
Local Search Algorithms for Timing-Driven
Placement under Arbitrary Delay Models

Adrian Bock, Stephan Held, Nicolas Kämmerling, and
Ulrike Schorr

Research Institute for Discrete Mathematics
Lennéstr. 2

53113 Bonn, Germany
{held,kaemmerling,schorr}@or.uni-bonn.de

April 10, 2015

We present local search algorithms for timing-driven placement optimization.
They find local slack optima for cells under arbitrary delay models and can
be applied late in the design flow.

The key ingredients are an implicit path straightening and a clustering of
neighboring cells. Cell clusters are moved jointly to speed up the algorithm
and escape suboptimal solutions, in which single cell algorithms are trapped,
particularly in the presence of layer assignments. Given a cell cluster, we
initially perform a line search for maximum slack on the straight line segment
connecting the most critical upstream and downstream cells of the cluster.
Thereby, the Euclidean path length is minimized. An iterative application
will implicitly straighten the path. Later, slacks are improved further by
applying ascent steps in estimated supergradient direction.

The benefit of our algorithms is demonstrated experimentally within an
industrial microprocessor design flow, and on recent ICCAD benchmarks
circuits.

Keywords: timing-driven placement, local search, accurate delay models

1

1 Introduction

Timing-driven placement is a central problem for achieving timing closure in VLSI design.
The traditional approach to timing-driven placement is to assign weights or delay bounds
to critical nets or individual pin-to-pin connections and employ a placement algorithm
minimizing the weighted wirelength [4, 6, 7, 13, 18, 20, 22, 23]. Internally, delay bounds
are often realized by net weights, e.g. [22]. Alternatively, path based approaches model
static timing constraints explicitly, approximating delays by linear or quadratic functions
[5, 11, 24].

Most placement algorithms estimate net lengths by the half perimeter bounding box
of their pins, which does not allow Steiner topology aware delay models. In [1, 16]
Steiner points are placed by the placement algorithm allowing more accurate delay
models. Recently, [8] introduced the simplifying γ-net model during global placement
and linearized delays in a minimum-cost-flow formulation during legalization.

All these approaches help to improve critical path delays, but they require many
iterations to obtain good net weights, bounds, or Steiner topologies. After some iterations,
it can be more effective to move cells to a local optimum under an accurate delay model
(ignoring overlaps), and then legalize the design.

For the local search with a single cell, linear programming has been proposed in [17],
solvable by geometric algorithms [14]. Industrial design environments use single cell
movements for improving timing under accurate delay models together with gate sizing
and buffering [21].

We propose a new local search algorithm that locally maximizes slacks through a
series of local moves under arbitrary delay models, e.g., linear, Elmore [9], or asymptotic
waveform emulation (AWE) [19]. In general, delay functions are discontinuous, as delays
depend on the Steiner tree topologies, which change with the placement. Hence, finding
a placement that maximizes the worst slack is a non-concave optimization problem.
However, local search can be a powerful tool to obtain good results.

The core algorithm moves single cells to a local optimum. However, this may stall in
suboptimal solutions, particularly in the presence of layer assignments, as the examples
in Figure 1 show. In Figure 1a, a critical path with a slack of −100 ps passes an inverter
through a wide wire and then enters a register ’R’ through a thin wire. For better timing,
the inverter tends to the right, spanning more length by the low resistance interconnect

...+100 ps
R

-100 ps
...

→ ←
←

(a) register endpoint

...

...
...

→
←

←

(b) detour through multiple cells

Figure 1: Two situations which single cell moves cannot improve. Critical paths are
drawn in red.

2

as indicated by the blue arrow. The register has a positive output slack of 100ps and
tends to the left. However, both cells are mutually blocking a further movement. In
Figure 1b, the critical (red) path contains a sequence of two high resistance nets in the
middle. The entering net on the left and the leaving net on the right are assigned to
low-resistance layers. Again the two inverters tend to the center to span more length with
the low resistance nets, where the NAND blocks any progress. In both cases, clustering
the cells in the green circle leads to an improving direction as indicated by the green
arrows. As we will see in the experimental results, clusters also help to move cells jointly
across placement blockages, where single cell moves fail.

