
Combinatorial Optimization

Stephan Held

Research Institute for Discrete Mathematics
University of Bonn

Lennéstr. 2
53113 Bonn

held@or.uni-bonn.de

February 5, 2015

Announcements

Required Qualifications
• graph algorithms

• linear optimization

• programming skills in C/C++!

Examination
Oral exams will be held in the first two weeks of the spring break. Successful participation in
the problem classes is a requirement for examination.

Problem classes
The participation at the problem classes is obligatory. For a successful participation at the
problem classes a regular participation, as well as at least 50% of the points in the theorical
exercises and 50% of the points of the programming exercises are required.

3

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Literature
• B. Korte, J. Vygen: Combinatorial Optimization: Theory and Algorithms. Springer, Fifth

edition 2012.
(most parts are based on this book)

• A. Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
(comprehensive reference of combinatorial optimization)

• W. Cook, W. Cunningham, W. Pullyblank, A. Schrijver: Combinatorial Optimization,
John Wiley & Sons, 1997.
(very descriptive but slightly less comprehensive)

• A. Frank: Connections in Combinatorial Optimization. Oxford University Press, 2011.

• J. Lee: A First Course in Combinatorial Optimization, Cambridge Texts in Applied
Mathematics, 2004.

• C.H. Papadimitriou and K. Steiglitz: Combinatorial Optimization: Algorithms and
Complexity, Prentince Hall, 1982, Dover edition form 1998).
(classical and affordable text book compromising the state-of-the-art in 1982)

• E. Lawler: Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and
Winston 1976, Dover edition form 2001).
(the other classical and affordable text book compromising the state-of-the-art in 1976)

If need to learn linear programming basics in a self-study you will find a chapter in most of
the books above. Apart from that, I recommend:

• B. Gärtner, J. Matousek: Understanding and Using Linear Programming, Springer, Berlin,
2006.

This list of definitions and theorems is continuously updated here:
http://www.or.uni-bonn.de/ held/combo/1213/lecturenotes/CombOpt.pdf. For download you
need following access data : user: combo password: COMBO1213 .

Notice
These lecture notes are a plain collection of definitions and theorems presented in the lecture.
Details and proofs can be found in the books listed above.

4

http://www.or.uni-bonn.de/~held/combo/1213/lecturenotes/CombOpt.pdf

Contents

1 Matching 7
1.1 Matchings and Alternating Paths . 7
1.2 Bipartite Matching . 9
1.3 The Tutte Matrix and Randomized Matching 9
1.4 Tutte’s Matching Theorem . 10
1.5 Ear-Decompositions of Factor-Critical Graphs 11
1.6 Edmond’s matching algorithm . 12

1.6.1 Growing forests — an O(n3) Variant 13
1.6.2 Notes on even Faster Algorithms . 15

1.7 Gallai Edmonds Decomposition . 18
1.8 Weighted Matching Algorithm . 18

1.8.1 The Matching Polytope . 22

2 Extended Formulations 25
2.1 The Spanning Tree Polytope . 25
2.2 Relaxation Complexity . 25

3 T-Joins and b-Matchings 29
3.1 T-Joins . 29
3.2 T -Join Applications . 30

3.2.1 Christofides’ Approximation Algorithm for the METRIC TSP 30
3.2.2 The Shortest Path Problem for Undirected Graphs 30
3.2.3 The Chinese Postman Problem . 30

3.3 T -Joins and T -Cuts . 31
3.3.1 The T -Join Polytope . 31

3.4 Excursus on Gomory-Hu Trees . 32
3.5 Finding Minimum-Capacity T -Cuts . 34
3.6 b-Matchings . 34
3.7 The Padberg-Rao Theorem . 35

4 Matroids & Generalization 37
4.1 Properties, Axioms, Constructions . 37
4.2 Matroid Intersection . 39

4.2.1 Matroid Intersection Algorithm . 39
4.2.2 Matroid Constructions . 40
4.2.3 Matroid Partitioning . 41

5

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

4.3 Weighted Matroid Intersection . 41
4.4 Polymatroids . 47
4.5 Greedoids . 50
4.6 Submodular Function Maximization . 51

4.6.1 Deterministic USM . 51
4.6.2 Randomized USM . 53

4.7 Submodular Function Minimization . 55
4.7.1 Schrijvers Algorithm . 55

4.8 Symmetric Submodular Functions . 57

5 Survivable Network Design 59
5.1 A primal dual approxmation algorithm . 60
5.2 Iterative LP-Rounding . 64
5.3 Degree Bounded Network Design Problems 64

Bibliography 65

6

1 Matching

1.1 Matchings and Alternating Paths
Definition 1.1 (Matchings and Edge Covers).

1. A matching M of a graph G = (V,E) is a set of pairwise disjoint edges, i.e. no two
edges in M have a common endpoint. By ν(G) we denote the maximum cardinality of a
matching of G.

2. An edge cover C of a graph G = (V,E) is a subset of E s.t.

V =
⋃

{v,w}∈C

{v, w}.

By ζ(G) we denote the minimum cardinality of an edge cover of G.

3. A matching M is called perfect if it is an edge-cover. A perfect matching is also called
1-factor.

4. Vertices v ∈ V with v ∈ e ∈M are called M-covered.

5. Vertices not covered by M are called M-exposed.

Definition 1.2 (Stable Sets and Vertex Covers).

1. A stable set S of a graph G = (V,E) is a set of pairwise non-adjacent vertices, i.e. no
edge connects vertices in S. By α(G) we denote the maximum cardinality of a stable set
of G.

2. An vertex cover C of a graph G = (V,E) is a subset of V s.t.

E =
⋃

{v,w}∈E:v∈C

{v, w}.

By τ(G) we denote the minimum cardinality of a vertex cover of G.

Lemma 1.3 (Equalities for α, τ, ν, and ζ).

1. α(G) + τ(G) = |V (G)| for any graph G.

2. ν(G) + ζ(G) = |V (G)| for any graph G with no isolated vertices.

7

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

3. ζ(G) = α(G) for any bipartite graph G with no isolated vertices.

Proof. Homework exercise.

In this lecture, we are interested in the following optimization problems.

CARDINALITY MATCHING PROBLEM

Input: an undirected graph G.

Task: find a maximum cardinality matching M in G.

MAXIMUM WEIGHT MATCHING PROBLEM

Input: an undirected graph G and weights c : E(G)→ R.

Task: find a maximum weight matching M in G.

MINIMUM WEIGHT PERFECT MATCHING PROBLEM

Input: an undirected graph G and weights c : E(G)→ R.

Task: find a minimum weight perfect matching M in G or decide that G has no
perfect matching.

Lemma 1.4. The MAXIMUM WEIGHT MATCHING PROBLEM and the MINIMUM WEIGHT

PERFECT MATCHING PROBLEM are equivalent, i.e. there exist linear size transformations
between them.

Proof.

Definition 1.5. (Alternating Path) Given a matching M of G, a path P is M -alternating if its
edges are alternatingly in and not in M . If in addition both endpoints in P are M -exposed, P
is an M -augmenting path.

Lemma 1.6. Given a matching M of G and an (inclusionwise) maximal alternating path P ,
then the symmetric difference

M4P := M \ P ∪ P \M (1.1)

is a matching. If P is M -augmenting then |M4P | = |M |+ 1.

Proof. simple exercise.

A central observation for solving maximum matching problems is the following characteri-
zation.

Theorem 1.7. (Augmenting Path Theorem of Matchings, Petersen [1891], Berge [1957]) A
matching M in G is maximum⇔ there is no M -augmenting path.

8

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

1.2 Bipartite Matching
In this section we recapitulate known facts about bipartite matching. r

Theorem 1.8. (König [1931]). If G is bipartite, then ν(G) = τ(G).

Theorem 1.9. (Hall [1935]) Let G = (A∪̇B,E) be a bipartite graph. Then G has a matching
of A into B if and only if it satisfies the Hall condition

|Γ(X)| ≥ |X| for all X ⊆ A (1.2)

Proof. It can be directly deduced from Theorem 1.8, or prooved from scratch by induction.

Corollary 1.10. (The Marriage Theorem, Frobenius [1917]). A bipartite graphG = (A∪̇B,E)
has a perfect matching if and only if |A| = |B| and (1.2) holds.

Theorem 1.11. The CARDINALITY MATCHING PROBLEM for bipartite graphs can be solved
in O(nm) time, where n = |V | and m = |E|.

Proof. Construct a directed graph form G, with a new source s connected to each a ∈ A and
new sink t connected to each b ∈ B, directed from s to t and with unit capacities. Then apply
Ford-Folkerson’s maximum flow algorithm.

Definition 1.12. The MINIMUM WEIGHT PERFECT MATCHING PROBLEM for bipartite
graphs is called ASSIGNMENT PROBLEM.

Theorem 1.13. The ASSIGNMENT PROBLEM can be solved in O(nm+ n2 log n) time, where
n = |V | and m = |E|.

Proof. Construct a directed graph G′ form G as in the proof of Theorem 1.11 and set the edge
costs of artificial edges to zero. A minimum-cost integral s-t-flow of value n in G′ corresponds
to a minimum weight perfect matching in G and vice versa. A minimum-cost flow can be
found by the SUCCESSIVE SHORTEST PATH ALGORITHM in O(nm+ n2 log n). As all edge
capacities are one the flow is on each edge is either zero or one.

1.3 The Tutte Matrix and Randomized Matching
Definition 1.14. (Tutte Matrix). Let G be a simple undirected graph and let G′ be an arbitrary
orientation of G. For a vector x = (xe)e∈E(G) of variables, we define the Tutte matrix by

TG(x) = (txvw)v,w∈V (G)

txvw :=

x{v,w} if(v, w) ∈ E(G′)

−x{v,w} if(w, v) ∈ E(G′)

0 otherwise
. (1.3)

9

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Remark 1.15. The Tutte matrix is skew-symmetric, i.e. TG(x) = −TG(x)ᵀ and its rank is
independent of the chosen orientation. Its determinant detTG(x) is a polynomial in x.

Theorem 1.16. (Tutte [1947]). A simple graph G has a perfect matching if and only if
detTG(x) 6≡ 0.

