduction of Chapter 4, circuits can be realized with
varying threshold voltages retaining the footprint. Given a book b ∈ B, let [b]Vt =
{b1, b2, . . . , bmax[b]Vt

} ⊂ [b] be the set of equivalent books that vary only in their
threshold voltage, sorted from highest to lowest threshold voltage. The number
i ∈ {1, 2, . . . ,max[b]Vt} is called Vt-level.
Furthermore, let the function powerstatic : C × [β(c)] → R+ specify the static

power consumption of a circuit c ∈ C when being realized by a book b ∈ [β(c)]Vt .
The power consumption is translated into a cost in the mathematical model.

As the pin shapes are equal for all b ∈ [b]Vt , the input pin capacitances are
almost the same. We assume pincap(p1) = pincap(p2) for any pair of equivalent
pins p1 ∈ b1 ∈ [b]Vt and p2 ∈ b2 ∈ [b]Vt . In practice the pin capacitances increase by
up to 10% from level to level due to varying gate material and thickness, but we
ignore this fact here. If the input pin capacitances remain the same, the delay and
slew propagations through the predecessor circuits are not affected when assigning
a circuit to another Vt-level.
Now each Vt-level has assigned a delay and cost. The static power consumption

grows exponentially when lowering the threshold voltage (see Rao et al. [2004]).
Thus, when interpolating the discrete delay/cost pairs for each Vt-level, the relaxed
cost function is piecewise linear and convex and we can apply Algorithm 13 in the
adjusted version from Section 6.3.5.
We conclude this subsection with a short overview on other approaches for the

threshold voltage optimization. Having their emphasis on the power analysis of
operations, Dobhal et al. [2007] adjust single circuits with the best power delay
tradoff. A linear programming formulation where the voltage threshold variables
automatically snap to discrete values was proposed by Shah et al. [2005]. Gao
and Hayes [2005] formulate a mixed integer linear program. Chou et al. [2005]
incorporate threshold voltage optimization into a geometric programming gate sizing
approach. Similarly, Mani et al. [2007] and Bhardwaj and Vrudhula [2008] combine
both problems while considering statistical power and timing optimization. Engel
et al. [2006] fomulate the problem of optimum leakage reduction as a k-cutset
problem and solve this NP-hard problem heuristically.



6.4 Applications in Chip Design 151

Plane Assignment

The electrical properties of metal planes on a computer chip are significantly different.
Figure 6.6 shows minimum wire widths of the ten metal planes on an IBM Power6

Figure 6.6: Metal layers of the Power6 Microprocessor (Berridge et al. [2007]).

processor. This is a typical wire width distribution for a 65 nm design. The higher
the plane is the wider are the wires. In the figure the wire widths in the highest
planes are eight times wider than those in the lowest planes. There are basically two
reasons for increasing wire widths. First, due to the unavoidable inexact production
process, with every additional plane its ground becomes more irregular. It would be
impossible to realize a minimum width (1×) wire on the tenth plane. Second, lower
planes have small widths to enable better routability, especially when accessing
the pins. The drawback is that these wires with a small diameter suffer from high
resistances and therefore higher delays. The fat toplevel wires have a much smaller
resistance while the effective capacitance between metal and substrate remains
about the same, because the distance increases.
The plane assignment problem is to assign each net to a pair (zx, zy) of wiring

planes 1 ≤ zx, zy ≤ zmax such that routability is assured and the slack distribution
is optimized. The assignment of individual net-segments is not considered here, as
this would introduce an immoderate complication of the physical design process. An
assignment (zx, zy) will later be transformed into preference routing layers within
{zx, , . . . , zmax} for x-segments and {zy, . . . , zmax} for y-segments. Here higher faster
layers are still allowed to relax the routing constraints. Thereby, the lower the
assigned planes are, the higher is the freedom for routing.
A plane assignment operation either assigns a net to a higher plane pair, where

at least one of zx or zy is increased, or assigns it to a lower pair. The routability is
estimated using the global routing graph GGR (see Section 2.3.3). The costs should
reflect the existing layer assignments. Thus, when a net is assigned to (zx, zy), a
two-dimensional Steiner tree in the plane is computed and then projected to the
overlaying (zx, zy)-edges in GGR. A particular assignment is realizable if all used
global routing edges have sufficient free capacities. In a simple implementation costs



152 6 Time-Cost Tradeoff Problem

could be defined, depending on the Steiner tree length, and as ∞ if the assignment
cannot be realized.
In an advanced application plane assignment could be applied in interaction

with a multi-commodity flow global routing algorithm such as in Vygen [2004]. In
that framework the costs could be derived from the dual variables in the linear
multi-commodity flow program.

Buffering

Instead of assigning single nets, one can also rebuild complete repeater trees for nets.
By varying the performance parameter ξ in Section 3.2, alternative realizations can
be generated. Each alternative has a certain worst slack at the root and a certain
resource allocation cost.
As announced in Section 3.6, the post-optimization of a given repeater tree

topology can be modeled as a Budget Problem. Here the task is to optimize
the resource allocation for each individual edge in the topology. The wire delay
parameter dwire depends on the assumed value of ξ. By varying ξ between 0 and
its initial value, which was used to construct the topology, different buffered wire
delays at different resource allocation costs can be generated for each edge. The
task is to find a minimum cost solution that maximizes the slack at the root, which
is known from the initial topology.

6.4.3 Results in Threshold Voltage Optimization
We present results for the threshold voltage optimization problem in the acyclic
case with a fixed clock schedule. The experimental results are based on a joint work
with Schmedding [2007], who also implemented the algorithm.

Table 6.1 shows the results of voltage threshold optimization on those chips in
our testbed which allow for several threshold voltages. The numbers were obtained
during the timing refinement step (Section 7.3) of our full timing closure flow and
reflect intermediate results of Table 7.1 on page 165. The table shows the worst
slack (WS), the sum of negative slacks (SNS), the power consumption before any
threshold voltage optimization, after threshold voltage optimization, and after some
postoptimization, and finally the running time (CPU Time) of the voltage threshold
optimization. The running times were obtained on an Intel Xeon E7220 processor
with 2.93 GHz. Note that the sum of negative slacks is computed with respect to
the slack target of 0.250 nanoseconds. That is why some SNS numbers are negative
although the worst slack is strictly positiv (but below the target).
The postoptimization first performs local search gate sizing (Algorithm 6 on

page 74). Then, it iterates once over all circuits to increase the threshold voltages
if the worst slack of the circuit remains above the slack target of 250 picoseconds.
The power column shows the estimate static power consumption in watt.

For the instances where the total power consumption is marked with a star no
accurate power estimates were available. Here the numbers were chosen proportional



6.4 Applications in Chip Design 153

Chip Before Optimization VT Optimization Postoptimization CPU
WS SNS P WS SNS P WS SNS P Time

Franz 0.10 −1 0.01 0.25 0 0.01 0.25 0 0.01 0:00:32
Lucius −1.71 −96 0.42? −0.69 −22 3.21? −0.56 −22 3.18? 0:10:13
Julia −1.02 −15 0.00 −0.22 −0 0.00 −0.19 −0 0.00 0:01:39
Minyi −0.89 −11 0.49? 0.15 −0 0.54? 0.15 −0 0.53? 0:03:35
Maxim −1.67 −337 0.68? −0.55 −137 5.84? −0.52 −139 5.79? 0:45:06
Tara −0.54 −10 2.37? 0.03 −0 2.47? 0.04 −0 2.46? 0:02:05
Bert −0.67 −73 3.17 −0.63 −30 3.29 −0.63 −30 3.29 0:26:14
Ludwig −6.02 −18 0.50? −3.25 −3 0.53? −3.25 −3 0.53? 0:28:22
Arĳan −2.84 −357 1.36 −2.09 −11 1.43 −2.07 −11 1.43 2:05:57
David −1.76 −296 5.93 −0.83 −7 6.16 −0.81 −7 6.15 3:17:31
Valentin −3.48 −1755 2.88 −3.44 −777 3.02 −3.43 −782 3.02 5:22:01
Trips −0.92 −815 2.97 −0.47 −168 3.39 −0.43 −163 3.39 5:43:23

WS = worst slack in ns, SNS = sum of negative slacks in ms, P = power in watt, times in h:m:s,
Stgt

l = 0.25ns.
? inaccurate estimates not in watt (see Section 6.4.3).

Table 6.1: Threshold Voltage Optimization Results.

to area(c)×10−vt_level(c), where area(c) is the area of a circuit c ∈ C and vt_level(c)
its threshold voltage level. The number of available threshold voltage levels varied
between 2 and 3 on all instances.
In general the reported slacks are higher than the slacks would be when setting

all circuits to their lowest possible threshold voltage. This is, because a higher
threshold voltage is accompanied by slightly higher input pin capacitance. A higher
input pin capacitance would slow down more critical predecessors.
As the underlying model is highly non-linear and we are dealing with huge

instances, we are not able to compute good lower bounds for the required power
consumption. In Table 6.1 the power consumption before optimization gives a weak
lower bound. The worst deviation among those rows with reliable power estimates
is less than 15% on the chip Trips.

Figure 6.7 shows a typical slack-power tradeoff curve. The curve was obtained on
David. It shows a worst slack of less than S ≈ −3 nanoseconds when all circuits are
at their highest threshold voltage. The worst slack is improved by increasing the
power until the blue line marked with S is reached.

At this point, the worst slack is optimized, and the algorithm continues to optimize
less critical paths, as described in Section 6.3.7. From that point on, the minimum
improvable slack is represented by the curve. The exponential growth of the power
consumption is caused by the increasing number of paths becoming critical.
The slightly fuzzy structure of the curve is caused by our succesive relaxation

approach. Based on the linear approximation and relaxation we compute continuous
variable changes which are then mapped back to discrete changes. This can lead to
small temporary slack degradations.
Figure 6.8 shows the slack distribution of the circuits on David before and after

optimization. The circuits in the placement plots are colored according to the worst



154 6 Time-Cost Tradeoff Problem

Bopt

S

Improvement of
Slack Distribution

S

nanoseconds

w
a
tt

Figure 6.7: Time-Cost Tradeoff Curve on the Chip David.