In contrast to most existing approaches, we are not considering placement constraints
explicitly, but just by employing standard legalization techniques. The main contributions
of our local search algorithms are as follows:

• Slacks are addressed directly under arbitrary delay models.

• We present a new implicit path straightening algorithm,

• an estimated supergradient ascent to locally optimal cell locations, and

• a clustering of cells for escaping from single cell optima and speeding up the
computations.

In Section 2, we describe the problem and define the central objective of the local
search. The local search algorithms are presented in Section 3, followed by experimental
results in Section 4.

2 Problem Formulation

Let C be the set of cells and P the set of pins in the design. Each cell c ∈ C is assigned
a cell location xc = (xhc , x

v
c) ∈ R2 and the vector x = (xh, xv) ∈ (R2)c∈C describes all

cell locations. We do not make any assumption on the underlying delay model and wire
topology. Instead, we use a timing engine that, for a given vector x of locations returns
the worst (late) slack at a pin p ∈ P which is defined as the minimum difference of the
delay bound and actual delay of a path through p.

In order to improve the delay of a critical path, we can reduce its length or balance
load capacities w.r.t. drive strengths by moving cells on the path. In addition, the
load capacitance of the nets on the critical path can be reduced by moving less critical
downstream cells closer to the path. To accomplish this uniformly for all gates, regardless
if they lie on a critical path or not, we use the local slack metric from [10]:

Given a cell c ∈ C and the current placement x, let s+(c, x) be the worst slack at an
output pin of c and s−(c, x) be the worst slack of an upstream driver pin to a data input
of c, ignoring slacks on clock inputs of registers. Obviously, s+(c, x) ≥ s−(c, x) for all
cells but registers, since a path that determines s+(c, x) must pass through one of the
upstream driver pins.

Given a placement x, we define the local timing-driven placement problem for a cell
c ∈ C as finding a new placement x′ with xc′ = x′c′ for all c′ ∈ C − c, maximizing its local
slack

s(c, x′) := min{s−(c, x′), s+(c, x′), 0}, (1)

3

where we are assuming a slack threshold zero.
To tackle the timing-driven placement problem, which is to find a placement x maxi-

mizing minc∈C s(c, x), we iteratively apply its local variant for critical cells.

3 Local Search Algorithms

At the core of our algorithm, we consider a single cell c ∈ C and move it to a cell location
that maximizes its local slack s(c, x). There are two approaches to improve the slack.
The first is to iteratively determine an ascent direction by an approximated supergradient.
The second algorithm has the goal to implicitly straighten the critical path.

3.1 Supergradient Ascent

In this variant, we pretend that s(c, x) is a concave function of xc, and compute a
discretized supergradient dc(x), which we use as an ascent direction.

Let c ∈ C be the current cell and let eh, ev ∈ (R2)C with ehc = (1, 0) ∈ R2 and
evc = (0, 1) ∈ R2 and zero everywhere else. For ε > 0 let

xl = x− ε · eh, xr = x+ ε · eh
xd = x− ε · ev, xu = x+ ε · ev

arise from x by moving cell c by ε to the left, right, down, and up. We compute a
discretized ascent direction

d̃c(x) :=
1

2ε

s(c, xr)− s(c, xl)

s(c, xu)− s(c, xd)

 ∈ R2

and normalize it:
dc(x) := d̃c(x)

/∥∥∥d̃c(x)
∥∥∥

1
∈ R2. (2)

We employ the normalized vector, because
∥∥∥d̃c(x)

∥∥∥ is unpredictably large when s(c, x) is

non-differentiable or even discontinuous at x. In the latter case the supergradient is not
defined, but the discrete approximation can still yield an ascent direction.

The supergradient ascent method is summarized in Algorithm 1. To speed up the
search, in particular for bridging long distances, we scale the step size dynamically. The
step size is doubled whenever an improvement is found and it is halved if no improvement
is found at the current step size.

The If-statement in line 7 is tested w.r.t. the accuracy εte > 0 of the timing engine
(in our experiments εte = 0.1 ps) and refuses a solution x′ if it is not better than x by
at least εte. In our experiments we were using εinit as one micron, i.e., less than the
standard height. In case s(c, x) is differentiable and concave, Algorithm 1 will find a
locally optimal solution xc up to an error of εinit. Recall that s(c, x) may not be concave
in xc and, in general, Algorithm 1 may get stuck in a suboptimal solution.