Remark 1.17. This means that if we pick a vector x′ ∈ [0, 1]E(G) of independent and uniformly
distributed variables, then detTG(x′) = 0 almost surely if and only if G does not have a perfect
matching, because if G has a perfect matching, the set of roots of TG has measure 0.

This idea can be extended to guess the size of a maximum matching:

Theorem 1.18. (Lovász [1979]) Let G be a simple graph and x = (xe)e∈E(G) a random vector,
where the coordinates are independent and uniformly distributed in [0, 1]. Then almost surely

rank(TG(x)) = 2ν(G).

1.4 Tutte’s Matching Theorem

The main goal of this section is to generalize the “good characterizations” of Theorems 1.8 and
1.9 from bipartite to arbitrary graphs.

First we characterize the existence of perfect matchings. Assume we have a set of points
X ⊆ V (G) such that the number qG(X) of odd connected components in G−X exceeds |X|.
Then G cannot have a perfect matching. Tutte’s Theorem states that this necessary condition
for perfect matchings is also sufficient!

Definition 1.19. A graph G satisfies the Tutte Condition if

qG(X) ≤ |X| for all X ⊆ V (G). (1.4)

A nonempty vertex set X ⊆ V (G) is called a barrier if qG(X) = |X|.

Proposition 1.20. For any graph G and any X ⊆ V (G) we have

qG(X)− |X| = |V (G)| (mod 2).

10

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Definition 1.21. A graph G is called factor-critical if G− v has a perfect matching for each
v ∈ V (G). A matching is called near-perfect if it covers all vertices but one.

Theorem 1.22. (Tutte’s Theorem [1947]). A graph G has a perfect matching if and only if it
satisfies the Tutte condition (1.4).

Tutte’s theorem gives us a good characterization: “yes” (a perfect matching M) and “no” (a
vertex set X violating the Tutte condition) certificates for the existence of perfect matchings.

Theorem 1.23. (The Berge Formula, Berge [1958]).

2ν(G) + max
X⊆V (G)

(qG(X)− |X|) = |V (G)|. (1.5)

1.5 Ear-Decompositions of Factor-Critical Graphs
Definition 1.24. Let G be a (undirected or directed) graph. An ear-decomposition if G is a
sequence r, P1, . . . , Pk with G = ({r}, ∅) + P1 + . . . , Pk, such that each Pi is either a path
where exactly the endpoints belong to {r} ∪ V (P1) ∪ . . . V (Pi−1), or a circuit where exactly
one of its vertices belongs to {r} ∪ V (P1) ∪ . . . V (Pi−1) (i ∈ {1, . . . , k}).
P1, . . . , Pk are called ears. If k ≥ 1, P1 is a circuit of length at least three, and P2, . . . , Pk

are paths, then the ear-decomposition is called proper.

Definition 1.25. Let k ≥ 2. A graph with more than k vertices that remains connected after
deleting any k − 1 vertices is called k-connected.

A graph with at least 2 vertices that remains connected after deleting any k − 1 edges is
called k-edge-connected.

2-connected graphs are characterized by proper ear-decompositions:

Theorem 1.26. (Whitney [1932]) An undirected graph is 2-connected if and only if it has a
proper ear-decomposition.

Definition 1.27. An ear-decomposition is called odd if every ear has odd length.

Theorem 1.28. (Lovász [1972]) A graph is factor-critical if and only if it has an odd ear-
decomposition. Furthermore, the initial vertex of the ear-decomposition can be chosen arbi-
trarily.

Definition 1.29. Given a factor-critical graph G and a near-perfect matching M , am M -
alternating ear-decomposition of G is an odd ear-decomposition such that each ear is an
M -alternating path or a circuit C with |E(C) ∩M |+ 1 = |E(C) \M |.

Corollary 1.30. For any factor-critical graph G and any near-perfect matching M in G there
exists an M -alternating ear-decomposition.

Definition 1.31. Let G be a factor-critical graph and M a near-perfect matching in G. Let
r, P1, . . . , Pk be an M -alternating ear-decomposition of G. Two functions µ, ϕ : V (G) →
V (G) two functions are associated with the ear-decomposition r, P1, . . . , Pk if

11

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

• {x, y} ∈M ⇒ µ(x) = y (µ points to matched neighbor in ear-decomposition),

• {x, y} ∈ E(Pi) \M and x 6∈ {r} ∪ V (P1) ∪ . . . V (Pi−1) ⇒ ϕ(x) = y (ϕ points to
unmatched neighbor in ear-decomposition),

• µ(r) = ϕ(r) = r.

Algorithm 1 Ear-Decomposition Algorithm
Instance: A factor-critical graph G, functions µ, ϕ associated with an M -alternating ear-
decomposition.
Output: An M -alternating ear-decomposition r, P1, . . . , Pk.
see blackboard notes

Proposition 1.32. Let G be a factor-critical graph and µ, ϕ functions associated with an
M -alternating ear-decomposition. Then this ear-decomposition is unique up to the order of the
ears. The Ear-Decomposition Algorithm correctly determines an explicit list of these ears; it
runs in linear time.

Lemma 1.33. Let G be a factor critical graph and µ, ϕ two functions associated with an
M -alternating ear-decomposition. Let r be the vertex exposed by M . Then the maximal path
given by an initial subsequence of

x, µ(x), ϕ(µ(x)), µ(ϕ(µ(x))), ϕ(µ(ϕ(µ(x)))), . . .

defines an M -alternating x-r-path of even length for all x ∈ V (G).

The reverse is not true.

1.6 Edmond’s matching algorithm
Definition 1.34. Let G be a graph and M a matching in G. A blossom in G w.r.t. M is a
factor-critical subgraph B of G with |M ∩ E(B)| = |V (B)|−1

2
. The vertex r of B exposed by

M ∩ E(B) is called the base of B.

Definition 1.35. Let G be a graph, M a matching in G, B a blossom of G w.r.t. M , and Q be
an M -alternating v-r-path Q of even length from a vertex v exposed by M to the base r of B,
where E(Q) ∩ E(B) = ∅. Then Q+B is called anM -flower.

It turns out that we can simply shrink certain blossoms in our search for maximum matchings.

Lemma 1.36. Let G be a graph, M a matching in G. Suppose there is an M -flower B+Q. Let
G′ and M ′ result from G and M by shrinking V (B) to a single vertex. Then M is a maximum
matching in G if and only if M ′ is a maximum matching in G′.

Remark 1.37. If there is no such path the statement of Lemma 1.36 does not hold.

12

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Lemma 1.38. Let G be a graph, M a matching in G and X ⊆ V (G) the set of M -exposed
vertices. A shortest M -alternating X-X-walk of positive length can be found in O(m).

Theorem 1.39. Let P = {v0, v1, . . . , vt} be a shortest M -alternating X-X-walk. Then either
P is an M -alternating path or (v0, v1, . . . , vj) is an M -flower for some j ≤ t.

Algorithm 2 Edmond’s Augmenting Path Finding
Instance: A graph G with a matching M
Output: An M -augmenting path if it exists
X := of M -exposed vertices.
if ∃M -alternating X-X-walk of positive length then

Let P = (v0, v1, . . . , vt) be a shortest M -alternating X-X-walk.
if P is a path then return P
else

Choose j s.t. ((v0, v1, . . . , vj) is an M -flower with blossom B.
Apply this algorithm recursively to G/B with M/B
Expand an M/B-augmenting path in G/B to an M -augmenting path in G.

end if
else

There is no M -augmenting path
end if

Theorem 1.40. Given a graph G = (V,E), a maximum-size matching can be found in time
O(n2m), where n = |V | and m = |E|.

1.6.1 Growing forests — an O(n3) Variant

In order to speed up the matching algorithm, we need to improve the running time for finding
augmenting paths and blossom contraction.

Definition 1.41. Given a graph G and a matching M in G. An alternating forest w.r.t. M in
G is a forest F in G with

• V (F) contains all the vertices exportsed byM . Each connected component of F contains
exactly one exposed vertex, its root.

• We call a vertex v ∈ V (G) an outer (inner) vertex if it has even (odd) distance from the
root of its component. (Thus, roots are outer vertices, inner vertices have degree 2)

• For any v ∈ V (F) the unique path from v to the root of its connected component is
M -alternating.

A vertex v ∈ V (G) \ V (F) is called out-of-forest.

13

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Proposition 1.42. In any alternating forest the number of outer vertices that are not a root
equals the number of inner vertices.

The next lemma compromises the main idea behind Edmonds cardinality matching algorithm.
By P (x) we denote the unique path from x ∈ V (F) to its root.

Lemma 1.43. (High-level description of the algorithm)
Given a graphG, a matchingM inG, and an alternating forest F w.r.t. M inG. Then eitherM
is a maximum matching or there exists an outer vertex x ∈ V (F) and an edge {x, y} 6∈ E(F)
such that one of the following three cases holds

GROW: y 6∈ V (F) and we can grow the forest by adding {x, y} and the edge matching y.

AUGMENT: y is an outer vertex in a different connected component of F . Now, we can
augment M along P (x) ∪ {x, y} ∪ P (y).

SHRINK: y is an outer vertex in the same connected component of F . Then we can find and
shrink a blossom in the following way: let r be the first vertex of P (x) also belonging
to P (y). If r is not a root it must have degree at least 3 ⇒ r is an outer vertex
⇒ C := P (x)[x,r] ∪ {x, y} ∪ P (y)[y,r] is a blossam with ≥ 3 vertixes.

Definition 1.44. Given a graph G and a matching M in G. A subgraph F of G is a general
blossom forest w.r.t. M if there exists a partition V (F) = V1∪̇V2∪̇ . . . ∪̇Vk such that Fi =

F [Vi] is a maximal factor-critical subgraph of F with |M ∩E(Fi)| = |Vi|−1
2

(i = i, . . . , k) and
after contracting each Vi we obtain an alternating forest F ′.
Fi is called an outer (inner) blossom if Vi is an outer (inner) vertex in F ′. All vertices of

an outer (inner) blossom are called outer (inner).
A special blossom forest is a general blossom forest where each inner blossom is a single

vertex.