6.4 Applications in Chip Design 155

slack at any of their pins. The colors in the plot and histograms are corresponding.
Note that this curve and the slack diagrams were obtained from a common run,

but independently from the timing closure run and the numbers in Table 6.1. That
is why the slacks differ from those in the table.

Slacks before optimization Slacks after optimization

Figure 6.8: Effect of Threshold Voltage Optimization on David.





7 Timing Driven Loop
In this final chapter we show how to combine the algorithms from the previous
chapters efficiently into a timing closure flow (Algorithm 15). The literature on
timing closure flows is sparse. A complete physical design flow also including logic
re-synthesis, clock insertion, and routing can be found in Trevillyan et al. [2004]. A
common gate sizing and placement was described by Chen et al. [2000]. Vujkovic
et al. [2004] proposed a flow where transistor sizing plays a central role. An approach
that first splits the design into good physical hierarchies was given by Cong [2002].
We present a new design flow for timing closure, which is especially designed to

handle large multi-million circuit instances. Special care is taken to keep the overall
running time small, without compromising the quality. In the top level the flow is
separated into two main blocks.
First, the circuits are placed and data paths are optimized. As placement and

timing optimization are called repeatedly within this phase, we call it the timing
driven (placement) loop. Second, after data paths are optimized and the locations
of the registers are known, the clocktrees are implemented. This step starts with
the three step clock skew optimization for late mode, early mode, and time window
constraints, as described in Section 5.2.2.

Algorithm 15 Timing Closure Flow
1: Timing Driven (Placement) Loop;
2: (Re-) Optimize clock schedule and build clocktrees;

During the timing driven loop, when clocktrees are not yet implemented, the
timing analysis within the preliminary trees is meaningless. Instead, we assume an
ideal clocktree with idealized clock arrival times at the registers. Note that clock
skew scheduling could be performed incrementally within the timing driven loop. It
then defines an ideal and optimized schedule.
The timing driven loop is described in Algorithm 16. The main components are

a placement algorithm that minimizes the weighted sum of quadratic netlengths
(Section 7.1), and the fast timing optimization (Section 7.2). The main purpose of
the timing optimization is to obtain a predictable timing evaluation of the given
placement and to guide the netweighting (Section 7.4), which penalizes timing
critical nets. While the timing optimization in line 6 consists simply of buffering
and gate sizing, other techniques like threshold voltage optimization and plane
assignment are performed during the timing refinement and legalization in line 8.
When the algorithm first enters the loop, reasonable timing information is not

available, and the placement is targeting minimum netlength. Nets in the combina-

157



158 7 Timing Driven Loop

Algorithm 16 Timing Driven Loop
1: Rip out repeaters;
2: Insert repeaters based on a QP solution;
3: repeat
4: Netweighting; (Section 7.4)
5: Placement; (Section 7.1)
6: Timing optimization; (Algorithm 17, Section 7.2)
7: until Satisfying timing reached
8: Refine timing & legalize; (Section 7.3)

torial logic will be assigned a common netweight and clocktree nets will be weighted
as explained in Section 7.4.2.

After timing optimization in line 6 it may turn out that the timing constraints are
not achievable with the current placement, because the critical paths cover too long
distances. In such a case the loop is repeated and the next placement is driven by
increased netweights on the critical data paths, as we will describe in Section 7.4.1.
In line 5, the placement need not run all the way through legalization to obtain

sufficient information on the timing criticality of the paths. To reduce the running
time, we terminate the placement as soon as circuit locations are bounded to
small regions of approximately 30× 30 square micrometers. Final spreading and
legalization are done only in the timing refinement and legalization step (Section 7.3).
In line 2 resource efficient repeaters are inserted based on a single quadratic

programming (QP) placement solution, before any overlap removal is performed.
Thus their number is usually a lower bound for the final number of repeaters in the
design. Their purpose is to reserve space for later repeater insertion. Using the QP
information, the topologies respect the intended positions of the sinks and perturb
the placement net model marginally.

7.1 Quadratic Placement
For our tests, we used the BonnPlace program, which was developed at the
Research Institute for Discrete Mathematics at the University of Bonn (Brenner
et al. [2008]). The placement is done in a series of levels. Each level begins with a
quadratic placement, in which the total squared interconnect length of pin pairs from
a common net is minimized. This minimization can be performed independently
for x and y coordinates. Exemplarily, we give the problem formulation for the
x-coordinates:

min
∑
N∈N

w(N)
|N | − 1

∑
p,q∈N

(x(p) + xoffs(γ(p))− x(q)− xoffs(γ(q)))2

where w(N) ∈ R≥0 is a netweight, x(γ(p)) is the x-coordinate of γ(p) ∈ C∪̇I, and
xoffs(p) is the offset of p relative to γ(p), p ∈ P .



7.1 Quadratic Placement 159

After weighted quadratic netlength minimization, the placement area is parti-
tioned, and the circuits are assigned to the resulting subregions minimizing the
total movement (Brenner and Struzyna [2005]). Now the subregions are processed
recursively, while circuits are constrained into their assigned subregions. The algo-
rithm is able to handle routing congestion (Brenner and Rohe [2003]) and many
additional constraints that can be useful in a physical design process. Nets with
high weights will be kept particularly short by the algorithm.
Compared to a pure (linear) netlength minimization, the quadratic netlength

minimization has several advantages. First, in the presence of preplaced circuits
or IO-ports, the quadratic formulation has a unique solution for most circuits,
which allows to deduce more information for partitioning the circuits for overlap
removal. Second, the solution is almost invariant under small netlist changes (Vygen
[2007]), which might be introduced by the timing optimization or by external netlist
corrections. Third, the wire delays of unbuffered wires grow also quadratically with
the netlength. Finally, it can be solved extremely fast by the conjugate gradient
method.

One difficulty with the quadratic minimization is that the total quadratic netlength
of a long wire depends on the number of inserted repeaters. Adding a repeater in
the middle of a two-point connection halves its quadratic netlength. Repeaters are
particularly inserted into timing critical nets. Therefore, in a second placement run
the effective linear netlength of such a net would increase and lead to even larger
delays.

This problem can be overcome by different means. First, the decrease in quadratic
netlength can be compensated by increasing the weight of these nets. This is what
we applied in our experimental runs later in this chapter. Second, the repeaters
could be ripped-out before placement, so that unbuffered netlengths are optimized.
However, the area allocation for the necessary repeaters becomes difficult if repeaters
are missing.

Finally, one could not only minimize the quadratic lengths of all nets but addition-
ally for each repeater tree the quadratic distances between source and sinks. The
quadratic length of these source-sink connections would not depend on the number
of inserted repeaters. Furthermore, the repeaters themselves would be spread evenly
between source and sinks due to the quadratic netlength minimization.
Within legalization the netlengths are ignored, but the total weighted quadratic

movement of the circuits from their current location to a legalized one is minimized
(Brenner and Vygen [2004]). Netweights that qualify the criticality of a net are now
translated into circuit weights. Thereby the displacement of timing critical circuits
is penalized and reduced.
For avoidance of routing congestion, the global routing is estimated by a fast

statistical global routing algorithm, after each placement level. Then circuit sizes are
virtually increased proportionally to the routing capacity overload in their proximity.
Such congested circuits will be spread in subsequent placement levels, and fewer
nets will pass a congested region. In the timing driven loop, the virtual circuit sizes
from a previous placement run can be reused from the first level on, as an initial



160 7 Timing Driven Loop

good guess for the virtual circuit sizes.

7.2 Timing Optimization
After global placement, we optimize slacks by repeater insertion and gate sizing
in line 6 of Algorithm 16. Both components work globally on the complete netlist.
Algorithm 17 gives a detailed view. Only in line 5 the algorithm does not work
globally but only the most critical paths are improved by local search gate sizing.
The primary purpose of this timing optimization is to generate realistic slacks for
the netweight generation. Therefore they must be both fast and of high quality.

Algorithm 17 Timing Optimization (Section 7.2)
1: Power efficient repeater insertion;
2: Fast gate sizing; (Algorithm 3 on page 67)
3: Slack efficient repeater insertion;
4: Fast gate sizing; (Algorithm 3 on page 67)
5: Local search gate sizing; (Section 4.5)

For repeater insertion, we use the topology generation from Chapter 3 combined
with a fast buffering routine shortly described in Section 3.7 (see also Bartoschek
et al. [2006, 2007b]). Both components—topology generation and buffering—allow
seamless scaling between power and performance. The scaling can be controlled by a
parameter ξ ∈ [0, 1] as described in Chapter 3. In line 1, the topology is chosen close
to a minimum Steiner tree topology and the capacitance limit is relaxed. Here we
have chosen ξ = 0.1 in our experiments to avoid extreme daisy chains as they would
occur with ξ = 0.0. The parameter λ that controls the possibility to distribute delay
to the two branches in a topology (Section 3.4.1) was chosen as λ = 1

4 .
The inserted repeaters are sized roughly, leaving the actual sizing to the subsequent

gate sizing. During the repeater insertion, time-consuming timing updates are
suppressed. Timing is updated only non-incrementally within the fast gate sizing
and incrementally in the local search.

After the first fast gate sizing all capacitance and slew constraints are met. Thus
the computed slacks are meaningful when building the first slack efficient trees.

In line 3, faster topologies are generated and the fastest capacitance limit is used
for trees with negative slacks. However, we do no drive the topologies to the extreme,
as the current slacks are only a snapshot and not updated incrementally after a tree
has been rebuild. In this step we have chosen ξ = 0.5 for topology generation and
ξ = 1.0 for buffer insertion in our experiments.

