Winter semester 2013/14 Prof. Dr. S. Held

Linear and Integer Optimization

Exercise Sheet 10

Exercise 10.1: Let $\mathcal{F} = \{x \in \mathbb{Z}^n : Ax \leq b; x \geq 0\}$ with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Furthermore, let $F : \mathbb{R}^m \to \mathbb{R}$ be a function that is *superadditive*, i.e. $F(a_1) + F(a_1) \leq F(a_1 + a_2)$ for all $a_1, a_2 \in \mathbb{R}^n$, non-decreasing, i.e. $F(a_1) \leq F(a_2)$ for $a_1 \leq a_2$, and that fulfills F(0) = 0.

1. Prove that the inequality

$$\sum_{j=1}^{n} F(A_j) x_j \le F(b)$$

holds for all $x \in \text{conv}(\mathcal{F})$, where A_j is the *j*-th column of A. (4 Points)

2. Conclude, that the following inequalities hold for all $x \in \text{conv}(\mathcal{F})$:

$$\sum_{j=1}^{n} \lfloor u^{\mathsf{T}} A_j \rfloor x_j \le \lfloor u^{\mathsf{T}} b \rfloor$$
 for all $u \in \mathbb{R}^m_{\ge 0}$. (1 Point)

Exercise 10.2: Prove that any unimodular matrix arises from the identity matrix by unimodular transformations. (5 Points)

Exercise 10.3: Prove the integral version of Carathéodory's theorem. For any pointed rational polyhedral cone $C \subset \mathbb{R}^n$, any Hilbert basis $\{a_1, \ldots, a_l\}$ of C and any integral point $x \in C \cap \mathbb{Z}^n$, there are 2n - 1 vectors from the Hilbert basis such that x is a non-negative integral combination of these vectors. (5 Points)

Submission deadline: Tuesday, 7.1.2014, before the lecture.

Programming Exercise 3:

Implement the branch-&-bound algorithm for the MAXIMUM-WEIGHT-STABLE-SET-PROBLEM that is defined as follows. Given a graph G and weights on the vertices $\alpha : V(G) \to \mathbb{N}$, we are looking for a stable set $S \subseteq V(G)$ of maximum weight $\sum_{v \in S} \alpha(v)$. It should be modeled by the following ILP:

$$\max \sum_{v \in V(G)} \alpha(v) x_v \tag{1}$$

s.d.
$$x_v + x_w \le 1$$
 $\forall \{v, w\} \in E(G)$ (2)

$$x_v \in \{0, 1\} \qquad \qquad \forall v \in V(G) \tag{3}$$

As an LP solver you must use the academically free program **QSopt** through the API in lp.h that is available on the web-site. To make the implementation easier, you find a program that

- 1. Reads an instance,
- 2. creates the above LP-relaxation using the API in lp.h,
- 3. solves it and prints the solution vector to the console.

(see http://www.or.uni-bonn.de/~held/lpip/1314/mss.zip). The ZIP file contains also test instances. Read the README file for further information!. The **32-bit** program compiles under Linux or Windows/Cygwin (gcc -m32 ...)! For compiling type 'make' in the extracted directory 'mss'.

Note that the matrix A is usually sparse, i.e. most coefficients are zero. Thus, in lp.h new rows/constraints are always defined by their non-zero entries. The corresponding functions in lp.h are commented and their use becomes clear in mss.c.

As you observed on the last exercise sheet, the LP relaxation has a large integrality gap, which is problematic for branch-&-bound. Thus you should first try to tighten the gap in the root LP, by adding clique inequalities (Exercise 9.4,2). To this end you should implement a simple greedy algorithm that starts with $C = \{v\}$ for a $v \in V(G)$ and adds vertices $w \in V(G) \setminus C, C \subseteq \delta(w)$, with a large value x_w to C.

This should be started iteratively with different vertices $v \in V$ until all vertices are part of some (inclusion-wise) maximal clique. You should iterate the two steps

- solving the root lp and
- adding clique inequalities

until no more clique inequalities are found before starting branch-&-bound. The algorithm should write

- 1. the value of the root LP without clique inequalities,
- 2. the value of the root LP with clique inequalities, and
- 3. the value and vertex indices of a maximum-weight stable set S

to the console.

(20 Points)

Submission deadline of the programming exercise: Tuesday, 14.01.2014, before the lecture.