We store a special blossom forest implicitly with three functions µ, ϕ, ρ : V (G) → V (G)
satisfying

µ(x) =

{
x if x is exposed by M
y if {x, y} ∈M

(1.6)

ϕ(x) =

x if x 6∈ V (F) or x is base of an outer blossom
y if x is an inner vertex and {x, y} ∈ E(F) \M
y if x is an outer vertex and µ, ϕ are associated with an

M -alternating ear-decomposition of the blossom containing x and
{x, y} ∈ E(F) \M

(1.7)

ρ(x) =

x if x is not an outer vertex
y if x is an outer vertex and y is the base of

the outer blossom in F containing
(1.8)

Within a blossom µ and ϕ define an M -alternating ear-decomposition and ϕ(v) points to the
next outer vertex on the path to the root.

14

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Proposition 1.45. Let F be a special blossom forest w.r.t. a matching M and let µ, ϕ, ρ :
V (G)→ V (G) be satisfying (1.6), (1.7), and (1.8). Then:

1. For all outer vertices v

P (v) := maximal path given by a subsequence of v, µ(v), ϕ(µ(v)), µ(ϕ(µ(v))), . . .
(1.9)

is an M -alternating v-q-path, where q is the root of the tree containing v.

2. A vertex v is

• outer⇔ µ(x) = x or ϕ(µ(x)) 6= µ(x).

• inner⇔ ϕ(µ(x)) = µ(x) and ϕ(x) 6= x.

• out-of-forest⇔ µ(x) 6= x and ϕ(x) = x and ϕ(µ(x)) = µ(x)

Lemma 1.46. Following invariants hold throughout the course of Algorithm 3.

α) The set {{x, µ(x)} : x ∈ V, x 6= µ(x)} is a matching in G.

α) The set {{x, µ(x)} ∪ {x, ϕ(x)} : x ∈ V, (µ(x) 6= x) ∨ (ϕ(x) 6= x) ∨ (ϕ(µ(x)) 6= µ(x))}
forms a special blossom forest F w.r.t. M , (the edges {x, µ(x)} and {x, ϕ(x)} incident to
outer and inner vertices according to Proposition 1.45, 2.).

α) Conditions (1.6), (1.7), and (1.8) are satisfied by µ, ϕ, and ρ w.r.t. F .

Theorem 1.47. Edmond’s cardinality matching algorithm (Algorithm 3) correctly determines
a maximum matching in O(n3) time, where n := |V (G)|

1.6.2 Notes on even Faster Algorithms
Remark 1.48. (Speedup SHRINK)

One running time critical step is the setting of ρ during SHRINK, which takesO(n) per shrink.
Using a union-find data structure as for Kruskal’s MINIMUM SPANNING TREE ALGORITHMS

this can be reduced to O(log n) (making queries to ρ(v) cost O(log n)). The total running time
can be reduced to O(nm log n).

By data structures of Tarjan (1975) and Gabow and Tarjan (1983), the running time can be
decreased further to O(nmα(m,n)), respectively O(nm), where α is the inverse Ackermann-
function.

Remark 1.49. (Do not reset after each augmentation)
Augment along shortest augmenting paths. Paths of equal length are vertex disjoint (see
Exeercise 3.3). Instead of resetting after an augmenting path is found, continue the search for
augmenting paths of the same length.

With clever data structures (among others Gabow and Tarjan (1983) as in Remark 1.48) all
paths of same length can be augmented in O(m), including all necessary GROW and SHRINK

steps.

15

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Algorithm 3 Edmond’s Cardinality Matching Algorithm
Instance: A graph G
Output: A maximum matching M (defined by {x, µ(x)}).
µ(v) := v, ϕ(v) := v, ρ(v) := v and scanned(v) := false for all v ∈ V (G).

OUTER VERTEX SCAN:
if all outer vertices are scanned then return µ
else

Let x be an outer vertex with scanned(x) = false.

NEIGHBOR-SEARCH:
Let y be a neighbor of x such that y is either out-of-forest or y is outer and ρ(y) 6= ρ(x).
if there is no such y then

scanned(x) := true and goto OUTER VERTEX SCAN.
end if

GROW:
if y is out-of-forest then

ϕ(y) := x and goto NEIGHBOR-SEARCH.
end if

AUGMENT:
if P (x) and P (y) are vertex-disjoint then

µ(ϕ(v)) := v, µ(v) := ϕ(v) for all v ∈ V (P (x)) ∪ V (P (y)) with odd distance
from x or y on P (x) or P (y), respectively.

µ(x) := y, µ(y) := x.
ϕ(v) := v, ρ(v) := v, scanned(v) := false for all v ∈ V (G).
goto OUTER VERTEX SCAN.

end if

SHRINK:
Let r be the first vertex on V (P (x)) ∩ V (P (y)) with ρ(r) = r.
for v ∈ V (P (x)[x,r]) ∪ V (P (y)[y,r]) with odd distance from x or y on

P (x)[x,r] or P (y)[y,r], respectively, and ρ(ϕ(v)) 6= r do
ϕ(ϕ(v)) := v.

end for
if ρ(x) 6= r then

ϕ(x) := y.
end if
if ρ(y) 6= r then

ϕ(y) := x.
end if
for all v ∈ V (G) with ρ(v) ∈ V (P (x)[x,r]) ∪ V (P (y)[y,r]) do

ρ(v) := r.
end for
goto NEIGHBOR-SEARCH.

end if

16

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

There are at most 2
√
ν(G) + 2 different path lengths (Exercise 3.3). Thus, a running time of

O(
√
nm) is achieved. Exercise 4.4. will cover this for bipartite graphs.

Remark 1.50. (Skew symmetric flows)
The fastest algorithms today use skew-symmetric flows (Goldberg and Karzanow (2003);
Fremuth-Paeger and Jungnickel (2003)). They generalize of maximum flows (used for bipartite
graphs) to solve matching problems in general graphs. They run in O(

√
nm logn/m

logn
).

17

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

1.7 Gallai Edmonds Decomposition
By Berge’s Formula (1.5) we can conclude the following proposition.

Proposition 1.51. Let G be a graph and X ⊆ V (G) with |V (G)| − 2ν(G) = qG(X) −
|X|. Then any maximum matching of G contains a perfect matching in each even connected
component of G−X , a near-perfect matching in each odd component of G−X , and matches
all the vertices in X to distinct odd connected components of G−X .

It turns out that each odd component is factor-critical.

Theorem 1.52. Let G = (V,E) be a graph. By Y we denote the set of vertices that are exposed
by some maximum matching, i.e. V \ Y is covered by any maximum matching, X := Γ(Y),
and W := V \ (Y ∪X). Then

1. X attains maxX′⊆V (qG(X ′)− |X ′|) (X is a certificate of maximality),

2. G[Y] is the union of factor-critical connected components and G[W] is the union of even
connected components, and

3. any maximum matching contains a perfect matching for G[W], a near perfect matching
for each connected component ofG[Y] and matches all vertices inX to distinct connected
components in Y .

Y,X,W is called the Gallai-Edmonds-Decomposition of G

Corollary 1.53. A graph G = (V,E) has a perfect matching if and only if G−X has at most
|X| factor-critical components for all X ⊆ V .

1.8 Weighted Matching Algorithm
For a graph G = (V,E) with weights c : E → R, the minimum-weight perfect matching
problem can be formulated as an integer program

min

∑
e∈E

c(e)xe : xe ∈ {0, 1} (e ∈ E),
∑
e∈δ(v)

xe = 1 (v ∈ V)

 (1.10)

The dual of it’s LP-relaxation, where xe ∈ {0, 1} is replaced by xe ≥ 0 (e ∈ E), is given by

max

{∑
v∈V

zv : zv + zw ≤ c(e) (e = {v, w} ∈ E)

}
(1.11)

Proposition 1.54. Given a graph G = (V,E), weights c : E → R, z ∈ RV with zv + zw ≤
c(e) (e ∈ E) (dual feasibility), we define Gz := (V, {e = {v, w} ∈ E : zv + zw = c(e))
(subgraph of tight edges). Furthermore, letM be a matching inGz, F a maximalM -alternating
forest in Gz, and X and Y the set of inner respectively outer vertices. Then

18

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

1. If M is a perfect matching (in Gz and thus G), then it is a minimum perfect matching in
G.

2. If ΓG(y) ⊆ X for all y ∈ Y , then M is a maximum matching in G.

3. Otherwise, let

ε := min
{

min{ c(e)−zv−zw
2

: e = {v, w} ∈ E(G[Y])},
min{(c(e)− zv − zw) : e = {v, w} ∈ δ(Y) ∩ δG(V (F))}

}
,

(1.12)

z′v := zv − ε (v ∈ X), z′v := zv + ε (v ∈ Y), and z′v := zv (v ∈ V \ (X ∪ Y)).
Then z′ is (dual) feasible for (1.11). M ∪ E(F) ⊆ E(Gz′), and ΓGz′

(y) \ X 6= ∅ for
some y ∈ Y .

Remark 1.55. For bipartite graphs Proposition 1.54 is the base for the so called Hungarian
Method. It iteratively augments the matching or grows the forest at an outer vertex y with
ΓGz(y) \X 6= ∅, or adjusts the dual variables to obtain such a vertex. When the matching is
perfect, it is of minimum-weight.

The LP-relaxation of (1.10) does not provide optimum solution for general (non-bipartite)
graphs, as simple examples show. It allows fractional solutions, where vertices within an odd
connected component B are covered entirely by edges within E(G[B]). For a matching, the
blossem inequalities, ∑

e∈δ(X)

xe ≥ 1 for all X ⊂ V, |X| > 1 and odd, (BI)

must obviously hold. Let A := {A ⊆ V (G) : |A| is odd}. In the minimum-weight perfect
matching algorithm we consider the following relaxation.

min
∑

e∈E(G) c(e)xe
s.t. xe ≥ 0 (e ∈ E(G))∑

e∈δ(v) xe = 1 (v ∈ V (G))∑
e∈δ(A) xe ≥ 1 (A ∈ A : |A| > 1).