4

Algorithm 1 Supergradient Ascent

1: Input: cell c, location vector x, initial step size εinit, accuracy of timing engine εte
2: ε := εinit.
3: repeat
4: Compute ascent direction dc(x) as in (2).
5: x′ := x.
6: x′c := x′c + ε · dc.
7: if s(c, x′) ≥ s(c, x) + εte then
8: x := x′, ε := 2ε
9: else

10: ε := 0.5ε
11: until ε < εinit

c

(a) Inverters are locally optimal.

c

(b) Cell c minimizes l2-length.

Figure 2: Path straightening to escape poor solutions.

3.2 Path Straightening

Supergradient search is known to potentially show slow progress. We combined it with
various line search variants proposed in text books, but found the simple scheme of
Algorithm 1 superior on our instances. To speed up local search we are using a geometric
idea, motivated by the example in Figure 2. Assume that the two outer cells have a
fixed location. Then the placement of each upper cell is locally optimal, because each is
placed on the shortest l1-path between predecessor and successor. Algorithm 1 would
leave them unchanged as a consequence of respecting the accuracy of timing data in
line 7. But obviously moving both upper cells downward would result in a shorter path.
For εte = 0, under a linear delay model and perfect accuracy, the two inverters would
move downwards, but only in many very small steps.

This motivates the following path straightening algorithm: It iteratively takes a cell
c ∈ C and moves it to the center of the line segment connecting the critical upstream
pin pup and downstream pin pdown of c. Then it performs a line search for the maximum
local slack s(c, x) along this segment in each direction, thereby respecting pin offsets so
that the center of the critical input and output pin locations xpin and xpout of c is located
on the segment between pup and pdown. A solution minimizes the Euclidean path length
between pup and pdown (up to the offset of the pins of c).

Due to the iterative application, this algorithm straightens a critical path and leads to
a fast convergence in the above example. It is summarized in Algorithm 2.

Of course, the line segment need not contain good solutions. Thus we consider
Algorithm 2 as a fast preprocessing.

5

Algorithm 2 Path straightening

1: Input: locations x, cell c, initial step size εinit

2: Let xpup , xpdown
, xpin and xpout denote the locations of the critical upstream, critical

downstream pin, critical input pin, critical output pin, respectively.
3: Set dc := xpdown

− xpup .
4: Set zc := 1

2(xpup + xpdown
).

5: Set z′c := 1
2(xpin + xpout).

6: for ε ∈ {−εinit, εinit} do
7: repeat

8: xc′ :=

{
zc + (xc − z′c) + ε · dc if c′ = c,

xc′ if c′ ∈ C − c.
9: if s(c, x) > s(c, x) + εte then

10: xc := xc, ε := 2 · ε
11: else
12: ε := 0.5 · ε
13: until step size is too small
14: Keep the best location among the initial location and those on the line segment.

3.3 Clustered Cell Movement

As shown in the introduction and Figure 1, our main goal of a clustered cell movement is
to escape from suboptimal solutions trapping a single move search, because two or more
gates are mutually blocking any progress. In Figure 1, we can escape the two situations
by moving two or three gates simultaneously. In addition, a clustered move leads to a
faster convergence in the right situation of Figure 1, if all interconnects have the same
resistance. Any algorithm based on single cell movements would need many iterations to
move the three cells down, which can be achieved by a single clustered move.

We cluster neighboring cells with a similar local slack in a single virtual cell, to which
we apply Algorithm 1 and 2. Our clusters reflect both physical and slack-wise proximity.
We compute them as follows: Let π, θ ∈ R+ be a physical proximity and a slack proximity
threshold, respectively.

Definition 1 Given a cell c ∈ C, we call a cell c′ ∈ C (π, θ)-attracted to c, if c′ and c
are connected by a path s.t.

• for each pin on the path, its slack is within a θ-slack window around s(c, x):
[s(c, x)− θ, s(c, x) + θ] (slack attraction), and

• for every source/sink pair of pins p, p′ in a net on the path, their distance is not
greater than π (physical attraction).