7.3 Timing Refinement and Legalization
Within the final refinement and legalization in line 8 of the timing driven loop
(Algorithm 16), we first perform the last placement levels and legalize the design



7.4 Netweights 161

to account for displacements of circuits that do not fit into narrow macro alleys
to which they may have been assigned. For this purpose netweights are updated
adaptively according to Section 7.4. Then, we remove capacitance and slew limit
violations that have been created during legalization. Note that Algorithm 17
does not leave such violations and they can only be caused by placement changes.
Therefore their number is small at this stage and occurs mainly on non-critical
nets. Running the circuit assignment as described in Section 4.4.5 removes most
violations quickly. Remaining violations are fixed by repeater insertion.

To improve the worst slacks further, several slack refinement steps are performed.
First, we rebuild the most critical repeater trees (approximately 1%�) with an
exhaustive dynamic programming repeater insertion based on a slack driven topology
(ξ = 0.7 in our experiments). Second, if the chip allows several threshold voltages,
we compute an optimum threshold voltage assignment according to 6.4.2 with
respect to a fixed clock schedule (Section 6.3.8). Third, we assign long two-point
connections to higher faster planes, while using an optimum repeater spacing for
the corresponding wiring mode. In addition we assign individual nets to higher
planes. Thereby we do not allocate more than 25% of the wiring resources, in order
to reserve space for later clocktree insertion. We applied a simple greedy strategy
for plane assignment, which always assigns a net the biggest time gain per cost
(resource allocation) ratio, among those nets where the worst slack occurs, to a
higher plane. The software-integration of the plane assignment into our time-cost
tradeoff framework, described in Chapter 6, is an ongoing work.

Between these three steps we run the local search gate sizing, to achieve a resource
efficient slack improvement, based on more globally changed delays and slews. The
timing refinement and legalization phase is closed with a final placement legalization.

In this phase it would also make sense to perform local logic optimizations, such
as pin swapping or De Morgan transforms (see also Trevillyan et al. [2004]), or more
complex optimizations such as the worst path resynthesis proposed in Werber et al.
[2007].

7.4 Netweights
Although used for decades, netweighting is barely understood. Sometimes the
initially critical paths are well shortened, but previously uncritical paths become
critical after timing-driven placement and optimization. Sometimes critical paths
are not shortened sufficiently. Such cases can be overcome by iterating the timing
driven loop and computing adaptive netweights: Let wn be the vector of netweights,
as it was used in the (n+1)-th iteration of Algorithm 16 (the n-th iteration with
intended weights on data nets) and let w be the vector of netweights computed at
the beginning of iteration n+ 2. Adaptive netweights are of the form

wn+1 := θold · wn + θnew · w



162 7 Timing Driven Loop

where θold, θnew ∈ R+ with θold + θnew ≥ 1 and θold > θnew. Usually θold + θnew = 1.
If the sum is bigger than one, the total weighting tends to increase from iteration to
iteration. This can be useful when the loop shall start with moderate weights and
is iterated until satisfying weights are generated. We compute adaptive netweights
also during placement and legalization at the end of the loop. In our experiments
we used θold = 2

3 and θnew = 1
3 .

7.4.1 Data Netweights
On the large placement areas of multi-million circuit designs, the most common
purpose of netweights is to shorten timing-critical connections that cover several
millimeters. In extreme cases it is necessary to generate netweights that are up to 30
times the default netweight. Such weights heavily influence the total netlength and
routability. Thus it is important to control the maximum netweight and maximum
average netweight.
In our experience, simple weighting strategies often create very good results by

tuning parameters like the maximum absolute weight and the maximum average
weight.

Weighting by Percentile

Here the nets are sorted by non-decreasing slack. Then, given the maximum absolute
weight, the nets are weighted by the percentile-rank of their slack, but not by the
actual slack value. The percentile weights are adjusted such that the most critical
nets obtain the maximum absolute weight and the average weight is met. With
this method, the total wire length tends to increase moderately. Satisfying timing
results are achieved after at most three or four loop iterations in Algorithm 16,
that are two or three iterations with weighted data nets. Often a single weighted
iteration is sufficient. This approach is quite tolerant to poor timing assertions that
create a few meaningless, extremely negative slacks. More advanced algorithms that
use the slack values more directly often become less successful due to preliminary
timing assertions. Another advantage is that the total amount of weighting is
independent from the slack range. In the adaptive netweighting scheme this ensures
that netweights are not decreasing from iteration to iteration, because the slacks
improve. We used this method in our experiments in Section 7.5.

Weighting by Value

Here the slacks are mapped to netweights by a monotonically decreasing function,
for instance by (α · expS− slk /β), where S is the worst slack in the design and slk
the slack of the current net. By choosing α and β appropriately, maximum absolute
and average netweights can be controlled. If the timing assertions are reliable, this
method mostly gives slightly better results in a single iteration than the percentile
weighting. When the loop is iterated this advantage usually vanishes. In case of



7.5 Timing Driven Loop Results 163

some paths with unreliable assertions these path may dominate the netweighting,
and thus require user interaction to hide those path slacks.
On individual test instances, advanced methods that account for the number of

critical paths that traverse a net (see Kong [2002]) achieve superior timing results,
though the increase in net length tends to be hardly controlled. We did not compare
our method with sophisticated approaches that try to anticipate the effect of net
weights and also consider driver sensitivities (Ren et al. [2005]), because driver
strengths may not correlate with the criticality. Critical driver circuits can be weak
to speed up a more critical predecessor. In a slightly different context, they could be
made much stronger. However, we expect that such an approach can be beneficial
during legalization.

7.4.2 Clock Netweights
Todays ASICs contain hundreds of larger and smaller clock domains. In our flow
clocktrees are inserted after placement and optimization, just before detailed routing.
It is extremely important for a successful and resource efficient clocktree insertion
to bound the diameter of small clock domains. To achieve this, clock nets must
not be ignored during placement. Instead, we assign netweights to clock nets.
The value is chosen inversely proportional to the cycle time. The weighting range
should not exceed the average netweight in the placement too much. Otherwise
the attached registers will collapse and degrade the overall result. The quadratic
objective function already helps to prevent registers from being placed far away
from others. Small high-speed domains, which can often be found in the IO logic,
are kept particularly small. Large nets with more than 10,000 pins are ignored by
BonnPlace to keep the algorithm fast.

7.5 Timing Driven Loop Results
The tools we developed and implemented are integrated into the IBM design
automation tools ChipBenchTM and PDSTM. For timing analysis we used the IBM
EinsTimerTM program, which is also integrated into ChipBenchTM and PDSTM.
Also note that we used the scan optimization program within ChipBenchTM to
reoptimize scan paths after the global placement. Because of the arbitrary and
optimizable order by which registers are linked in the scan chains, connections to
scan input pins at the registers are ignored during placement.
We ran the timing-driven loop with netweights set by percentile rank on all of

our test instances from Section 2.7. To limit placement perturbation we set the
maximum weight to at most 15 times the default netweight of 1 and the average
net weight to at most 1.3 times the default netweight. We ran two iterations of
Algorithm 16, one iteration without data netweights and one weighted iteration.
After 3–5 iterations of fast gate sizing, the worst path delay is usually within 5% of
its final value. Therefore we restrict the number of iterations in line 2 of Algorithm 17



164 7 Timing Driven Loop

to at most 6 and in line 4, where it restarts on a preoptimized input, to at most 5.
For all designs a slack target of 0.25 ns was specified. The worst slack (WS), the

sum of negative slacks (SNS) with respect to the slack target, the standard circuit
area in design units, and the running time are given in Table 7.1 for both iterations,
and the refinement and legalization step. All running times were obtained on a 2.93
GHz Intel Xeon E7220 processor. Some designs contain large reset trees with several
hundred thousand sinks. Their construction is contained in the reported numbers.
The Tables 7.2, 7.3, and 7.4 show the running time contributions of the main

subprograms within each loop iteration, and the legalization and refinement step.
Note that the placement was running in parallel on 4 processors, while all other steps
were running sequentially. About one half of the running time of a loop iteration
is spent in placement and the other half in timing optimization. The placement
portion is smaller for small chips and larger for large chips. The scan optimization,
of which the implementation is beyond our scope, was added to the tables because
it accounts for a significant amount of running time. In this point the flow might be
improved by calling the scan optimization only once after the last iteration of the
loop. We call it in every iteration because the number of inserted repeaters would
grow when unnecessarily long scan nets are buffered.

The fast gate sizing within the timing refinement and legalization step was used
for electrical correction only. The running times in this last step are dominated
by threshold voltage optimization and plane assignment. As they are called only
once in the design flow this is tolerable. One could of course use faster heuristics for
these tasks during global optimization in Algorithm 17.
The chip design Valentin is a special instance with extraordinary high running

times, especially within placement. It is a preliminary netlist that has been regarded
as absolutely unroutable. After running the timing driven loop with congestion-aware
placement, routability was achieved easily. The second placement iteration uses the
congestion information from the first iteration from the very beginning. Therefore a
generally better routability is achieved than by running a single congestion-driven
placement. Much running time is required in placement to remove routing congestion.
Furthermore, the netlist contains many high-fanout nets of 100–200 sinks. These
were not buffered frequently because of loose timing constraints. Their Steiner tree
estimations and wire delay calculations had a bad impact on the running times of
the timing analysis during gate sizing.

Using a preliminary version of Algorithm 17, the running time of timing optimiza-
tion on the chip David was reduced from 3 days spent by an industrial tool to 6
hours. This speed-up enabled a significant design time reduction, and enabled the
engineers at IBM to perform several iterations of the timing driven loop to achieve
a better timing aware placement. Final netlist version of the chips Lucius, Tara,
Arĳan, Ludwig, David, Valentin and many other chips not listed here were and are
currently designed for actual tape-out using 2–4 iterations of our timing driven loop.



7.5 Timing Driven Loop Results 165

C
hi
p

1s
t
It
er
at
io
n

2n
d
It
er
at
io
n

R
efi

ne
&

Le
ga
liz
e

W
S

SN
S

A
re
a

R
un

ti
m
e

W
S

SN
S

A
re
a

R
un

ti
m
e

W
S

SN
S

A
re
a

R
un

ti
m
e

(n
s)

(m
s)

(h
:m

)
(n
s)

(m
s)

(h
:m

)
(n
s)

(m
s)

(h
:m

)
Fa

zi
l

−
1.