(1.13)

The dual problem is

max
∑

A∈A zA
s.t. zA ≥ 0 (A ∈ A : |A| > 1)∑

A∈A:e∈δ(A) zA ≤ c(e) (e ∈ E(G)).
(1.14)

Edmond’s minimum-weight perfect matching algorithm starts with an empty matching
(x = 0) and a dual feasible solution z, e.g.

zA :=

{
1
2

min{c(e) : e ∈ δ(A)} if |A| = 1

0 else

19

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

At any stage z is dual feasible and the complementary slackness conditions are fulfilled

xe > 0 =⇒
∑

A∈A:e∈δ(A) zA = c(e) (e ∈ E(G))

zA > 0 =⇒
∑

e∈δ(A) xe = 1 (A ∈ A : |A| > 1)
(1.15)

Given a dual solution z, we call e ∈ E(G) tight if∑
A∈A:e∈δ(A)

zA = c(e).

The algorithm keeps a valid (non-perfect) matching consisting of tight edges only. When x
is becomes incidence vector of a perfect matching, it is a minimum-weight perfect matching,
because (x, z) are a primal-dual feasible solution obeying complementary slackness (1.15).

Algorithm 4 works similar to the Hungarian Method (Proposition 1.54) except for blossoms
that complicate the search for aumgmenting paths. Such blossoms are contracted in SHRINK.
The algorithm maintains a set B of all contracted blossoms and introduces a variable zB . Note
that a blossom B is either shrunken into a larger blossom or zB becomes positive in the next
DUAL CHANGE because there is an even length path from an exposed vertex to B.

In analogy to linear programming, we define the reduced cost by

Definition 1.56. For a graph G = (V,E) with weights c : E → R and dual variables zA
(A ∈ A), we define the reduced costs as

cz(e) := c(e)−
∑

A∈A:e∈δ(A)

zA for all e ∈ E. (1.16)

The minimum-weight perfect matching algorithm is described in Algorithm 4

Theorem 1.57. There are at most 7
2
|V |2 iterations of the repeat-until-loop of Algorithm 4.

Proof. At any time the collection of blossoms B is laminar, i.e. for all T, U ∈ B : T ⊆ U,U ⊆
T , or T ∩ U = ∅. Thus at any stage |B| ≤ 2|V | (see Korte and Vygen [2012], Corollary 2.15).

Observation: Any set U added to B in SHRINK will not be removed from B (in UNPACK)
before the next augmentation: after shrinking, there is an even-length M -alternating R-U -path.
This path remains in Gz at least until the next AUGMENT or until U is included into another
blossom U ′ ⊃ U . which, in turn, will not be resolved before the an augmentation. This proves
the observation.

Now consider a sequence of iterations between two augmentations. The number of UNPACK

iterations is bounded by |B| at the beginning of the sequence. The number of SHRINK iterations
is bounded by |B| at the end of the sequence. Thus the number of UNPACK plus SHRINK

iterations in the sequence is bounded by 4|V |.
In addition there can be DUAL CHANGE iterations without UNPACK. This means that ε is

not determined by a vertex in X . Instead there is an edge e connecting X 6∈ X with Y ∈ Y for
which the reduced cost cz(e) is decreased to zero.

If X 6∈ Y , |V (Gz) \ (X ∪ Y)| decreases. This can happen in at most |V | iterations.
If X ∈ Y , we will find an R-R-walk in the next iteration. Thus this can happen at most 2|V |

times within a sequence.
As there are 1

2
|V | AUGMENT-steps, we get at most 1

2
|V | (4|V |+ |V |+ 2|V |) = 7

2
|V |2

iterations.

20

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Algorithm 4 Minimum-Weight Perfect Matching Algorithm
Instance: A graph G = (V,E) with edge weights c : E → R
Output: A minimum-weight perfect matching M in (G, c).
B := {{v} : v ∈ V }; zv := 1

2
min{c(e) : e ∈ δ(v)}; (v ∈ V);M = ∅;

repeat
G′z := (V, {e ∈ E :

∑
A∈A:e∈δ(A) zA = c(e)};

Gz := G′z/B
R := M -exposed vertices.
if Gz has M -alternating R-R-walk of positive length then

Choose a shortest such walk P ;

AUGMENT:
if P is a path then

M := M4E(P);
Start next iteration

end if

SHRINK: . P contains M -flower with blossom B
B := B ∪B; zB := 0;M := M \ E(G[B]);
Start next iteration

else if Gz has no M -alternating R-R-walk of positive length then

DUAL CHANGE:
X := set of vertices B ∈ V (Gz) for which Gz has an odd-length R-B-path;

. “inner vertices”
Y := set of vertices B ∈ V (Gz) for which Gz has an even-length R-B-path;

. “outer vertices”;
zB := zB − ε ∀B ∈ X ;
zB := zB + ε ∀B ∈ Y;
where ε is the largest scalar preserving dual feasibility of z;

UNPACK:
for B ∈ Gz : |B| ≥ 3, zB = 0 do . (zB > 0 before DUAL CHANGE)
B := B \B;
v := vertex in B covered by M ; MB := perfect matching in G[B]− v;
M := M ∪MB;

end for
end if

until M is perfect matching (in Gz)
Unpack all blossoms to obtain a perfect matching in G;

Corollary 1.58. A minimum-weight perfect matching can be found in O(n2m) time, where
n := |V |.

Remark 1.59. As for the maximum-cardinality matching problem, we can speed up the algo-
rithm to obtain an O(n3) running time.

21

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

1. using the result of the previous walk-search in subsequent walk-searches,

2. constructing Gz only implicitely, and

3. fast computations of ε.

Unlike the cardinality case, blossoms may need to be unpacked to adjust dual variables inside
the blossom. Thus we need to maintain the laminar blossom-hierarchy and an M -alternating
forest. As blossoms may be outer, inner, or out-of-forest, we have a to maintain a general
blossom forest. For a vertex x ∈ V , let b1(x), . . . , bkx(x) be the blossoms containing x such
that b1(x) ⊂ · · · ⊂ bkx(x). We use pointers

• µ(x) (matching mate),

• ϕi(x) for storing the ear-decompositions (µ, ϕi) (i = 1, . . . , kx), and

• ρi(x) (i = 1, . . . , kx) (blossom-base pointers),

to store the special blossom-forest. According to Lemma ?? all the O(|V |) ear-decompositions
can be augmented in O(|V |2) time during an augmentation of M , resulting in O(|V |3) for all
augementations.

Another issue is the computation of ε. To achieve the desired time bound, we must not loop
through all edges in E in each of the O(|V |2) DUAL CHANGE steps. Instead for each pair
Y, Z of disjoint sets in B we keep a pointer to an edge eY Z minimizing cz(eY Z) that is void if
no such edge exists.

Moreover, for each Y ∈ B we keep a pointer eY with eY = eY Z for an outer set Z ∈ B that
minimizes cz(eY Z). Note that these are the only candidates for becoming infeasible. Using the
eY we can determine ε in O(|V |) time.

The theoretically best running time ofO(n(m+n log n)) (strongly polynomial) was achieved
by Gabow [1990], and O(m log(nW)

√
nα(m,n) log n) (depending on W). for integral

weights by Gabow and Tarjan [1991], where n := |V |,m := |E|,W := max{|c(e)| : e ∈ E}.

1.8.1 The Matching Polytope
Theorem 1.60. (Edmonds [1965]) Let G = (V,E) be an undirected graph. The set of vectors
x ∈ RE satisfying

xe ≥ 0 (e ∈ E)∑
e∈δ(v) xe = 1 (v ∈ V)∑
e∈δ(A) xe ≥ 1 (A ∈ A)

(1.17)

is the convex hull of all perfect matchings. It is called the perfect matching polytope.

Theorem 1.61. (Edmonds [1965]) Let G = (V,E) be an undirected graph. The set of vectors
x ∈ RE satisfying

xe ≥ 0 (e ∈ E)∑
e∈δ(v) xe ≤ 1 (v ∈ V)∑

e∈E(G[A]) xe ≤
|A|−1

2
(A ∈ A)

(1.18)

22

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

is the convex hull of all matchings. It is called the matching polytope.

Theorem 1.62. (Cunningham and Marsh [1978]) Let G = (V,E) be an undirected graph. The
system (1.18) is TDI.

Theorem 1.63. Let G = (V,E) be a graph

P := min
{∑

e∈E c(e)xe : xe ≥ 0 (e ∈ E),
∑

e∈δ(v) xe ≤ 1 (v ∈ V)
}

Q := min
{∑

e∈E c(e)xe : xe ≥ 0 (e ∈ E),
∑

e∈δ(v) xe = 1 (v ∈ V)
}

are called the fractional matching polytope and the fractional perfect matching polytope.
If G is bipartite, P and Q are integral.

Theorem 1.64. Let G = (V,E) be a graph and Q be the fractional perfect matching polytope.
The vertices of Q are half-integral:

xe =

1
2

if e ∈ E(C1) ∪ · · · ∪ E(Ck),

1 if e ∈M,

0 otherwise,

where C1, . . . , Ck are vertex disjoint odd circuits and M is a perfect matching in G− (V (C1)∪
· · · ∪ V (Ck)).

23

2 Extended Formulations

2.1 The Spanning Tree Polytope
Theorem 2.1. (Edmonds [1907]) Given a connected undirected graph G, let n := |V (G)|.
Then the polytope

P :=

x ∈ [0, 1]E(G) :
∑

e∈E(G)

xe = n− 1,
∑

e∈E(G[x])

xe ≤ |X| − 1 for ∅ 6= X ⊂ V (G)

is integral. Its vertices are the incidence vectors of spanning trees of G and P is called the
spanning tree polytope.

Theorem 2.2. (Fulkerson [1974]) Let G be a digraph with weights c : E(G) → Z+, and
r ∈ V (G) such that G contains a spanning arborescence rooted at r. Then the minimum weight
of a spanning arborescence rooted at r equals the maximum number t of r-cuts C1, . . . , Ct
(repetitions allowed) such that no edge e is contained in more than c(e) of these cuts.

Corollary 2.3. Let G be a digraph with weights c : E(G)→ R+, and r ∈ V (G) such that G
contains a spanning arborescence rooted at r. Then the LP

min

cᵀx | x ≥ 0,
∑

e∈δ+(X)

xe ≥ 1 for all X ⊂ V (G) with r ∈ X

has an integral optimum solution, which is the incidence vector of a minimum weight spanning
minimum weight rooted arborescence problem rooted at r, plus possibly some edges of zero
weight.