To form a cluster C ⊂ C, we consider a cell c ∈ C and we add to C all cells that are
(π, θ)-attracted to c. Note that we do not bound the physical radius of C, which in
theory can be large as the connecting paths in C could contain many nets. However, we
observed in practice that a cluster usually contains only a few cells.

6

←

Figure 3: Clustered Cell Movement

We identify C as a virtual cell with input pins and output pins for which we can define,
for a placement x, the slacks s−(C, x), s+(C, x), and s(C, x) as for a single cell in (1).
Fixing relative distances inside C, we can apply Algorithms 1 and 2 for the virtual cell C.

An example of a cluster and its movement is depicted in Figure 3. It shows the critical
path in red and, in purple, a slightly less critical path within the θ-slack window. Assume
that the purple inverter has a weak drive strength. Then it is important to cluster the
purple inverter together with the red cells. Otherwise, the purple path would prevent a
substantial movement of the red cells. In our experiments, we choose θ = 1ps and π to
be twice the height of a standard cell. Empirically, we did not see instances were larger
attractions provided a benefit.

3.4 Iterative Local Search

We now present how the local search algorithms are integrated into a loop for timing-
driven placement refinement (Algorithm 3). The outer loop is iterated until no significant
improvement of the worst slack is found (εws = 0.5 ps in our experiments). Inside the
loop, we perform four major steps. First and second, the path straightening algorithm
and the supergradient ascent are applied to single critical cells. Third and last, the same
algorithms are executed also for critical cell clusters. As clustered cell moves take more
running time because of the larger number of timing evaluations, we try to exploit the
potential of single moves first.

Critical cells C? are selected as follows. First, we traverse all nets by increasing
slack at their source pins and select all cells that are attached to the current net and
to all nets that have the same slack at their sources. As soon as more than K ∈ N
cells are selected, the traversal of the nets stops. Note that this procedure selects the
cells on the most critical paths and their direct successors for any choice of K ≥ 1. In
our experiments, we choose K = |C|/1000. The critical cells are processed in reverse
topological order (experiments with other process orders gave similar results). Cells that
are initially uncritical might become critical and be considered after several iterations
of the repeat-until loop. At the end of each loop iteration, before measuring the slack
improvement, we legalize the cells minimizing quadratic movement [2].

It is important to select not only critical cells but all cells in their fanout because they
can be moved to reduce the capacitance and length of the critical nets. Those cells are
not selected if a delay model is used where less critical cells are not relevant for the delay,
e.g. linear distance based wire delays. Furthermore, lines 12 and 17 ensure that no cell is
added to multiple clusters in one step.

7

Algorithm 3 Refine Placement Loop

1: repeat
2: Select critical cells C?

3: for each cell in C? do
4: Apply Algorithm 2 to c.
5: Select critical cells C?

6: for each cell in C? do
7: Apply Algorithm 1 to c.
8: Select critical cells C?

9: for each cell in C? do
10: Compute a cluster C as described in Section 3.3.
11: Apply Algorithm 2 to C.
12: C? := C? \ C
13: Select critical cells C?

14: for each cell in C? do
15: Compute a cluster C as described in Section 3.3.
16: Apply Algorithm 1 to C.
17: C? := C? \ C
18: Legalize placement with minimum perturbation [2].
19: until the worst slack improvement is below a threshold εws.

3.5 Legalization and Congestion Mitigation

So far, we disregarded placement feasibility in Algorithms 1 and 2. To avoid large
disturbances in line 18 caused by cells (cluster) which were moved on placement blockages,
we consider blockages when evaluating the final solution found by the local search in
Algorithms 1 and 2: The cell (cluster) is tentatively moved to the closest unblocked
location, which is accepted as final solution if the local slack has improved compared to
the starting solution.

Algorithm 3 with the infrequent legalization is not the only application scenario of our
local search. Our program without clustering has been used as RefinePlace in the
self-stabilizing framework of BonnPlace [3]. For fine tuning, an incremental placer could
legalize individual cells immediately after their refinement as in [21].

Wire length and routing congestion may increase as a side effect of our local search
algorithms. Typically, this effect is marginal since we consider only a small fraction of
the cells. However, it is easily possible to integrate in our local search global routing calls
similar to placement legalization.