22
1

−
14

61
0

0:
03

:4
9
−

1.
05

1
−

14
60

9
0:
03

:1
4
−

0.
82

8
−

14
61

2
0:
04

:5
0

Fr
an

z
−

0.
07

6
−

2
75

4
0:
04

:2
1
−

0.
01

4
−

2
77

1
0:
03

:1
7

0.
22

5
−

0
76

5
0:
12

:1
5

Fe
lix

−
0.

67
8

−
20

80
9

0:
04

:3
2
−

0.
67

3
−

21
81

5
0:
03

:5
9
−

0.
45

9
−

20
81

2
0:
07

:5
1

Lu
ci
us

−
0.

85
3

−
43

38
4

0:
05

:0
1
−

0.
94

3
−

47
39

9
0:
04

:4
2
−

0.
36

9
−

17
39

6
0:
20

:1
5

Ju
lia

−
0.

83
2

−
6

30
92

0:
12

:5
1
−

0.
63

4
−

5
30

62
0:
11

:4
2
−

0.
18

4
−

0
30

69
0:
11

:4
4

M
in
yi

−
1.

37
0

−
17

48
66

0:
28

:4
6
−

0.
94

8
−

11
48

19
0:
18

:0
4

0.
18

2
−

0
48

40
0:
47

:5
6

M
ax

im
−

2.
17

9
−

28
5

61
27

0:
27

:5
0
−

1.
78

3
−

29
6

64
82

0:
29

:5
9
−

0.
35

0
−

10
9

65
39

1:
46

:3
0

Ta
ra

−
0.

57
6

−
29

64
21

0:
45

:0
8
−

0.
64

5
−

14
61

32
0:
41

:1
5

0.
22

3
−

0
62

34
0:
29

:3
1

B
er
t

−
0.

84
5

−
61

19
48

5
1:
20

:5
9
−

0.
74

2
−

58
19

55
2

1:
08

:1
1
−

0.
62

4
−

22
19

61
7

1:
25

:3
2

K
ar
st
en

−
3.

11
3

−
59

39
73

1
4:
01

:1
9
−

2.
32

4
−

41
39

33
9

3:
43

:4
0
−

1.
63

4
−

28
5

38
84

1
2:
36

:4
5

Lu
dw

ig
−

6.
99

8
−

80
42

79
3

3:
35

:2
4
−

6.
05

3
−

20
42

69
6

2:
48

:4
5
−

0.
85

4
−

1
42

89
4

6:
12

:1
0

A
rĳ
an

−
4.

47
6

−
47

1
67

29
6

5:
42

:1
1
−

2.
83

6
−

37
0

67
41

5
4:
24

:5
3
−

1.
23

9
−

10
67

70
1

7:
01

:3
1

D
av
id

−
4.

42
6

−
52

1
66

22
6

6:
19

:3
4
−

1.
81

0
−

30
0

65
90

0
5:
45

:4
5
−

0.
35

3
−

4
66

35
3

9:
47

:0
3

Va
le
nt
in
−

4.
19

3
−

18
41

97
38

4
11

:3
8:
18

−
3.

49
0
−

17
66

96
98

2
9:
41

:0
1
−

1.
81

2
−

78
5

89
82

1
12

:3
6:
44

Tr
ip
s

−
1.

37
9

−
85

3
76

83
7

8:
35

:5
6
−

1.
32

2
−

73
5

77
30

4
8:
47

:5
3
−

0.
05

1
−

51
77

53
1

13
:2
9:
21

Ta
bl
e
7.
1:

T
im

in
g
D
riv

en
Lo

op
R
es
ul
ts



166 7 Timing Driven Loop

Chip Placement Scan Opt. Repeater Gate Sizing Total
Trees Fast Local

Fazil 0:00:54 0:00:09 0:01:10 0:00:47 0:00:19 0:03:49
Franz 0:01:09 0:00:02 0:01:11 0:01:10 0:00:22 0:04:21
Felix 0:00:56 0:00:04 0:01:31 0:01:04 0:00:28 0:04:32
Lucius 0:01:16 0:00:01 0:01:24 0:01:21 0:00:27 0:05:01
Julia 0:04:53 0:00:24 0:03:13 0:01:56 0:00:21 0:12:51
Minyi 0:09:15 0:00:32 0:08:28 0:05:45 0:00:38 0:28:46
Maxim 0:08:02 0:00:01 0:08:59 0:06:07 0:00:59 0:27:50
Tara 0:19:05 0:00:10 0:12:59 0:08:10 0:01:02 0:45:08
Bert 0:27:27 0:05:06 0:18:58 0:15:20 0:02:08 1:20:59

Karsten 1:18:30 0:26:30 0:59:45 0:47:33 0:03:00 4:01:19
Ludwig 1:10:33 0:10:14 0:57:00 0:42:41 0:02:44 3:35:24
Arĳan 2:19:39 0:04:11 1:27:52 1:14:14 0:06:17 5:42:11
David 2:24:35 0:05:33 1:35:47 1:32:42 0:08:23 6:19:34

Valentin 5:54:20 0:06:34 2:24:28 2:16:59 0:08:11 11:38:18
Trips 3:13:12 0:44:18 2:00:00 1:28:08 0:12:05 8:35:56

Table 7.2: Running times of the first iteration (hh:mm:ss)

Chip Placement Scan Opt. Repeater Gate Sizing Total
Trees Fast Local

Fazil 0:00:50 0:00:01 0:00:47 0:00:44 0:00:25 0:03:14
Franz 0:01:04 0:00:01 0:00:36 0:00:55 0:00:21 0:03:17
Felix 0:00:58 0:00:03 0:00:58 0:01:01 0:00:30 0:03:59
Lucius 0:01:40 0:00:01 0:01:08 0:01:18 0:00:18 0:04:42
Julia 0:05:54 0:00:15 0:01:35 0:01:50 0:00:16 0:11:42
Minyi 0:08:23 0:00:30 0:02:20 0:03:45 0:00:33 0:18:04
Maxim 0:09:59 0:00:03 0:06:41 0:08:34 0:02:09 0:29:59
Tara 0:19:14 0:00:10 0:07:18 0:10:22 0:01:00 0:41:15
Bert 0:25:55 0:05:08 0:10:05 0:15:15 0:01:58 1:08:11

Karsten 1:31:29 0:22:53 0:32:03 0:51:47 0:02:37 3:43:40
Ludwig 1:12:23 0:04:24 0:23:35 0:35:51 0:05:26 2:48:45
Arĳan 2:03:22 0:01:56 0:40:42 1:06:10 0:04:09 4:24:53
David 2:42:53 0:03:18 0:51:25 1:30:27 0:07:08 5:45:45

Valentin 5:29:07 0:05:52 1:16:08 1:56:31 0:17:52 9:41:01
Trips 4:10:13 0:42:52 1:14:10 1:34:38 0:13:06 8:47:53

Table 7.3: Running times of the second iteration (hh:mm:ss)



7.5 Timing Driven Loop Results 167

Chip Placement Repeater Gate Sizing Vt-Opt. Plane Opt. Total
Trees Fast Local

Fazil 0:00:35 0:00:44 0:00:12 0:02:07 0:00:00 0:00:08 0:04:50
Franz 0:00:34 0:04:30 0:00:40 0:04:09 0:00:32 0:00:05 0:12:15
Felix 0:00:40 0:01:10 0:00:19 0:02:06 0:00:00 0:02:27 0:07:51
Lucius 0:00:56 0:00:49 0:00:08 0:02:19 0:10:13 0:04:38 0:20:15
Julia 0:02:15 0:02:26 0:00:41 0:00:57 0:01:39 0:00:14 0:11:44
Minyi 0:06:53 0:19:32 0:03:13 0:03:52 0:03:35 0:00:10 0:47:56
Maxim 0:06:58 0:03:48 0:01:05 0:12:42 0:45:06 0:28:53 1:46:30
Tara 0:07:30 0:06:29 0:01:32 0:02:27 0:02:05 0:00:27 0:29:31
Bert 0:10:35 0:11:42 0:04:29 0:07:20 0:26:14 0:04:21 1:25:32

Karsten 0:31:59 0:31:51 0:13:18 0:16:54 0:00:00 0:06:54 2:36:45
Ludwig 1:14:11 1:27:39 1:05:08 0:23:08 0:28:22 0:06:52 6:12:10
Arĳan 0:40:47 1:16:10 0:47:42 0:28:39 2:05:57 0:10:02 7:01:31
David 0:57:17 1:15:39 1:06:58 0:45:00 3:17:31 0:19:16 9:47:03

Valentin 1:00:49 1:41:11 1:02:11 1:05:57 5:25:55 0:09:38 12:36:44
Trips 1:04:44 0:44:40 0:25:06 0:45:15 5:43:23 2:56:03 13:29:21

Table 7.4: Running times in timing refinement and legalization (hh:mm:ss)





Notation Index
N set of natural numbers
Z set of integral numbers
Q set of rational numbers
R set of real numbers
V (G) set of vertices of a graph G
E(G) set of edges of a graph G
δ−(X) incoming edges {(u, v) ∈ E(G) | u ∈ V (G) \X, v ∈ X}

of a vertex set X in a graph G
δ+(X) outgoing edges {(v, w) ∈ E(G) | w ∈ V (G) \X, v ∈ X}

of a vertex set X in a graph G
S(x) set of shapes of object x 7
I chip image 8
P (I) primary input or output pins 8
C set of circuits 9
P set of pins 9
N set of nets 9
Pl(x) placement location of object x 9
P (o) pins of object o ∈ B ∪ C ∪ N ∪ I 9
Pin(o) input pins of object o ∈ B ∪ C ∪ N ∪ I 9
Pout(o) output pins of object o ∈ B ∪ C ∪ N ∪ I 9
B library of circuit definitions/books 8
P(B) pin definitions of circuit definition B ∈ B 8
β Mapping of circuits to Books (β : C → B) 9
GGR global routing graph 10
PLL phase locked loop 10
η timing mode (early or late) 11
at arrival time 11
slew slew 11
GTB model timing graph of book B ∈ B 12
downcap(p, η) downstream capacitance of pin p ∈ P 12

in mode η ∈ {early, late}
wirecap(N, η) wire capacitance of net N ∈ N 12

and η ∈ {early, late}
pincap(p, η) input pin capacitance of a sink pin p ∈ P 13

and η ∈ {early, late}
caplim(p) load capacitance limit at a source pin p 13
slewlim(p) input slew limit at a sink pin p 13