2.2 Relaxation Complexity
Definition 2.4. Let P ⊆ Rn a polyhedron. A polyhedron Q ⊆ Rm is an extension of P if there
is a projective map π : Rm → Rn with π(Q) = P . The extension complexity of a polyhedron
P is the minimum number of facets of an extension Q of P .

Theorem 2.5. The spanning tree polytope has a polynomial extension complexity

Proof. Exercise class.

25

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Remark 2.6. • Yannakakis [1991] showed that the traveling salesman polytope does not
have a symmetric extension of polynomial size.

• Fiorini et. al [2012] showed that the traveling salesman polytope does not have a
non-symmetric extension of polynomial size.

• Rothvoss [2013] showed that the matching polytope does not have an extension of
polynomial size.

These results are not proven in this lecture. Instead, we study a related question. Consider the
traveling salesman problem. The standard IP-formulation uses decision variables xij ∈ {0, 1}
(1 ≤ i 6= j ≤ n) that are one if the tour is using the edge from i to j and (exponentially many)
subtour elimination constraints. However, there is a polynomial size IP-formulation that labels
n cities from 1, . . . , n and uses vertex labels ui (i = 1 . . . , n) (lifting variables) in addition to
the decision variables. One question is whether one can omit the lifting variables:

“Is there a integer programming formulation for the traveling salesman problem without
additional variables (except for xij, 1 ≤ i 6= j ≤ n) and only polynomialy many inequalities?”

In this sense Kaibel and Weltge introduced the term relaxation complexity:

Definition 2.7. Let X ⊆ Zn. A set R ⊆ Rn is a relaxation of X if R ∩ Zn = conv(X) ∩ Zn.
The minimum number of facets of any relaxation of X is called relaxation complexity rc(X).

Note that matching has an exponential extension complexity, but a polynomial relaxation
complexity.

Definition 2.8. Let X ⊂ Zn, H ⊆ aff(X) ∩ Zn \ conv(X) is called a hiding set for X if for
any two a, b ∈ H : conv{a, b} ∩ conv(X) 6= ∅.

We call a set X ⊆ Zn polyhedral if conv(X) is a polyhedron).

Proposition 2.9. Let X ⊆ Zn be polyhedral and let H ⊆ aff(X) ∩ Zn \ conv(X) be a hiding
set for X . Then rc(X) ≥ |H|.

Proof. Let R be a relaxation for X . As H ⊆ aff(X) ⊆ aff(R), any x ∈ H must be separated
by facet-defining inequalities of R. Let aᵀx ≤ β be an inequality of R that is violated by
x′, x′′ ∈ H . Then, there is an x? ∈ conv{x′, x′′} ∩ conv(X). But as x′, x′′ 6∈ R their convex
combination x? fulfills aᵀx? > β, contradicting the validity of the inequality in R ⊇ conv(X).

Therefore any facet-defining inequality of R is violated by at most one point in H , and R
has at least |H| facets.

Constructing appropriate hiding sets allows us to prove lower bounds on the relaxation
complexity.

Theorem 2.10. (Kaibel and Weltge [2014]) The asymptotic growth of the relaxation complexi-
ties of the traveling salesman polytopes rc(ATSPn) and rc(TSPn) are 2Θ(n), where

ATSPN := {χ(T)|; : T is a directed Hamiltonian Cycle in the complete directed graph},

26

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

and

TSPN := {χ(T)|; : T is a Hamiltonian Cycle in the complete undirected graph}.

Proof. We first consider the ATSP . Let n = 2N + 2 for some N ∈ N and define a graph with
vertex set

V := {vi, v′i : i ∈ {1 . . . , N + 1}} ∪ {wi, w′i : i ∈ {1 . . . , N}} .

Then |V | = 4N + 2 and let A be the arc set of the complete directed graph with vertex set V .
For a vector b ∈ {0, 1}N , we define two vertex disjoint cycles

Cb := {(vN+1, v1)} ∪
⋃
i:bi=0

{(vi, wi), (wi, vi+1)} ∪
⋃
i:bi=1

{(vi, w′i), (w′i, vi+1)}

and

C ′b := {(v′N+1, v
′
1)} ∪

⋃
i:bi=0

{
(v′i, w

′
i), (w

′
i, v
′
i+1)
}
∪
⋃
i:bi=1

{
(v′i, wi), (wi, v

′
i+1)
}
.

Let HN := {χ(CB ∪ C ′b) : b ∈ {0, 1}N}.
Claim: HN is a hiding set for ATSP4N+2. Note that

HN ⊆ aff(ATSP4N+s) =
{
x ∈ RA : x(δ−(v) = x(δ+(v) = 1 for all v ∈ V

}
.

Let b1, b2 ∈ {0, 1}N with b1 6= b2 Without loss of generality there is an index j ∈ N with
b1
j = 0 and b2

j = 1. Now consider the arc sets (Cb1 ∪ C ′b1), (Cb2 ∪ C ′b2), and their modifications

T1 := (Cb1 ∪ C ′b1) \ {(vj, wj), (v′j, w′j)} ∪ {(vj, w′j), (v′j, wj)}

and
T1 := (Cb2 ∪ C ′b2) \ {(vj, w′j), (v′j, wj)} ∪ {(vj, wj), (v′j, w′j)}.

Then T1 and T2 are Hamiltonian cycles and

1
2

(χ(T1) + χ(T2)) = 1
2

(
χ(Cb1 ∪ C ′b1)− χ({(vj, wj), (v′j, w′j)}) + χ({(vj, w′j), (v′j, wj)})

)
+1

2

(
χ(Cb2 ∪ C ′b2)− χ({(vj, w′j), (v′j, wj)}) + χ({(vj, wj), (v′j, w′j)})

)
= 1

2

(
χ(Cb1 ∪ C ′b1) + χ(Cb2 ∪ C ′b2)

)
,

which proves the claim. Similarly, HN is a hiding set for TSP4N+2 when replacing all directed
arcs by undirected edges. By Proposition 2.9, rc(TSP4N+2), rc(ATSP4N+2) ≥ |HN | = 2Ω(n).
As relaxations withO(2n) many inequalities are known, this shows the asymptotic growth.

The result can be applied to arborescences and spanning trees as well.

27

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Theorem 2.11. (Kaibel and Weltge [2014]) Let

ARBn := {χ(T) : T is an arborescence in the complete directed graph on n vertices}

and
SPTn := {χ(T) : T is a spanning tree in Kn}.

Then the asymptotic growth of rc(ARBn) and rc(SPTn) is 2Θ(n).

Proof. The proof works analogously to the proof of Theorem 2.10, when removing the arc
(v′N+1, v

′
1) from C ′b. Then Cb ∪ C ′b is the node-disjoint union of a cycle and a path, and T1 and

T2 become spanning arborescences (actually paths), HN remains a hiding set for this problem
and we apply Proposition 2.9 again.

28

3 T-Joins and b-Matchings

Consider the following problem. Starting from a graph G, e.g. G = Kn with edge weigths
c : E(G) → R, and a connected subgraph H ⊂ G. Now you want to make H Eulerian by
adding edges minimizing the total weight of the extra edges. To this end you need to join pairs
of odd degree vertices. This is what T -joins do.

3.1 T-Joins
Definition 3.1. Let G = (V,E) be an undirected graph and let T ⊆ V (G). A subset J ⊆ E is
called a T -join if T is equal to the set of vertices of odd degree in (V, J).

Proposition 3.2. Let G be a graph T, T ′ ⊆ V (G), J a T -join, and J ′ a T ′-join. Then J4J ′ is
a (T4T ′)-join.

Proposition 3.3. Let G be a graph and T ⊆ V (G). There exists a T -join in G if and only if
|V (C) ∩ T | is even for each connected component C.

Observe that each T -join is the edge-disjoint union of circuits and 1
2
|T | paths connecting

dijoint pairs of vertices in T .

MINIMUM WEIGHT T -JOIN PROBLEM

Input: an (undirected) graph G, T ⊆ V (G) , and weights c : E(G)→ R.

Task: find a minimum weight T -join in G or decide that no T -join exists.

Theorem 3.4. Given a graph G = (V,E), edge weights c : E → R, and a subset T ⊆ V , a
shortest T -join can be found in strongly polynomial time.

Corollary 3.5. Assuming integral weights, the MINIMUM WEIGHT T -JOIN PROBLEM can
be solved in time O(APSP+(n,m,L) + MWPM(n, n2, nL)), where n = |V |,m = |E|,
L is the maximum absolute edge weight, APSP+(n,m,L) and MWPM(n,m,L) are the
times needed to solve the all-pairs shortest path problem respectively the MINIMUM WEIGHT

PERFECT MATCHING PROBLEM in an undirected graph with n vertices, m edges and integer
weights of absolute value at most L, where for APSP+ the weights are non-negative.

Corollary 3.6. Given a graph G = (V,E), edge weights c : E → R, and a subset T ⊆ V , a
longest T -join can be found in strongly polynomial time.

Corollary 3.7. Given a graph G = (V,E), edge weights c : E → R, one can check if there is
a negative-length circuit in strongly polynomial time.

29

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

3.2 T -Join Applications

3.2.1 Christofides’ Approximation Algorithm for the METRIC TSP

Let (Kn, c) be an instance for the traveling salesman problem (TSP) on a complete graph
with edge weights c : E(Kn)→ R satisfying the triangle inequality. Obviously every tour is
a tree in Kn, actually a path, plus one additional edge. The length of a minimum spanning
tree TMST provides a lower bound c(E(TMST)) for the length of a tour. Thus, an Eulerian
walk in the graph G in the vertex set V (Kn) containing two copies of each edge of TMST

induces a tour, visiting the vertices in the order as they first appear in the Eulerian walk. By the
triangle-inequality the length of the tour is no longer than the length of the walk.

Doubling all edges in TMST is a very simple way to make the graph Eulerian. The shortest
way to accomplish this is to compute a T -join, where T is the set of odd-degree vertices.