3.6 Capacitance & Slew Limits

To avoid or reduce load capacitance and slew violations by our local search algorithms,
we give them priority over the local slack. In fact, we are considering a lexicographic
objective that minimizes 1) the total load violation, 2) the total slew violation, and 3)

8

the local slack, while searching for a better solution. Thus we are not worsening load
and slew violations compared to the starting solution. To avoid degradation of the worst
design slack, we refuse a new location at the end of a local search if it degrades the local
slack compared to the starting solution.

When computing the ascent directions in Section 3.1, we relax the lexicographic
objective function using fixed coefficients λcap, λslew ∈ R+ to penalize load and slew
limit violations. Let tcap denote the total capacitance violation and tslew the total
slew violation among all nets attached to the current cell (cluster), we estimate the
supergradient of the following Lagrange function s′(c, x) := (s(c, x)− λcap · tcap− λslew ·
tslew). Since we focus rather on minimizing capacitance violations than on minimizing
slew violations, we choose λcap to be 1024 and λslew to be 256, where slacks and slews
are measured in ps and capacitances in fF in our experiments.

4 Experimental Results

We implemented the new local search algorithms in C++ and integrated them into an
industrial design environment, using the sign-off timing engine EinsTimer from IBM.
The industrial design flow runs in several steps with increasing accuracy of the delay
model. The three stages use the following wire delay models:

1. Linear wire delays based on source-sink distances and constant gate delays (timing-
driven global placement),

2. Elmore delays [9] (global delay optimization), and

3. AWE as in [19] (local delay refinement).

The timing-driven placement in the linear stage implements a netweighting scheme that
iteratively increases weights on the critical paths as in [23]. In addition, long interconnects
are assigned to wider wiring layers. In the Elmore and AWE stage, buffering, gate sizing,
layer assignment, logic restructuring, and single cell moves are performed. Thus after
each stage, the cell placement can be considered as well tuned w.r.t. timing constraints.

Now, we use the new local search at the end of each stage in the given delay model
to post-optimize the placement. Our main testbed consists of 6 microprocessor units in
22nm technology with 23–459 thousand cells and clock frequencies between 4.8 and 5.75
GHz. The experiments were executed on a Linux cluster with Intel Xeon CPUs of clock
frequencies between 2.9–3.4 GHz.

As we only move a small fraction of the cells (K = |C|/1000), no substantial increase
in wirelength is to be expected. To support this statement empirically, we measured
routability before and after our local search using the global router that is integrated in
the design environment.

Tables 1, 2 and 3 show the results of the new local search at the end of each stage.
Note that linear wire delays are lower bounds for the achievable wire delay and slacks can
be better in Table 1 compared to Table 3. The columns show the unit names, the number
of cells |C| in thousands, the cycle time T , the worst late slack WS in picoseconds, the
worst slack improvement ∆WS in percentage of the cycle time, total negative late slack

9

TNS in nanoseconds, total global routing overflow OF, the global routing wirelength
WL in meters, and the running time RT in seconds.

Table 1: After stage 1 (linear wire delay)
Unit End of Stage Local Search Placement
|C| T WS TNS OF WL WS ∆WS TNS OF WL RT
K ps ps ns m ps % ns m s

U1 82 174 -70 -41 0 1.65 -65 2.9 -40 0 1.65 60
U2 20 174 -173 -152 450 0.55 -160 7.5 -142 450 0.55 16
U3 112 174 -47 -29 0 2.30 -41 3.4 -24 0 2.30 151
U4 35 174 -64 -9 0 1.48 -45 10.9 -9 0 1.48 26
U5 116 174 -60 -16 0 3.15 -9 29.3 -5 0 3.15 435
U6 369 208 -81 -11 0 11.89 -58 11.1 -6 0 11.89 670
Avg. 10.8

Table 2: After stage 2 (Elmore)
Unit End of Stage Local Search Placement
|C| T WS TNS OF WL WS ∆WS TNS OF WL RT
K ps ps ns m ps % ns m s