169



170 Notation

ϑ delay function 13
λ slew function 13
V T set of timing nodes 15
ETp set of propagation edges 15
GTp timing propagation graph 15
V T

start signal start nodes 16
S(p) signal set of a measurement point p 16
σ a signal 16
ETt set of test edges 21
ET set of timing edges (ET = ETp ∪̇ETt ) 21
GT timing graph (GT = (V T , ET )) 21
rat required arrival time 22
GS signal graph 24
V S signal graph vertices 24
cS signal graph costs 24
ES
p signal graph propagation edges 25

ES signal graph edges 25
Stgt

l late slack target 30
Vt threshold voltage 61
Pcs set of clock sink pins 92
Vcs clock sink vertices in the slack balance graph 92
GR register graph 95



Bibliography
Agarwal, A., Chopra, K., Blaauw, D., and Zolotov, V. [2005]: Circuit optimization

using statistical static timing analysis. Proceedings of the 42nd Annual Conference
on Design Automation, 321–324, 2005.

Ahuja, R. K., Hochbaum, D. S., and Orlin, J. B. [2003]: Solving the Convex Cost
Integer Dual Network Flow Problem. Management Science 49 (2003), 950–964.

Albrecht, C. [2001]: Optimierung der Zykluszeit und der Slackverteilung und globale
Verdrahtung. Dissertation, University of Bonn, 2001.

Albrecht, C. [2006]: Efficient incremental clock latency scheduling for large circuits.
Proceedings of the Conference on Design, Automation and Test in Europe, 1091–
1096, 2006.

Albrecht, C., Korte, B., Schietke, J., and Vygen, J. [1999]: Cycle Time and Slack
Optimization for VLSI-Chips. Proceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design, 232–238, 1999.

Albrecht, C., Korte, B., Schietke, J., and Vygen, J. [2002]: Maximum Mean Weight
Cycle in a Digraph and Minimizing Cycle Time of a Logic Chip. Discrete Applied
Mathematics 123 (2002), 103–127.

Alpert, C. J., and Devgan, A. [1997]: Wire segmenting for improved buffer insertion.
Proceedings ACM/IEEE Design Automation Conference, 588–593, 1997.

Alpert, C. J., Gandham, G., Hrkic, M., Hu, J., Kahng, A. B., Lillis, J., Liu, B., Quay,
S. T., Sapatnekar, S. S., and Sullivan, A. J. [2002]: Buffered Steiner trees for
difficult instances. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 21 (2002), 3–14.

Alpert, C. J., Gandham, G., Hrkic, M., Hu, J., and Quay, S. T. [2003]: Porosity
aware buffered steiner tree construction. Proceedings of the ACM International
Symposium on Physical Design, 158–165, 2003.

Alpert, C. J., Gandham, G., Hu, J., Neves, J. L., Quay, S. T., and Sapatnekar,
S. S. [2001]: A Steiner tree construction for buffers, blockages, and bays. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 20
(2001), 556–562.

171



172 Bibliography

Bartoschek, C., Held, S., Rautenbach, D., and Vygen, J. [2006]: Efficient Generation
of Short and Fast Repeater Tree Topologies. Proceedings of the International
Symposium on Physical Design, 120–127, 2006.

Bartoschek, C., Held, S., Rautenbach, D., and Vygen, J. [2007a]: Efficient algorithms
for short and fast repeater trees. I. Topology Generation. Technical Report 07977,
Research Institute for Discrete Mathematics, University of Bonn, 2007.

Bartoschek, C., Held, S., Rautenbach, D., and Vygen, J. [2007b]: Efficient algorithms
for short and fast repeater trees. II. Buffering. Technical Report 07978, Research
Institute for Discrete Mathematics, University of Bonn, 2007.

Berridge, R., Averill, R. M., Barish, A. E., Bowen, M. A., Camporese, P. J., DiLullo,
J., Dudley, P. E., Keinert, J., Lewis, D. W., and Morel, R. D. [2007]: IBM
POWER6 microprocessor physical design and design methodology. IBM Journal
of Research and Development 51 (2007), 685–714, http://www.research.ibm.
com/journal/rd/516/berridge.html.

Bhardwaj, S., and Vrudhula, S. [2008]: Leakage Minimization of Digital Circuits
Using Gate Sizing in the Presence of Process Variations. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 27 (2008), 445–455.

Blaauw, D., Zolotov, V., Sundareswaran, S., Oh, C., and Panda, R. [2000]: Slope
Propagation in static timing analysis. Proceedings of the IEEE International
Conference on Computer-Aided Design, 338–343, 2000.

Boyd, S. P., Kim, S.-J., Patil, D. D., and Horowitz, M. A. [2005]: Digital Circuit
Optimization via Geometric Programming. Operations Research 53 (2005), 899–
932.

Brenner, U., and Rohe, A. [2003]: An effective congestion-driven placement frame-
work. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 22 (2003), 387–394.

Brenner, U., and Struzyna, M. [2005]: Faster and better global placement by a new
transportation algorithm. Proceedings of the 42nd Annual Conference on Design
Automation, 591–596, 2005.

Brenner, U., Struzyna, M., and Vygen, J. [2008]: BonnPlace: Placement of Leading-
Edge Chips by Advanced Combinatorial Algorithms. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (accepted for appear-
ance) (2008).

Brenner, U., and Vygen, J. [2004]: Legalizing a placement with minimum total
movement. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 23 (2004), 1597–1613.

http://www.research.ibm.com/journal/rd/516/berridge.html
http://www.research.ibm.com/journal/rd/516/berridge.html


Bibliography 173

Burger, D., Keckler, S. W., and McKinley, K. S. e. a. [2004]: Scaling to the End of
Silicon with EDGE Architectures. IEEE Compute 37 (2004), 44–55.

Chao, T.-H., Hsu, Y.-C., and Ho, J. M. [1992]: Zero Skew Clock Net Routing.
Proceedings ACM/IEEE Design Automation Conference, 518–523, 1992.

Charnes, A. [1952]: Optimality and degeneracy in linear programming. Econometrica
20 (1952), 160–170.

Chen, C.-P., Chu, C. C. N., and Wong, D. F. [1999]: Fast and exact simultaneous gate
and wire sizing by Lagrangian relaxation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 18 (1999), 1014–1025.

Chen, H. Y., and Kang, S. M. [1991]: iCOACH: a circuit optimization aid for CMOS
high-performance circuits. Integration, the VLSI Journal 10 (1991), 185–212.

Chen, W., Hseih, C.-T., and Pedram, M. [2000]: Simultaneous Gate Sizing and
Placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 19 (2000), 206–214.

Chou, H., Wang, Y.-H., and Chen, C. C.-P. [2005]: Fast and effective gate-sizing with
multiple-Vt assignment using generalized Lagrangian Relaxation. Proceedings of
the 2005 Conference on Asia South Pacific Design Automation, ACM, New York,
NY, USA, 381–386, 2005.

Chu, C. C. N. [2004]: FLUTE: Fast Lookup Table Based Wirelength Estimation
Technique. Proceedings of the IEEE International Conference on Computer-Aided
Design, 696–701, 2004.

Chu, C. C. N., and Wong, D. F. [1997]: Closed form solution to simultaneous
buffer insertion/sizing and wire sizing. Proceedings of the ACM International
Symposium on Physical Design, 192–197, 1997.

Cochet-Terrasson, J., Cohen, G., Gaubert, S., McGettrick, M., and Quadrat, J.
[1998]: Numerical computation of spectral elements in max-plus algebra. IFAC
Conf. on Syst. Structure and Control, 1998.

Cong, J. [2002]: Timing closure based on physical hierarchy. Proceedings of the
international symposium on Physical design, 170–174, 2002.

Cong, J., Leung, K.-S., and Zhou, D. [1993]: Performance-driven interconnect design
based on distributed RC delay model. Proceedings of the 30th International
Conference on Design Automation, 606–611, 1993.

Cong, J., and Yuan, X. [2000]: Routing tree construction under fixed buffer locations.
Proceedings ACM/IEEE Design Automation Conference, 379–384, 2000.



174 Bibliography

Conn, A. R., Coulman, P. K., Haring, R. A., Morrill, G. L., Visweswariah, C., and
Wu, C. W. [1998]: JiffyTune: circuit optimization using time-domain sensitivities.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
17 (1998), 1292–1309.

Conn, A. R., Elfadel, I. M., W. W. Molzen, J., O’Brien, P. R., Strenski, P. N.,
Visweswariah, C., and Whan, C. B. [1999]: Gradient-based optimization of custom
circuits using a static-timing formulation. Proceedings of the 36th ACM/IEEE
Conference on Design Automation, 452–459, 1999.

Dai, Z.-J., and Asada, K. [1989]: MOSIZ: a two-step transistor sizing algorithm
based on optimal timing assignment method for multi-stage complex gates. IEEE
Custom Integrated Circuits Conference (1989), 17.3.1–17.3.4.

Dasdan, A., Irani, S., and Gupta, R. K. [1999]: Efficient Algorithms for Optimum
Cycle Mean and Optimum Cost to Time Ratio Problems. Proceedings ACM/IEEE
Design Automation Conference, 37–42, 1999.

De, P., Dunne, E. J., Ghosh, J. B., and Wells, C. E. [1997]: Complexity of the
Discrete Time-Cost Tradeoff Problem for Project Networks. Operations Research
45 (1997), 302–306.