Algorithm 5 Christofides’ Algorithm
Instance: an instance (Kn, c) of the METRIC TSP.
Output: a tour

Find a minimum weight spanning tree T in (Kn, c).
Let W be the set of vertices with odd degree in T .
Find a minimum weight W -join J in Kn w.r.t. c.
Find an Eulerian walk in (V (Kn), E(T)∪̇J).
Add vertices to the TSP-tour in order of the first appearance in the Eulerian walk.

Theorem 3.8. (Christifides [1976]) Christofides’ Algorithm is a 3
2
-factor approximation algo-

rithm for the METRIC TSP.

After 36 years this is still the best known approximation-factor for metric TSP-instances.

3.2.2 The Shortest Path Problem for Undirected Graphs
Let G be an undirected graph with edge weights c : E(G)→ R and s, t ∈ V (G). If c ≥ 0 we
can compute a shortest s-t-path by transforming the problem into a directed problem in the
directed graph G′ = (V (G), {{(v, w), (w, v)} : {v, w} ∈ E(G)}) with edge costs c′ defined
by c′(v, w) := c′(w, v) := c({v, w}) for all {v, w} ∈ E(G).

In case of negative weigths this leads to negative cycles for which the directed shortest path
problem becomes NP-hard. We can still solve the undirected problem using T -joins.

Corollary 3.9. Given G, s, t ∈ V (G), c : E(G)→ Q s.t. each circuit has non-negative length.
A shortest s-t-path can be found in stronlgy polynomial time.

3.2.3 The Chinese Postman Problem
Definition 3.10. A walk C = (v0, e1, v1, . . . , et, vt) in a graph G is called a Chinese postman
tour if vt = v0 and each edge of G occurs at least once in C.

30

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

CHINESE POSTMAN PROBLEM

Input: an connected graph G, weights c : E(G)→ R+.

Task: find a shortest Chinese postman tour.

Background: G models a street map, where a postman has to deliver letters. He needs to
traverse every street and wants to minimize his walk/route.

If G is Eulerian, an Euler walk is a shortest Chinese postman tour.

Corollary 3.11. The CHINESE POSTMAN PROBLEM can be solved in strongly polynomial
time.

3.3 T -Joins and T -Cuts
Definition 3.12. Let G be a graph and T ⊆ V (G). A T -cut is a cut C = δ(X) with |X ∩ T |
odd for some X ⊆ V (G).

Proposition 3.13. Let G be a graph and T ⊆ V (G) with |T | even.

1. For any T -join J and any T -cut C we have J ∩ C 6= ∅.

2. Inclusion wise minimal T -cuts (T -joins) are exactly the inclusion wise minimal edge sets
intersecting all T -joins (T -cuts).

Thus, the minimum cardinality of a T -join is not less than the maximum number of edge-
disjoint T -cuts. Equality does not hold as G = K4, T = V (G) shows. For bipartite graphs
equality holds:

Definition Let G be a graph. A familiy of cuts δ(X1), . . . , δ(Xk), with X1, . . . , Xk ⊆ V (G)
is called cross-free if the vertex sets X1, . . . , Xk are cross-free, i.e. for all 1 ≤ i < j ≤ k
Xi ⊆ Xj or Xj ⊆ Xi or Xi ∩Xj = ∅ or Xi ∪Xj = V (G).

Theorem 3.14. (Seymour [1981]) LetG be a bipartite graph and T ⊆ V (G) such that a T -join
in G exists. Then the minimum cardinality of a T -join equals the maximum number of pairwise
edge-disjoint T -cuts. This maximum is attained by a cross-free family of cuts.

Corollary 3.15. Let G be a graph, c : E(G) → Z+, and and T ⊆ V (G) such that a T -join
exists. The minimum weight of a T -join is equal to half of the maximum number of T -cuts
covering each edge e ∈ E(G) at most 2c(e) times. The maximum is attained by a cross-free
family of cuts.

3.3.1 The T -Join Polytope
Let G be a graph and T ⊆ V (G). The T -join polytope denoted by PT−join(G) is the convex
hull of the incidence vectors of T -joins. The up-hull of PT−join(G) or T -join polyhedron is
the polyhedron

P ↑T−join(G) := PT−join(G) + RE(G)
+ , (3.1)

31

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Corollary 3.16. The polyhedron P ↑T−join(G) is determined by the system

xe ≥ 0 for each e ∈ E(G),
x(C) ≥ 1 for each T -cut C. (3.2)

3.4 Excursus on Gomory-Hu Trees
In this section we consider the following problem. Given an undirected graphG, edge capacities
u : E(G) → R+ we want to compute a minimum capacity cut, i.e. set X ⊂ V (G) such
that u(δ(X)) is minimum. For a given pair of vertices s, t ∈ V (G), we can compute a
minimum capacity cut by transforming the problem into a minimum capacity cut problem
in the directed graph (V (G), {(v, w), (w, v) : {v, w} ∈ E(G)} with capacities u′ defined
by u′(v, w) = u′(w, v) = u({v, w}). Picking a vertex s ∈ V (G) and computing a minimum
capacity s-t-cut for all t ∈ V (G) \ {s}, we can determine X in (|V (G)| − 1) minimum-cut
computations.

However, when we have additional requirements on the cut, e.g. if we are seeking a T -cut, it
can be benefitial to compute minimum capacity s-t-cuts for all choices of s, t ∈ V (G). Gomory
and Hu invent a tree structure that represents all minimum s-t-cuts (s, t ∈ V (G)), and whose
computation requires only |V (G)| − 1 minimum-capacity s-t-cut computations. This will help
us to compute minimum capacity T -cuts

Definition 3.17. Let G be a graph and u : E(G) → R+ a capacity function. For vertices
s, t ∈ V (G) we denote by λst their local edge-connectivity, which is the minimum capacity of
a cut separating s and t.

Lemma 3.18. For all u, v, w ∈ V (G): λuw ≥ min{λuv, λvw}.

Definition 3.19. Given G and u as above, a tree T is called a Gomory-Hu-tree for (G, u) if
V (T) = V (G) and

λst = min
e∈E(Pst)

u(δG(Ce)) for all s, t ∈ V (G),

where Pst is the unique s-t-path in T , and for e ∈ E(T), Ce and V (G) \ Ce are the connected
components of T − e. (δ(Ce) is the fundamental cut of e w.r.t. T)

The following proposition provides an alternative definition and motivates the algorithm for
constructing Gomory-Hu trees (though we do not know whether they exist so far):

Lemma 3.20. Given G and u as above, and a tree T with vertex set V (T) = V (G). T is
a Gomory-Hu tree for (G, u) if and only if for each edge e = {s, t} ∈ E(T), δG(Ce) is a
minimum-capacity s-t-cut, where Ce and V (G) \ Ce are the connected components of T − e.

Lemma 3.21. Let G be a graph and u : E(G) → R+ a capacity function. Let s, t ∈ V (G)
and let δ(A) be a minimum capcacity s-t-cut in (G, u). For s′, t′ ∈ V (G) \A, let (G′, u′) arise
from (G, u) by contracting A to a single vertex. Then for any minimum s′-t′-cut δ(K ∪ {A}) in
(G′, u′), δ(K ∪ A) is a minimum s-t-cut in (G, u).

32

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Algorithm 6 Gomory-Hu Algorithm
Input: An undirected graph G and a capacity function u : E(G)→ R+.
Output: Gomory-Hu tree T for (G, u).

Set V (T) := {V (G)} and E(T) := ∅.

CHOOSECOMPONENT:
Choose some X ∈ V (T) with |X| ≥ 2.
if no such X exists then goto FINISHTREE

end if
Choose s, t ∈ X with s 6= t.

CONTRACT:
for each connected component C of T −X do

Let SC :=
⋃

Y ∈V (C)

Y .

end for
Let (G′, u′) arise from (G, u) by contracting SC to a single vertex vC for each connected

component C of T −X .

MINCUT:
Find a minimum s-t-cut δ(A′) in (G′, u′).
Let B′ := V (G′) \ A′.

Set A :=

 ⋃
vC∈A′\X

SC

 ∪ (A′ ∩X) and B :=

 ⋃
vC∈B′\X

SC

 ∪ (B′ ∩X).

MODIFYTREE:
Set V (T) := (V (T) \ {X}) ∪ {A ∩X,B ∩X}.
for each edge e = {X, Y } ∈ E(T) incident to the vertex X do

if Y ⊆ A then
set e′ := {A ∩X, Y }

else
set e′ := {B ∩X, Y }.

end if
Set E(T) := (E(T) \ {e}) ∪ {e′} and w(e′) := w(e).

end for
Set E(T) := E(T) ∪ {{A ∩X,B ∩X}}.
w({A ∩X,B ∩X}) := u′(δG′(A

′)).
goto CHOOSECOMPONENT.

FINISHTREE:
Replace all {x} ∈ V (T) by x and all {{x}, {y}} ∈ E(T) by {x, y}. .

33

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Lemma 3.22. Each time at the end of MINCUT we have

1. A∪̇B = V (G)

2. E(A,B) is a minimum s-t-cut in (G, u).

Lemma 3.23. At any stage of the algorithm before FINISHTREE we have

w(e) = u

(
δG

(⋃
Z∈Ce

Z

))
for all e ∈ E(T),

where Ce and V (G) \ Ce are the connected components of T − e. Moreover, for all e =
{P,Q} ∈ E(T) there are vertices p ∈ P, q ∈ Q with λpq = w(e).

Theorem 3.24. (Gomory and Hu [1961]) Every undirected graph has a Gomory-Hu tree. The
Gomory-Hu Algorithm finds a Gomory-Hu tree in O(n3

√
m) time.

3.5 Finding Minimum-Capacity T -Cuts

MINIMUM CAPACITY T -CUT PROBLEM

Input: an undirected graphG, T ⊆ V (G) with |T | even , and capacities u : E(G)→
R+.

Task: find a minimum capacity T -cut in G.

Theorem 3.25. Let G be a graph with capacities u : E(G) → R+. Let H be a Gomory-Hu
tree for (G, u). Let T ⊆ V (G) with |T | ≥ 2 even. Then a minimum capacity T -cut can be
found among the fundamental cuts of H . It can be found in O(n4) time.