U1 88 174 -105 -261 0 1.68 -100 2.9 -257 0 1.68 85
U2 21 174 -236 -266 96 0.57 -173 36.2 -261 96 0.57 67
U3 120 174 -87 -251 0 2.40 -78 5.2 -252 0 2.40 107
U4 55 174 -136 -279 0 1.92 -128 4.6 -278 0 1.92 122
U5 133 174 -139 -389 0 3.52 -123 9.2 -382 0 3.52 339
U6 433 208 -158 -762 0 12.60 -153 2.4 -748 0 12.60 473
Avg. 10.1

Table 3: After stage 3 (AWE)
Unit End of Stage Local Search Placement
|C| T WS TNS OF WL WS ∆WS TNS OF WL RT
K ps ps ns m ps % ns m s

U1 92 174 -75 -141 0 1.70 -73 1.1 -144 0 1.70 222
U2 23 174 -157 -213 80 0.57 -149 4.6 -211 80 0.57 111
U3 119 174 -47 -148 0 2.39 -44 1.7 -149 0 2.40 182
U4 62 174 -85 -135 0 1.99 -81 2.3 -133 0 1.99 1115
U5 140 174 -82 -128 0 3.56 -72 5.7 -125 0 3.56 1742
U6 458 208 -79 -205 0 12.65 -77 1.0 -208 0 12.65 1215
Avg. 2.7

The average worst slack improvement is more than 10% in the first two stages and
still 2.7 % in the AWE stage. Note that on one instance the improvement is 36%. There
is only a slight increase of less than one percent in wirelength. The routing congestion
does not increase.

To demonstrate the effect of the path straightening and the clustering in particular,
we carried out further experiments to compare the following local search variants in the
linear delay model of stage 1 on the same input placement:

1. supergradient ascent without clustering (“Super-
gradient”),

2. path straightening and supergradient ascent without clustering (“Straighten”), and

10

Table 4: Comparison of Local Search by Gradient, Path Straightening, and Clustering.
Init. Supergradient Straighten Cluster

Unit T WS WS RT WS RT WS RT
ps ps ps ∆% s ps ∆% s ps ∆% s

U1 174 -76 -72 2.3 36 -70 3.4 53 -62 8.0 130
U2 174 -199 -174 14.4 8 -168 17.8 13 -155 25.3 28
U3 174 -63 -32 17.8 46 -29 19.5 72 -29 19.5 142
U4 174 -76 -62 8.0 58 -60 9.2 76 -38 21.8 143
U5 174 -51 -41 5.7 96 -39 6.9 97 -14 21.3 466
U6 208 -68 -60 3.8 161 -57 5.3 304 -43 12.0 1085
Avg. 8.7 10.4 18.0

3. path straightening, supergradient ascent, and clustering
(“Cluster”).

For each variant, we iterated on critical cells C? as in Algorithm 3, omitting the legalization
step, until the worst slack improvement fell below εws = 0.5ps.

The common input placement arises from a wirelength-driven placement, followed
by a congestion aware layer assignment. Table 4 shows the worst slack after the initial
placement, and after each of the three variants, as well as the running times (RT).

The path straightening constitutes an improvement over the supergradient search, which
stops earlier when the worst slack improvement falls below the improvement threshold εws.
The clustered moves yield a large gain. The average worst slack improvement increases
from 10.4% to 18% compared to the path straightening method. The effect can be seen
in Figure 4 showing a small part of U6. Here, the initial critical path persists after each
local search variant. It starts at a common port on the left boundary and ends at a
register in the right, which is pulled towards the center of the unit in the upper right by
outgoing paths. Interconnects are drawn as l2-segments of four different widths that are
reflecting their relative width due to the layer assignment. Only the clustering variant is
capable of moving the receiving latch and its neighbors jointly over the big macro block.

4.1 ICCAD benchmarks

For the sake of completeness, we conducted experiments on the instances of the “ICCAD
2014 Contest” on “Incremental Timing-driven Placement” [12]. These instances have
the unrealistic setup that clock nets with up to 149,381 sinks are estimated by a short
Steiner tree. A short Steiner tree topology with so many sinks tends to have a huge clock
skew, and the topology as well as the skew are very sensitive to small moves of registers.
Such a setup will hardly be found in practice. Instead, real designs are implementing
a balanced and buffered clock tree. Before its construction, an idealized bounded skew
clock tree is assumed during timing-driven placement and initial physical design. Thus,
in this important aspect the contest setup is quite unrealistic. The probably best contest
strategy is to reduce the clock schedule by small changes to the register locations in the
hope that the Steiner tree accidentally reconnects high latency sinks in a more favorable
way. In fact, the winning team added an extra step for tuning the skews [15].