Dechu, S., Shen, Z. C., and Chu, C. C. N. [2005]: An efficient routing tree con-
struction algorithm with buffer insertion, wire sizing, and obstacle considerations.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
24 (2005), 600–608.

Deineko, V. G., and Woeginger, G. J. [2001]: Hardness of approximation of the
discrete time-cost tradeoff problem. Operations Research Letters 29 (2001), 207–
210.

Deokar, R. B., and Sapatnekar, S. S. [1995]: A Graph–Theoretic Approach to
Clock Skew Optimization. Proceedings of the IEEE International Symposium on
Circuits and Systems, 407–410, 1995.

Dhar, S., and Franklin, M. A. [1991]: Optimum buffer circuits for driving long
uniform lines. IEEE Journal of Solid-State Circuits 26 (1991), 32–40.

Dĳkstra, E. W. [1959]: A Note on two Problems in connexion with graphs. Nu-
merische Mathematik 1 (1959), 269–271.

Dobhal, A., Khandelwal, V., Davoodi, A., and Srivastava, A. [2007]: Variability
Driven Joint Leakage-Delay Optimization Through Gate Sizing with Provable
Convergence. 20th International Conference on VLSI Design, 571–576, 2007.

Elmore, W. C. [1948]: The transient response of damped linear networks with
particular regard to wide-band amplifiers. Journal of Applied Physics 19 (1948),
55–63.



Bibliography 175

Engel, K., Kalinowski, T., Labahn, R., Sill, F., and Timmermann, D. [2006]:
Algorithms for Leakage Reduction with Dual Threshold Design Techniques. Inter-
national Symposium on System-on-Chip, 1–4, 2006.

Fishburn, J. P. [1990]: Clock skew optimization. IEEE Transactions on Computers
39 (1990), 945–951.

Fishburn, J. P., and Dunlop, A. E. [1985]: TILOS: A posynomial programming
approach to transistor sizing. Proceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design, 326–328, 1985.

Fulkerson, D. R. [1961]: A network flow computation for project cost curves.
Management Science 7 (1961), 167–178.

Gao, F., and Hayes, J. P. [2005]: Total power reduction in CMOS circuits via gate
sizing and multiple threshold voltages. Proceedings of the 42nd Annual Conference
on Design Automation, 31–36, 2005.

Garey, M. R., and Johnson, D. S. [1977]: The rectilinear Steiner tree problem is
NP-complete. SIAM Journal on Applied Mathematics 32 (1977), 826–834.

Ghiasi, S., Bozorgzadeh, E., Huang, P.-K., Jafari, R., and Sarrafzadeh, M. [2006]: A
Unified Theory of Timing Budget Management. IEEE Transactions on computer-
aided design of integrated circuits and systems 25 (2006), 2364–2375.

van Ginneken, L. P. P. P. [1990]: Buffer placement in distributed RC-tree networks
for minimal Elmore delay. Proceedings of the IEEE International Symposium of
Circuits and Systems, 865–868, 1990.

Goldberg, A. V., and Rao, S. [1998]: Beyond the flow decomposition barrier. Journal
of the ACM 45 (1998), 783–797.

Golumbic, M. C. [1976]: Combinatorial Merging. IEEE Trans. Comput. 25 (1976),
1164–1167.

Hanan, M. [1966]: On Steiner’s Problem with Rectilinear Distance. SIAM Journal
on Applied Mathematics 14 (1966), 255–265.

Hathaway, D., Alvarez, J. P., and Belkbale, K. P. [1997]: Network timing analysis
method which eliminates timing variations between signals traversing a common
circuit path. United States patent 5, 636, 372, 1997.

Held, S. [2001]: Algorithmen für Potential-Balancierungs-Probleme und Anwendun-
gen im VLSI-Design. Diplomarbeit, University of Bonn, 2001.

Held, S., Korte, B., Maßberg, J., Ringe, M., and Vygen, J. [2003]: Clock Scheduling
and Clocktree Construction for High Performance ASICs. Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, 232–239, 2003.



176 Bibliography

Hentschke, R. F., Narasimham, J., Johann, M. O., and da Luz Reis, R. A. [2007]:
Maze routing steiner trees with effective critical sink optimization. ISPD, 135–142,
2007.

Heusler, L. S., and Fichtner, W. [1991]: Transistor sizing for large combinational
digital CMOS circuits. Integration, the VLSI Journal 10 (1991), 155–168.

Hitchcock, R. B., Smith, G. L., and Cheng, D. D. [1982]: Timing Analysis of
Computer Hardware. IBM Journal of Research and Development 26 (1982),
100–105.

Hoffman, A., and Kruskal, J. B. [1956]: Integral boundary points of convex polyhedra.
Linear Inequalities and Related Systems, Princeton University Press, 38, 223–246,
1956.

Hrkic, M., and Lillis, J. [2002]: S-Tree: a technique for buffered routing tree synthesis.
Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, 578–583, 2002.

Hrkic, M., and Lillis, J. [2003]: Buffer tree synthesis with consideration of temporal
locality, sink polarity requirements, solution cost, congestion, and blockages. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 22
(2003), 481–491.

Hu, S., Alpert, C. J., Hu, J., Karandikar, S., Li, Z., Shi, W., and Sze, C. N. [2006]:
Fast algorithms for slew constrained minimum cost buffering. Proceedings of the
43rd Annual Conference on Design Automation, 308–313, 2006.

Hu, S., Ketkar, M., and Hu, J. [2007]: Gate sizing for cell library-based designs.
Proceedings of the 44th Annual Conference on Design Automation, 847–852, 2007.

Hwang, F. K. [1976]: On steiner minimal trees with rectilinear distance. SIAM
Journal of Applied Mathematics 30 (1976), 104–114.

Karmarkar, N. [1984]: A new polynomial-time algorithm for linear programming.
Proceedings of the sixteenth annual ACM symposium on Theory of computing,
302–311, 1984.

Karp, R. M. [1972]: Reducibility among combinatorial problems. R. E. Miller, J.
W. T., ed., Complexity of Computer Computations, Plenum Press, New York,
85–103, 1972.

Karp, R. M. [1978]: A Characterization of the Minimum Mean Cycle in a Digraph.
Discrete Mathematics 23 (1978), 309–311.

Kelley Jr., J. E. [1961]: Critical-Path Planning and Scheduling: Mathematical Basis.
Operations Research 9 (1961), 296–320.



Bibliography 177

Khandelwal, V., and Srivastava, A. [2008]: Variability-Driven Formulation for Simul-
taneous Gate Sizing and Postsilicon Tunability Allocation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 27 (2008), 610–620.

King, V., Rao, S., and Tarjan, R. [1994]: A faster deterministic maximum flow
algorithm. J. Algorithms 17 (1994), 447–474.

Kleff, A. [2008]: Iterative Balancierungsverfahren und ihre Anwendung für das
Clock-Skew-Scheduling. Diplomarbeit, University of Bonn, 2008.

Kong, T. T. [2002]: A novel net weighting algorithm for timing-driven placement.
Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, 172–176, 2002.

Korte, B., and Vygen, J. [2008]: Combinatorial Optimization: Theory and Algo-
rithms. Fourth Edition. Algorithms and Combinatorics, Springer, Berlin, Heidel-
berg, New York, 2008.

Kourtev, I. S., and Friedman, E. G. [1999]: A Quadratic Programming Approach to
Clock Skew Scheduling for Reduced Sensitivity to Process Parameter Variations.
Proceedings of the IEEE International ASIC/SOC Conference, 210–215, 1999.

Kraft, L. G. [1949]: A device for quantizing grouping and coding amplitude modu-
lated pulses. Master thesis, EE Dept., MIT, Cambridge, 1949.

Kursun, E., Ghiasi, S., and Sarrafzadeh, M. [2004]: Transistor Level Budgeting for
Power Optimization. Proceedings of the 5th International Symposium on Quality
Electronic Design (2004), 116–121.

Langkau, K. [2000]: Gate-Sizing im VLSI-Design. Diplomarbeit, University of Bonn,
2000.

Lawler, E. L. [1976]: Combinatorial Optimization: Networks And Matroids. Holt,
Rinehart And Winston, 1976.

Levner, E. V., and Nemirovsky, A. S. [1994]: A network flow algorithm for just-in-
time project scheduling. European Journal of Operational Research 79 (1994),
167–175.

Li, Z., and Shi, W. [2006a]: An O(bn2) time algorithm for optimal buffer insertion
with b buffer types. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25 (2006a).

Li, Z., and Shi, W. [2006b]: An O(mn) time algorithm for optimal buffer insertion
of nets with m sinks. Proceedings of the 2006 Conference on Asia South Pacific
Design Automation, 320–325, 2006.



178 Bibliography

Lillis, J., Cheng, C.-K., and Lin, T.-T. Y. [1995]: Optimal wire sizing and buffer inser-
tion for low power and a generalized delay model. Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, 138–143, 1995.

Lillis, J., Cheng, C.-K., Lin, T.-T. Y., and Ho, C.-Y. [1996]: New performance
driven routing techniques with explicit area/delay tradeoff and simultaneous wire
sizing. Proceedings ACM/IEEE Design Automation Conference, 395–400, 1996.

Mani, M., Devgan, A., Orshansky, M., and Zhan, Y. [2007]: A Statistical Algorithm
for Power- and Timing-Limited Parametric Yield Optimization of Large Integrated
Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 26 (2007), 1790–1802.

Marple, D. P. [1986]: Performance optimization of digital VLSI circuits. Technical
Report CSL-TR-86-308, Stanford University, 1986.

Maßberg, J., and Rautenbach, D. [2007]: Binary trees with choosable edge lengths.
Technical Report 07973, Research Institute for Discrete Mathematics, University
of Bonn, 2007.

Maßberg, J., and Vygen, J. [2005]: Approximation Algorithms for Network Design
and Facility Location with Service Capacities. APPROX 2005, 158–169, 2005.