3.6 b-Matchings
Definition 3.26. Let G be a graph with capacities u : E(G) → N ∪ {∞} and numbers
b : V (G)→ N. A b-matching is a function f : E(G)→ N such that f ≤ u (component-wise)
and

∑
e∈δ(V) f(e) ≤ b(v) for all v ∈ V (G).

If u ≡ 1, we call f a simple b-matching, and if
∑

e∈δ(v) f(e) = b(v), we call f a perfect
b-matching.

Simple perfect b-matchings are also called b-factors and simple 1-matchings are obviously
matchings.

MAXIMUM WEIGHT b-MATCHING PROBLEM

Input: an (undirected) graph G, capacities u : E(G) → N ∪ {∞}, weights c :
E(G)→ R+, and numbers b : V (G)→ N.

Task: find a b-matching f in (G, u) with maximum weight
∑

e∈E(G) c(e)f(e).

34

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

The probably most prominent occurence of b-matchings with b 6= 1, i.e. except for match-
ings), is in the context of the TSP-problem: each Hamiltonian circuit is a simple perfect
2-matching. Thus, every valid inequality for the (simple) perfect 2-matching polytope is also
valid for the TSP polytope. This motivates the examination of the b-matching polytope.

First, we take a look at the polytope with infinte capacities.

Theorem 3.27. (Edmonds [1965]) Let G be an undirected graph and b : V (G) → N. The
b-matching polytope of (G,∞) is the set of vectors x ∈ RE(G) satisfying

x ≥ 0∑
e∈δ(v) xe ≤ b(v) (v ∈ V (G))∑

e∈E(G[X])

xe ≤

⌊
1
2

∑
v∈X

b(v)

⌋
(X ⊆ V (G))

(3.3)

We can use the uncapacitated result for describing the b-matching polytope with edge
capacities.

Theorem 3.28. (Edmonds [1965]) Let G be an undirected graph, u : E(G)→ N ∩ {∞} and
b : V (G)→ N. The b-matching polytope of (G, u) is the set of vectors x ∈ RE(G) satisfying

x ≥ 0
x ≤ u∑

e∈δ(v) xe ≤ b(v) (v ∈ V (G))∑
e∈E(G[X])

xe +
∑
e∈F

xe ≤

⌊
1
2

(∑
v∈X

b(v) +
∑
e∈F

u(e)

)⌋
(X ⊆ V (G), F ⊆ δ(X)).

(3.4)

Theorem 3.29. (Tutte [1952]) Let G be an undirected graph, u : E(G) → N ∩ {∞}, and
b : V (G) → N. (G, u) has a perfect b-matching if and only if for any two subsets X, Y ⊂
V (G) with X ∩ Y = ∅, the number of connected components C in G − X − Y for which∑

v∈V (C) b(c) +
∑

e∈E(V (C),Y) u(e) is odd is upper bounded by

∑
v∈X

b(v) +
∑
y∈Y

∑
e∈δ(y)

u(e)− b(y)

− ∑
e∈E(X,Y)

u(e).

3.7 The Padberg-Rao Theorem
Lemma 3.30. (Letchford, Reinelt, and Theis [2008]) Let G be an undirected graph with
|E(G)| ≥ 1, T ⊆ V (G) with |T | even, and c, c′ : E(G) → R+ ∪ {∞}. Then there is an
O(n4)-algorithm that finds sets X ⊆ V (G) and F ⊆ δ(X) such that |X ∩ T |+ |F | is odd and∑

e∈δ(X)\F

c(e) +
∑
e∈F

c′(e)

is minimum.

35

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Theorem 3.31. (Padberg and Rao [1982]) LetG be an undirected graph u : E(G)→ N∪{∞}
and b : V (G)→ N. The SEPARATION PROBLEM for the b-matching polytope of (G, u) can be
solved in O(n4) time.

Corollary 3.32. The MAXIMUM WEIGHT b-MATCHING PROBLEM can be solved in polyno-
mial time.

Ko

36

4 Matroids & Generalization

4.1 Properties, Axioms, Constructions
Definition 4.1. A set system (E,F) is called an independence system if

(M1) ∅ ∈ F

(M2) If X ⊆ Y ∈ F , then X ∈ F .

The elements of F are called independent. An inclusionwise maximal independent subset of
a set A ⊆ E is called a basis of A. Its cardinality is called the rank of A denoted by r(A).
Minimal dependent sets are called circuits.

An independece system (E,F) is called a matroid if the following axiom holds.

(M3) For X, Y ∈ F with |X| > |Y | there is an x ∈ X \ Y such that Y ∪ {x} ∈ F .

Algorithm 7 Best-In Greedy Algorithm
Instance: An independece system (E,F) and c : E → R.
Task: Find an X ∈ F such that c(X) is maximmum.
X = ∅;
while ∃x 6∈ X with c(x) > 0 and X ∪ {x} ∈ F do

Choose such an x with c(x) maximum
X := X ∪ {x}

end while

Theorem 4.2. An independece system (E,F) is a matroid if and only if Algorithm 7 finds an
optimal independent set for every c ∈ RE .

Example 4.3. There are some well-known matroids (proofs left to the reader):

Vector matroid: E is the set of columns of a matrix A over some field K and F := {F ⊆
E : the columns in F are linear independent}.

Cycle matroid: E is the edge set of an undirected graph G and F := {F ⊆ E :
(V (G), F) is a forest}.

Graphic matroid: a cycle matroid where G may contain loops.

Matching matroid: E is the vertex set of an undirected graph G and F := {F ⊆ E :
F is covered by some matching in G}.

37

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Uniform matroid: E is finite set, k ∈ N, and F := {F ⊆ E : |F | ≤ k}.

Algebraic matroid: Let F be a field with field extension K, E a finite subset of K, and
F := {F ⊆ E : F is algebraically independent in F}. The rank of the matroid (E,F)
is the degree of transcendence of E.

Example 4.4. Examples for independent set systems that are no matroids are

• matchings

• stable sets and cliques,

• feasible solutions of knapsack problems

• subsets of traveling salesman tours or Steiner trees

Theorem 4.5. (Edmonds [1970]) Let (E,F) be a matroid and r : 2E → Z+ its rank function.
Then the matroid polytope of (E,F), i.e. the convex hull of the incidence vectors of elements
of F , is equal to {

x ∈ RE : x ≥ 0,
∑
e∈A

xe ≤ r(A) for all A ⊆ E

}
. (4.1)

Corollary 4.6. Let M = (E,F) be a matroid, let c ∈ RE , and J ∈ F . Then J is a maximum-
weight independent set w.r.t. c if and only if

a) e ∈ J implies ce ≥ 0;

b) e 6∈ J, J ∪ {e} ∈ F implies ce ≤ 0;

c) e 6∈ J, f ∈ J, (J ∪ {e}) \ {f} ∈ F implies ce ≤ cf .

Furthermore, if J is a basis, it is a maximum weight basis if and only if

e 6∈ J, f ∈ J, (J ∪ {e}) \ {f} ∈ F imply ce ≤ cf .

Theorem 4.7. Let G be a graph. The convex hull of characteristic vectors of forests of G is the
of incedence vectors satisfying

x(δ(T)) ≤ |T | − 1 for all ∅ ⊂ T ⊆ V (G),
x ≥ 0.

(4.2)

38

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

4.2 Matroid Intersection

Matchings are obviously no matroids. However, bipartite matchings are in the intersection of
two transversal matroids (one for each vertex partition).

Similarly branchings in directed graphs are in the intersection of the cycle matroid of the
underlying undirected graph and the edge sets having at most one entering edge per vertex.

Proposition 4.8. Any independence system (E,F) is the intersection if a finite number of
matroids.

However, the intersection of matroids is usually not a matroid, e.g. the set of matchings is
not a matroid. We cannot hope for effiecient algorithms to intersect three matroids.

Theorem 4.9. Finding a maximum independent set in the intersection of three matroids is
NP-hard.

Theorem 4.10. LetM1 = (E,F1) andM2 = (E,F2) be matroids on E. Then

max{|J | : J ∈ F1 ∩ F2} = min{r1(A) + r2(Ā) : A ⊆ E}
(= min{r1(Ā) + r2(A) : A ⊆ E})

4.2.1 Matroid Intersection Algorithm

The matroid intersection algorithm is motivated by the maximum cardinality matching algorithm
applied to bipartite graphs. Given a set J ∈ F1 ∩ F2, we want to augment this set. In bipartite
matching we search for an alternating augmenting path. Here we do almost the same.

To this end, we construct an auxiliary graph G = G(M1,M2, J) with V (G) = E∪̇{s, t}
and following edges

(1) (s, e) for all e ∈ E \ J s.t. J ∪ {e} ∈ F1},

(2) (e, t) for all e ∈ E \ J s.t. J ∪ {e} ∈ F2},

(3) (e, f) for all e ∈ E \ J, f ∈ J s.t. J ∪ {e} 6∈ F2 and (J ∪ {e}) \ {f} ∈ F2,

(4) (f, e) for all e ∈ E \ J, f ∈ J s.t. J ∪ {e} 6∈ F1 and (J ∪ {e}) \ {f} ∈ F1,

We refer to these edge sets as type-(1), type-(2), type-(3), respectively type-(4) edges.
There is a symmetry in the sense that G = G(M2,M1, J) is the same graph in which s and

t are exchanged and all edges are reversed. We will use this fact in the proof of the augmenting
path theorem for matroids:

Theorem 4.11. a) If there is no s-t-dipath in G, then J is maximum. In fact, if A ⊆ E and
δ+(A ∪ {s}) = ∅, then

|J | = r1(Ā) + r2(A).

39

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

b) If there exists an s-t-dipath in G, then J is not maximum.
In fact, if s, e1, f1, e2, f2, . . . , em, fm, em+1, t is the sequence of a chordless (e.g. a shortest)
s-t-dipath, then

J4{e1, f1, e2, f2, . . . , em, fm, em+1} ∈ F1 ∩ F2.

This theorem motivates Algorithm 8 for computing a maximum cardinality set in tht inter-
section of two matroids.