Tuning the clock skew requires to use precisely the same extraction method as the
evaluation script, up to the order in which sinks are stored at each net. As it is beyond

11

T
ab

le
5:

R
es

u
lt

s
on

IC
C

A
D

b
en

ch
m

ar
k
s

C
h

ip
|C
|

In
p

u
t

O
u

rs
(w

it
h

fi
x
ed

re
gi

st
er

s)
C

on
te

st
W

in
n

er
(U

F
R

G
S

/F
U

R
G

B
R

A
Z

IL
)

W
S

T
N

S
S

k
ew

A
B

U
W

S
T

N
S

A
B

U
T

im
e

W
S

T
N

S
S

ke
w

A
B

U
T

im
e

p
s

n
s

p
s

p
s

n
s

s
p

s
n

s
p

s
s

b
19

21
9

-1
16

4
-1

6
2
19

8
0.

03
-2

55
-1

0.
03

10
76

-1
0
9

-0
.2

13
80

0.
03

51
v
g
a

lc
d

1
64

-1
33

3
-6

3
8

2
61

8
0.

01
-4

95
-1

79
0.

07
14

86
-2

4
9

-2
18

86
0.

00
92

le
o
n

3m
p

64
9

-5
61

0
-5

9
90

4
05

00
0.

01
-4

60
6

-5
67

5
0.

01
31

61
0

0
31

62
5

0.
00

26
49

le
on

2
7
94

-9
70

2
-1

26
36

7
27

79
0.

02
-8

55
8

-9
66

7
0.

03
47

68
0

0
47

72
8

0.
00

10
86

n
et

ca
rd

9
58

-4
51

1
-3

6
2

62
66

0
0.

01
-2

81
1

-1
92

0.
01

37
79

0
0

45
60

6
0.

00
80

44
m

g
c

ed
it

d
is

t
1
30

-8
0
8

-9
4

8
88

0.
00

0
0

0.
00

58
7

-7
02

-3
4

54
5

0.
00

49
42

m
g
c

m
a
tr

ix
m

u
lt

1
55

-4
4
1

-3
2
66

0.
00

0
0

0.
00

19
6

0
0

21
7

0.
00

23
53

12

Initial (WS = -68) Gradient (WS = -60)

Straighten (WS = -57) Cluster (WS = -43)

Figure 4: Critical paths on U6 using the 3 search methods.

our scope to integrate the contest extraction into the EinsTimer timing engine, we fixed
all register positions and used the initial clock arrival times and slews that we read from
the official evaluation script. This allows us to optimize at least the placement of the
data paths, where we observed only small deviation in the Steiner extractions.

Table 5 shows the results on the contest instances using the “long” displacement
constraints. The columns contain the instance name, the worst negative late slack (WS),
the total negative late slack (TNS), clock skews (Skew), placement density deviation
(ABU), and running times. The contest winner runs were performed on an Intel E5-2650
processor. Our results were evaluated with the official contest evaluation script and
we obeyed the “long” move limits. Note that even without moving registers, we were

13

able to significantly reduce the worst late slacks and total negative slacks. Further
slack improvement is mostly inhibited by the limit on the maximum move distance. For
mgc edit dist, we can even close timing. The contest winners were extremely successful
in reducing the clock skew, which we left unchanged. Their skew gain was significantly
larger than the improvements in worst slack.

References

[1] A. H. Ajami and M. Pedram. “Post-Layout Timing-Driven Cell Placement Using an
Accurate Net Length Model with Movable Steiner Points.” ASPDAC, 595–600, 2001.

[2] U. Brenner. “VLSI Legalization with Minimum Perturbation by Iterative Augmenta-
tion.” Automation and Test in Europe, 1385–1390, 2012.

[3] U. Brenner, A. Hermann, N. Hoppmann, and P. Ochsendorf. “BonnPlace: A Self-
Stabilizing Placement Framework.” ISPD, 9–16, 2015.