Maßberg, J., and Vygen, J. [2008]: Approximation algorithms for a facility location
problem with service capacities. ACM Transactions on Algorithms, to appear.
(Preliminary version in APPROX 2005) (2008).

Megiddo, N. [1983]: Applying parallel computation algorithms in the design of serial
algorithms. Journal of the ACM 30 (1983), 852–865.

Mo, Y.-Y., and Chu, C. C. N. [2000]: A hybrid dynamic / quadratic programming al-
gorithm for interconnect tree optimization. Proceedings of the ACM International
Symposium on Physical Design, 134–139, 2000.

Müller, D. [2006]: Optimizing Yield in Global Routing. Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, 480–486, 2006.

Müller-Hannemann, M., and Zimmermann, U. [2003]: Slack optimization of timing-
critical nets. Algorithms – Proceedings of the 11th Annual European Symposium
on Algorithms (ESA 2003), Springer, Berlin, 727–739, 2003.

Nagel, L. W., and Pederson, D. O. [1973]: SPICE (Simulation Program with
Integrated Circuit Emphasis). Technical Report Memorandum No. ERL-M382,
University of California, Berkeley, 1973.

Okamoto, T., and Cong, J. [1996]: Buffered Steiner tree construction with wire sizing
for interconnect layout optimization. Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, 44–49, 1996.



Bibliography 179

Orlin, J. B. [1993]: A faster strongly polynomial minimum cost flow algorithm.
Operations Research 41 (1993), 338–350.

Osborne, E. E. [1960]: On Pre-Conditioning of Matrices. Journal of the ACM 7
(1960), 338–345.

Pan, M., Chu, C., and Patra, P. [2007]: A Novel Performance-Driven Topology
Design Algorithm. Proceedings of the 2007 Conference on Asia South Pacific
Design Automation, 145–150, 2007.

Phillips, J. S., and Dessouky, M. I. [1977]: Solving the project time/cost tradeoff
problem using the minimal cut concept. Management Science 24 (1977), 393–400.

Radunović, B., and Le Boudec, J.-Y. [2007]: A unified framework for max-min and
min-max fairness with applications. IEEE/ACM Transactions on Networking 15
(2007), 1073–1083.

Rao, R. R., Devgan, A., Blaauw, D., and Sylvester, D. [2004]: Parametric yield esti-
mation considering leakage variability. Proceedings of the 41st Design Automation
Conference, 442–447, 2004.

Ratzlaff, C. L., Gopal, N., and Pillage, L. T. [1991]: RICE: Rapid interconnect circuit
evaluator. Proceedings of the 28th Annual Conference on Design Automation,
555–560, 1991.

Rautenbach, D., and Szegedy, C. [2007]: A Class of Problems for which Cyclic
Relaxation converges linearly. Computational Optimization and Applications
(accepted for appearance) (2007).

Ravindran, K., Kuehlmann, A., and Sentovich, E. [2003]: Multi-Domain Clock
Skew Scheduling. Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, 801–808, 2003.

Ren, H., Pan, D. Z., and Kung, D. S. [2005]: Sensitivity guided net weighting for
placement-driven synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 24 (2005), 711–721.

Rohe, A. [2002]: Sequential and Parallel Algorithms for Local Routing. Dissertation,
University of Bonn, 2002.

Rosdi, B. A., and Takahashi, A. [2004]: Reduction on the usage of intermediate
registers for pipelined circuits. Proceedings Workshop on Synthesis and System
Integration of Mixed Systems, 333–338, 2004.

Sakallah, K. A., Mudge, T. N., and Olukotun, O. A. [1990]: checkTc and minTc:
Timing verification and optimal clocking of digital circuits. Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, 552–555, 1990.



180 Bibliography

Sapatnekar, S. S. [2004]: Timing. Kluwer Academic Publishers, Boston, Dordrecht,
New York, London, 2004.

Sapatnekar, S. S., Rao, V. B., Vaidya, P. M., and Kang, S.-M. [1993]: An Exact
Solution to the Transistor Sizing Problem for CMOS Circuits Using Convex Opti-
mization. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 12 (1993), 1621–1634.

Saxena, P., Menezes, N., Cocchini, P., and Kirkpatrick, D. [2003]: The scaling
challenge: can correct-by-construction design help? Proceedings of the ACM
International Symposium on Physical Design, 51–58, 2003.

Schietke, J. [1999]: Timing-Optimierung beim physikalischen Layout von nicht-
hierarchischen Designs hochintegrierter Logikchips. Dissertation, University of
Bonn, 1999.

Schmedding, R. [2007]: Time-Cost-Tradeoff Probleme und eine Anwendung in der
Timing-Optimierung im VLSI-Design. Diplomarbeit, University of Bonn, 2007.

Schneider, H., and Schneider, M. [1991]: Max-balancing weighted directed graphs
and matrix scaling. Mathematics of Operations Research 16 (1991), 208–220.

Shah, S., Srivastava, A., Sharma, D., Sylvester, D., Blaauw, D., and Zolotov, V.
[2005]: Discrete Vt assignment and gate sizing using a self-snapping continu-
ous formulation. Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, 705–712, 2005.

Shenoy, N., Brayton, R. K., and Sangiovanni-Vincentelli, A. L. [1992]: Graph
algorithms for clock schedule optimization. Proceedings of the IEEE/ACM inter-
national conference on Computer-Aided design, 132–136, 1992.

Shi, W., and Li, Z. [2005]: A fast algorithm for optimal buffer insertion. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 26
(2005), 879–891.

Singh, J., Luo, Z.-Q., and Sapatnekar, S. S. [2008]: A Geometric Programming-
Based Worst Case Gate Sizing Method Incorporating Spatial Correlation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 27
(2008), 295–308.

Sinha, D., Shenoy, N. V., and Zhou, H. [2006]: Statistical Timing Yield Optimization
by Gate Sizing. IEEE Transactions on VLSI Systems 14 (2006), 1140–1146.

Skutella, M. [1998]: Approximation algorithms for the discrete time-cost tradeoff
problem. Mathematics of Operations Research 23 (1998), 909–929.



Bibliography 181

Sundararajan, V., Sapatnekar, S. S., and Parhi, K. K. [2002]: Fast and exact
transistor sizing based on iterative relaxation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 21 (2002), 568 – 581.

Szegedy, C. [2005a]: personal communication, 2005.

Szegedy, C. [2005b]: Some Applications of the weighted combinatorial Laplacian.
Dissertation, University of Bonn, 2005.

Szymanski, T. [1992]: Computing Optimal Clock Schedules. Proceedings ACM/IEEE
Design Automation Conference, 399–404, 1992.

Takahashi, A. [2006]: Practical Fast Clock-Schedule Design Algorithms. IEICE
TRANSACTIONS on Fundamentals of Electronics, Communications and Com-
puter Sciences E89-A (2006), 1005–1011.

Takahashi, H., and Matsuyama, A. [1980]: An approximate solution for the Steiner
problem in graphs. Math. Japonica 24 (1980), 573–577.

Tennakoon, H., and Sechen, C. [2002]: Gate sizing using Lagrangian relaxation
combined with a fast gradient-based pre-processing step. Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, 395–402, 2002.

Trevillyan, L., Kung, D., Puri, R., Reddy, L. N., and Kazda, M. A. [2004]: An
integrated environment for technology closure of deep-submicron IC designs. IEEE
Design & Test of Computers, 21 (2004), 14–22.

Vujkovic, M., Wadkins, D., Swartz, B., and Sechen, C. [2004]: Efficient timing
closure without timing driven placement and routing. Proceedings ACM/IEEE
Design Automation Conference, 268–273, 2004.

Vygen, J. [2001]: Theory of VLSI Layout. Habilitation thesis, University of Bonn,
2001.

Vygen, J. [2004]: Near Optimum Global Routing with Coupling, Delay Bounds,
and Power Consumption. Proceedings of the 10th International IPCO Conference,
308–324, 2004.

Vygen, J. [2006]: Slack in static timing analysis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 25 (2006), 1876–1885.

Vygen, J. [2007]: New theoretical results on quadratic placement. Integration, the
VLSI Journal 40 (2007), 305–314.

Werber, J., Rautenbach, D., and Szegedy, C. [2007]: Timing optimization by restruc-
turing long combinatorial paths. Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, 536–543, 2007.



182

Young, N. E., Tarjan, R. E., and Orlin, J. B. [1991]: Faster Parametric Shortest
Path and Minimum-Balance Algorithms. Networks 21 (1991), 205–221.

Zejda, J., and Frain, P. [2002]: General framework for removal of clock network
pessimism. Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, 632–639, 2002.



Summary
Timing closure is a major challenge to the physical design of a computer chip. In this
thesis, we proposed new algorithms for the key tasks of performance optimization,
namely repeater tree construction; circuit sizing; clock skew scheduling; threshold
voltage optimization and plane assignment. Furthermore, a new program flow for
timing closure was developed that integrates these algorithms with placement and
clocktree construction. The algorithms and the program flow are designed to handle
the largest real-world chip instances.
An algorithm for computing repeater tree topologies, which are later filled with

repeaters, is presented at the beginning of this thesis. To this end, we propose a new
delay model for topologies that not only accounts for the path lengths in the tree,
as existing approaches do, but also for the number of bifurcations on a path, which
introduce extra capacitance and thereby delay. At each bifurcation, a fixed total
bifurcation delay has to be distributed to the two branching edges. The freedom to
distribute the bifurcation cost among the two branches simulates the possibility of
shielding the capacitance of the less critical branch by inserting a small repeater.

In the extreme cases of pure power optimization and pure delay optimization we
have shown that the optimum topologies regarding our delay model are minimum
Steiner trees and alphabetic code trees with the shortest possible path lengths. We
presented a new, extremely fast algorithm that scales seamlessly between the two
opposite objectives. It inserts the sinks in the order of decreasing timing criticality,
such that the worst slack at the root is maximized with respect to the current
insertion. Very large instances are preclustered by a fast facility location approach.
Although the algorithm has a cubic worst case running time, it is indeed very fast.
Several million topologies are computed within a few minutes. For special cases, we
could prove the optimality of our algorithm. The quality of the generated trees in
practice is demonstrated by comprehensive experimental results and comparison
with lower bounds on the wire length, the worst path delays, and the number
of repeaters that are inserted later. It turns out that constructing topologies for
optimum performance not only improves timing, but also saves power, as the number
of shielding repeaters can be kept low. This is an additional justification of our
approach, which keeps the number of bifurcations on the critical path particularly
small, where existing algorithms for repeater insertion tend to insert shielding
repeaters.
The task of circuit sizing is to assign millions of small elementary logic circuits

to elements from a discrete set of logically equivalent, predefined physical layouts
such that power consumption is minimized and all signal paths are sufficiently fast.
Existing approaches assume simplified delay models and consider the continuous

183



relaxation of the discrete problem. Though the resulting geometric programs can
be solved optimally, they can either solve only relatively small instances or require
very simple delay approximations. Afterwards, the results have to be mapped to
discrete layouts entailing potential delay degradations and electrical violations.
In this thesis we developed a fast heuristic approach for global circuit sizing,

followed by a local search into a local optimum. Our algorithms use the existing
discrete layout choices and accurate delay models with full propagation of signal
slews. The global approach iteratively assigns slew targets to all source pins of the
chip and chooses a discrete layout of minimum size preserving the slew targets. In
each iteration, the slew target of the source pin of each net is refined, based on
global and local criticality. The source pin is globally critical if it has a signal with
negative slack. In this case we consider the local criticality, which is defined as the
difference between the worst slack of a signal at the source pin and the worst slack of
a signal at its predecessor source pins. If the local criticality is zero, the current pin
must be located on a most critical path through a predecessor and the slew target is
tightened. Otherwise, there is a more critical path through an input driver, which
can be sped up by downsizing the current circuit, indirectly by relaxing the slew
target of the current source pin. If the current pin has a positive worst slack making
it globally uncritical, its slew target is relaxed to reduce the power consumption.
We proposed a method to compute a lower bound on the delay of the most critical
paths. In our comprehensive experiments on real instances, we demonstrate that the
worst path delay is within 7% of its lower bound on average after a few iterations.
The subsequent local search reduces this gap to 2% on average. The local search
iterates cyclically over the circuits on the critical path and assigns them to the
local optimum layout. As the global algorithm works without extensive incremental
timing updates, it is capable of sizing designs with more than 5.7 million circuits
within 3 hours on modern personal computers.

Clock skew scheduling for optimizing the switching times of the registers can
significantly improve the performance. We developed the first algorithm with a
strongly polynomial running time for the cycle time minimization in the presence of
different cycle times and multi-cycle paths. It turns out that this problem can be
solved by a minimum ratio cycle computation in a balance graph with edge costs
and weights. Such graph-based models cause a lot of overhead, especially in terms
of memory consumption and preprocessing time. In fact, they are unsuitable for
large chip instances. In practice, iterative local scheduling methods are much more
efficient. These methods iterate cyclically over all registers and schedule them to
their local optimum based in the worst slacks of incoming and outgoing signals.
However, there has not been much mathematical insight into these methods. We have
proven that the iterative method maximizes the worst slack, even when restricting
the feasible schedule of the registers to certain time intervals, which is an indirect
mean to control the power consumption of the clocktrees. Furthermore, we enhanced
the iterative local approach to become a hybrid model that constructs the balance
graph incrementally on the most critical paths. The additional global constraint
edges allow us to hide the most critical paths that cannot be further improved.

184



Thereby, the hybrid model yields a lexicographically optimum slack distribution.
However, the experimental results show that, in practice, the improvements of the
optimum method over the purely iterative method are hardly traceable. The results
therefore justify using the faster and very memory efficient iterative local method
in practice.

The clock skew scheduling problem is then generalized to allow for simultaneous
data path optimization. In fact, this is a time-cost tradeoff problem. On acyclic
graphs, which would correspond to a fixed clock schedule, the time-cost tradeoff
problem is well understood. We developed the first combinatorial algorithm for
computing time-cost tradeoff curves in graphs that may contain cycles. Starting
from the lowest-cost solution, the algorithm iteratively computes a descent direction
for edge delays and node potentials by a minimum cost flow computation on the
subgraph of most critical edges and vertices. The maximum feasible step length
for the current descent direction is then determined by a minimum ratio cycle
computation. Although the time-cost tradeoff curve, and thereby the algorithm,
may have an exponential size and running time, it is still efficient if the critical
subgraph, where the minimum cost flow is computed, is small in comparison to
the overall graph. This approach can be used in chip design for optimization tasks,
where a layout change has only a local impact on the delay of a single net or
circuit, for example plane assignment and repeater tree construction. We apply this
algorithm as a heuristic for threshold voltage optimization, with non-linear delays
and discrete threshold voltage levels. For each circuit on a most critical path we
compute the delay and power changes when switching to the neighboring threshold
voltage levels. The difference quotients are used as the slopes of the piecewise linear
functions in the linear relaxation. And the minimum cost flow result gives a hint
for speeding up and delaying circuits.

Finally, the optimization routines were combined into a timing closure flow. Here,
the placement of the circuits is alternated with global performance optimization by
repeater tree construction and circuit sizing. Netweights are used to keep critical nets
short during placement. When the global placement is determined, the performance
is improved further by focusing on the most critical paths. Repeater trees are
rebuilt targeting best performance and circuit sizing is restricted to local search.
Furthermore, threshold voltages and assignment of nets to higher, and therefore
faster, wiring planes are optimized. In the end, the clock schedule is optimized and
clocktrees are inserted. Computational results of the design flow are obtained on
real-world computer chips. The largest chip instances with more that 5 million
circuits can be designed in about 30 hours. We have been able to reduce the running
time of global performance optimization, which is performed between two global
placement runs, from 3 days by a widely used industrial tool to less than 6 hours,
allowing for more placement iterations and a higher quality of the placement. Today,
the program flow is used by IBM to design many of the most challenging computer
chips.

185


	1 Introduction
	2 Timing Closure
	2.1 Integrated Circuit Design
	2.1.1 VLSI Design Flow Overview
	2.1.2 Decomposition of VLSI Designs

	2.2 Physical Design Input
	2.3 Design Constraints
	2.3.1 Boolean Equivalency
	2.3.2 Placement Constraints
	2.3.3 Routing Constraints

	2.4 Timing Constraints
	2.4.1 Static Timing
	2.4.2 Circuit Delays
	2.4.3 Wire Delays
	2.4.4 Signal Propagation
	2.4.5 Electrical Correctness Constraints
	2.4.6 Arrival Time Constraints
	2.4.7 Timing Graph
	2.4.8 Slacks
	2.4.9 Signal Graph

	2.5 Sign-Off Timing Constraints
	2.6 Timing Closure Problem
	2.7 Test Data

	3 Repeater Trees
	3.1 Previous Work
	3.2 Repeater Tree Problem
	3.3 Analysis of Library and Wiring Modes
	3.3.1 Bridging Large Distances
	3.3.2 Further Preprocessing

	3.4 Topology Generation
	3.4.1 Delay Model for Topology Generation
	3.4.2 Priority Ordering
	3.4.3 Topology Generation Algorithm

	3.5 Theoretical Properties
	3.5.1 Maximum Achievable Slack
	3.5.2 Optimality Statements

	3.6 Postoptimization
	3.7 Repeater Insertion
	3.8 Implementation Issues
	3.8.1 Blockages 
	3.8.2 Handling Placement and Routing Congestion
	3.8.3 Very High Fanout Trees
	3.8.4 Plane Assignment and Wire Sizing

	3.9 Experimental Results

	4 Circuit Sizing
	4.1 Problem Description
	4.2 Previous Work
	4.3 New Approach
	4.4 Fast Circuit Sizing
	4.4.1 Circuit Assignment
	4.4.2 Refining Slew Targets
	4.4.3 Enhanced Slew Targets
	4.4.4 Power Reduction
	4.4.5 Electrical Correction

	4.5 Local Search Refinement
	4.6 Quality of Results
	4.6.1 Area Consumption
	4.6.2 Delay Quality
	4.6.3 Running Time

	4.7 Circuit Sizing in Practice

	5 Clock Skew Scheduling
	5.1 Previous Work
	5.2 Slack Balance Problem
	5.2.1 Graph Models
	5.2.2 Late, Early and Window Optimization
	5.2.3 Multi-Domain Cycle Time Minimization

	5.3 Iterative Local Balancing
	5.3.1 Quality of Iterative Local Balancing
	5.3.2 Convergence Rate
	5.3.3 Iterative Time Window Optimization
	5.3.4 Implicit Implementation
	5.3.5 Hybrid Balancing

	5.4 Experimental Results
	5.4.1 Memory Consumption
	5.4.2 Running Times
	5.4.3 Quality of the Slack Distribution
	5.4.4 Other Aspects

	5.5 Notes on Clocktree Synthesis

	6 Time-Cost Tradeoff Problem
	6.1 Problem Formulation
	6.2 Related Work
	6.3 A Combinatorial Algorithm
	6.3.1 Preliminary Considerations
	6.3.2 Modifying Delays
	6.3.3 Choosing the Step Length
	6.3.4 Bounding the Running Time
	6.3.5 Piecewise Linear Convex Cost Functions
	6.3.6 Optimizing Weighted Slacks
	6.3.7 Optimizing the Slack Distribution
	6.3.8 Notes on the Acyclic Case
	6.3.9 Infeasible Maximum Delays

	6.4 Applications in Chip Design
	6.4.1 Delay Optimization Graph
	6.4.2 Operations
	6.4.3 Results in Threshold Voltage Optimization


	7 Timing Driven Loop
	7.1 Quadratic Placement
	7.2 Timing Optimization
	7.3 Timing Refinement and Legalization
	7.4 Netweights
	7.4.1 Data Netweights
	7.4.2 Clock Netweights

	7.5 Timing Driven Loop Results

	Notation Index
	Bibliography
	Summary