[4] W. Choi and K. Bazargan. “Incremental Placement for Timing Optimization.” ICCAD,
463–466, 2003.

[5] A. Chowdhary, K. Rajagopal, S. Venkatesan, T. Cao, V. Tiourin, Y. Parasuram, and
B. Halpin. “How Accurately Can We Model Timing In A Placement Engine?” DAC,
801–806, 2005.

[6] J. Cong, J. R. Shinnerl, M. Xie, T. Kong, and Xin Yuan. “Large-scale circuit
placement.” Transactions on Design Automation of Electronic Systems 10(2), 389–
430, 2005.

[7] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F. Jukl, P. Kozak, and M. Wiesel.
“Chip Layout Optimization Using Critical Path Weighting.” DAC, 133–136, 1984.

[8] S. Dutt and H. Ren. “Discretized Network Flow Techniques for Timing and Wire-
Length Driven Incremental Placement With White-Space Satisfaction.” Transactions
on Very Large Scale Integration Systems 19(7), 1277–1290, 2011.

[9] W. C. Elmore. “The Transient Response of Damped Linear Networks with Particular
Regard to Wideband Amplifiers.” Journal of Applied Physics 19(1), 55–64, 1948.

[10] S. Held. “Gate sizing for large cell-based designs.” DATE, 827–832, 2009.

[11] M. A. B. Jackson and E. S. Kuh. “Performance-Driven Placement of Cell Based
IC’s.” DAC, 370–375, 1989.

[12] M.-C. Kim, J. Hu, and N. Viswanathan. “ICCAD-2014 CAD Contest in Incremental
Timing-Driven Placement and Benchmark Suite.” ICCAD, 361-366, 2014.

[13] T. Kong. “A Novel Net Weighting Algorithm for Timing-Driven Placement.” ICCAD,
172–176, 2002.

14

[14] T. Luo, D. A. Papa, Z. Li, C.N. Sze, C.J. Alpert, and D.Z. Pan. “Pyramids: An
Efficient Computational Geometry-based Approach for Timing-driven Placement.”
ICCAD, 204–211, 2008.

[15] J. Monteiro, G. Flach, J. C. Puget, M. P. Fogaca, P. F. Butzen, and M. de Oliveira
Johann. Personal communication, 2015.

[16] B. Obermeier and F. M. Johannes. “Quadratic Placement Using an Improved Timing
Model.” DAC, 705–710, 2004.

[17] D. A. Papa, T. Luo, M. D. Moffitt, C. N. Sze, Z. Li, G.-J. Nam, C. J. Alpert,
and I. L. Markov. “RUMBLE: An Incremental, Timing-driven, Physical-synthesis
Optimization Algorithm.” ISPD, 2–9, 2008.

[18] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A. Chowdhary, and B. Halpin.
“Timing Driven Force Directed Placement with Physical Net Constraints.” ISPD,
60–66, 2003.

[19] C. Ratzlaff and L. T. Pillage. “RICE: Rapid Interconnect Circuit Evaluation Using
Asymptotic Waveform Evaluation.” Transactions on Computer-Aided Design 13(6),
763–776, 1994.

[20] H. Ren, D. Z. Pan, and D. S. Kung. “Sensitivity Guided Net Weighting for Placement
Driven Synthesis.” Transactions on Computer-Aided Design of Integrated Circuits
and Systems 24, 711–721, 2005.

[21] L. Trevillyan, D. S. Kung, R. Puri, L. N. Reddy, and M. A. Kazda. “An Integrated
Environment for Technology Closure of Deep-Submicron IC Designs.” Design & Test
of Computers 21(1), 14–22, 2004.

[22] R.-S. Tsay and J. Koehl. “An Analytic Net Weighting Approach for Performance
Optimization in Circuit Placement.” DAC, 620–625, 1991.

[23] N. Viswanathan, G.-J. Nam, J.A. Roy, Z. Li, C.J. Alpert, S. Ramji, and C. Chu.
“ITOP: Integrating Timing Optimization within Placement.” ISPD, 83–90, 2010.

[24] Q. Wang, J. Lillis, S. Sanyal. “ An LP-based Methodology for Improved Timing-
Driven Placement.” ASPDAC, 1139–1143, 2005.

15