Algorithm 8 Matroid Cardinality Intersection Algorithm
Instance: Two matroidsM1 = (E,F1) andM2 = (E,F2) .
Output: A maximum cardinality set J ∈ F1 ∩ F2 and a verifier A ⊆ E.
J = ∅
while true do

Construct G = G(M1,M2, J);
if there is an s-t-dipath in G then

Let s, e1, f1, e2, f2, . . . , em, fm, em+1, t be the sequence of a shortest s-t-dipath in G;
J := J4{e1, f1, e2, f2, . . . , em, fm, em+1};

else
Let A := {e ∈ E : ∃ an s-e-dipath in G};

end if
end while

Theorem 4.12. The matroid cardinality intersection problem can be solved using O(|E|3)
oracle calls.

4.2.2 Matroid Constructions

Proposition 4.13. (Restriction Matroid)
Given a matroidM = (E,F) and B ⊆ E. ThenM′ = (E \B, {J ⊆ E \B : J ∈ F}) is a
matroid (restricted to B). We writeM′ =M\B.

Proposition 4.14. (Disjoint Union Matroid)
Given two matroidsM1 = (E1,F1) andM2 = (E2,F2) where E1 ∩ E2 = ∅. Then their
disjoint unionM =M1⊕M2 = (E,F) is a matroid, where E = E1∪̇E2 and F = {J1∪J2 :
J1 ∈ F1, J2 ∈ F2}. The rank function ofM is given by

r(A) = r1(A ∩ E1) + r2(A ∩ E2) (A ⊆ E).

Proposition 4.15. (Partition Matroid)
Assume you have a partition E = E1∪̇E2∪̇ . . . ∪̇Em Define F := {J ⊆ E : |J ∩ Ei| ≤
1 for 1 ≤ i ≤ m}. ThenM = (E,F) is a matroid. The rank function ofM is given by

r(A) = |{i : A ∩ Ei 6= ∅}| (A ⊆ E).

40

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Proposition 4.16. (Contraction Matroid)
LetM = (E,F) be a matroid and B ⊆ E. Choose a basis J of B and defineM′ = (E ′,F ′)
by E ′ = E \ B and F ′ = {J ′ ⊂ E ′ : J ′ ∪ J ∈ F}. ThenM′ is a matroid that does not
depend on J , and its rank function r′ is given by r′(A) = r(A∪B)− r(B), for all A ⊆ E \B.
We writeM′ =M/B.

Corollary 4.17.
LetM = (E,F) be a matroid and B ⊆ E. ThenM′ := (M\B)⊕ (M/B̄) is a matroid on
E. The bases ofM′ are exactly the bases ofM that intersect B in a basis of B.

We can extend this idea to the following useful proposition.

Proposition 4.18. LetM = (E,F) be a matroid. Let ∅ = T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ Tl+1 = E.
The bases of Tl inM that intersect Ti in a basis of Ti for 1 ≤ i ≤ l are the bases of Tl in the
matroid N := N0 ⊕N1 ⊕ · · · ⊕Nl, where for each i, Ni = (M/Ti) \ T̄i+1.

4.2.3 Matroid Partitioning
Definition 4.19. LetMi = (E,Fi) (1 ≤ i ≤ k) be matroids. A set J ⊆ E is partitionable
with respect toM1, . . . ,Mk if J =

⋃
1≤i≤k Ji, where Ji ∈ Fi for 1 ≤ i ≤ k. {J1, . . . , Jk} is

called a partition of J with respect to theM1, . . . ,Mk.

Remark 4.20. By axiom (M2), we may assume that Ji ∩ Jj = ∅ (1 ≤ i < j ≤ k), i.e. they
form a “real” partition J =

⋃̇
1≤i≤kJi.

It turns out that matroid partition is equivalent to matroid intersection. To see this we need
two propositions on matroid construction.

Theorem 4.21. Let J be a maximum cardinality partitionable subset with respect to matroids
Mi = (E,Fi) (1 ≤ i ≤ k). Then

|J | = min

{
k∑
i=1

(ri(A) + |Ā| : A ⊆ E

}
.

Theorem 4.22. The subsets of E that are partitionable with respect to matroidsM1, . . . ,Mk

form the independent sets of a matroid. Its rank function is given by

r(B) = min{|B \ A|+
k∑
i=1

ri(A) : A ⊆ B}.

4.3 Weighted Matroid Intersection

WEIGHTED MATROID INTERSECTION PROBLEM

Input: Two matroidsM1 = (E,F1) andM2 = (E,F2), weights c : E → R.

Task: Find a set J ∈ F1 ∩ F2 whose weight c(J) is maximum.

41

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

To solve the WEIGHTED MATROID INTERSECTION PROBLEM we extend to matroid car-
dinality intersection algorithm similarly to the to successive shortest path algorithm for trans-
shipment, resp. weighted matching in bipartite graphs. In addition to transshipment/bipartite
matching, the paths should have as few edges as possible (among all shortest paths).

Definition 4.23 (Auxiliary Graph 1). Given a J ∈ F1 ∩ F2 we define an auxiliary graph
G = G(M1,M2, J, c) to be G(M1,M2, J) (the graph from the cardinality intersection
algorithm on page 39) with the following cost assignment p : E(G)→ R by

(1) p(s, e) = 0 for all type-(1) arcs

(2) p(e, t) = −c(e) for all type-(2) arcs

(3) p(e, f) = c(f)− c(e) for all type-(3) arcs

(4) p(f, e) = 0 for all type-(4) arcs

Theorem 4.24. LetM1 andM2 be matroids on E, let c : E → R, k ∈ Z, let J be a maximum-
weight common independent set of cardinality k, let P be a shortest path in G(M1,M2, J, c)
having as few arcs as possible, and let J ′ arise from J by augmenting with the vertices in
V (P) ∩ E. Then J ′ is a maximum-weight common independent set of cardinality k + 1.

This theorem motivates the following algorithm for WEIGHTED MATROID INTERSECTION

PROBLEM. However, we don’t have a proof of Theorem 4.24 yet, it is not clear whether the

Algorithm 9 Primal Weighted Matroid Intersection Algorithm
Instance: Two matroidsM1 = (E,F1) andM2 = (E,F2) .
Output: A maximum cardinality set J ∈ F1 ∩ F2 and a verifier A ⊆ E.
k := 0
J0 := ∅
while true do

Construct G = G(M1,M2, Jk, c);
if there is an s-t-dipath in G then

Find a shortest s-t-dipath P having as few arcs as possible;
Augment Jk by P to obtain Jk+1;
k++;

else
Choose p s.t. c(Jp) ≥ c(Ji), 1 ≤ i ≤ k;
return Jp;

end if
end while

constructed Ji in the algorithm are common independent. Also the algorithm does not provide
us a certificate of correctness.

To overcome these limitations and prove it’s correctness we will develop a sophisticated
primal-dual algorithm that provides certificates and takes essentially the same decisions as
Algorithm 9, but provides certificates with which for which we can prove correctness.

42

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Definition 4.25. Let E be a finite set and c : E → R. The function-pair c1, c2 : E → R is a
weight-splitting for c if c = c1 + c2.

Definition 4.26 (Auxiliary Graph 2).
Let J ∈ F1 ∩ F2 and let (c1, c2) be a a weight-splitting for c. Let

ci0 := max{ci(e) : e 6∈ J, J ∪ {e} ∈ Fi} for i ∈ {1, 2}.

If there is no maximizer, J is a maximum cardinality set and we are done. We define an new
auxiliary graph G = G(M1,M2, J, c

1, c2) as (M1,M2, J) with arc costs p : E(G) → R
defined by

(1) p(s, e) = c2
0 − c2(e) for all type-(1) arcs

(2) p(e, t) = c1
0 − c1(e) for all type-(2) arcs

(3) p(e, f) = −c1(e) + c1(f) for all type-(3) arcs

(4) p(f, e) = −c2(e) + c2(f) for all type-(4) arcs

Note that a path P is a shortest path in G(M1,M2, J, c
1, c2) if and only if it is a shortest

path in G(M1,M2, J, c): Let the vertices of P be ordered as s, e1, f1, . . . , em, fm, em+1, t and
J , J ′ be the common sets before and after the augmentation, then

p(P) = (c2
0 − c2(e1)) + (−c1(e1) + c1(f1)) + (−c2(e2) + c2(f1)) + . . .

+(−c2(em+1) + c2(fm)) + (c1
0 − c2(em+1))

= c1
0 + c2

0 + c(J)− c(J ′).

So the difference of in the cost p(P) between the two graph models is the constant c1
0 + c2

0.

Definition 4.27. We say a weight-splitting (c1, c2) certifies a common independent set J if, for
i = 1, 2, J has maximum ci-weight over all independent sets in Fi with cardinality |J |.

So if (c1, c2) certifies J , then J is a maximum-weight common independent set of cardinality
|J | with respect to c.

Proposition 4.28. A weight-splitting (c1, c2) certifies a common independent set J if and only
if

a) The arc costs of G are all nonnegative and

b) For i = 1, 2, f ∈ J implies ci0 ≤ ci(f).

Proof. We will use the following simple fact:
Given a matroidM = (E,F) and k ∈ N. Define F ′ = {J ∈ F : |J | ≤ k}.
ThenM′ = (E,F ′) is a matroid, obtained fromM by truncation to rank k.

43

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Now let k := |J |. A weight-splitting (c1, c2) certifies J if and only if, for i = 1 and 2, J is a ci-
optimum basis ofM′

i, which is obtainted fromM by truncating it to rank k. By Corollary 4.6
(final statement) this holds if and only if, for i = 1, 2,

e 6∈ J, f ∈ J, (J ∪ {e}) \ {f} ∈ Fi implies ci(e) ≤ ci(f). (4.3)

Consider (4.3) for elements e, f such that J ∪ {e} 6∈ Fi. If i = 2, then (f, e) is a type-(4) arc
and if i = 1, then (e, f) is a type-(3) arc. In either case (4.3) is equivalent to condition a).

Now consider (4.3) for elements e, f such that J ∪{e} ∈ Fi. If i = 1, then (s, e) is a type-(1)
arc and if i = 2, then (e, t) is a type-(2) arc. In either case (4.3) is equivalent to condition
b).

Proposition 4.29 (Frank [1981).
Let (E,F) be a matroid, c : E → R and J ∈ F . Let {f1, . . . , fl} ∈ J and {e1, . . . , el} 6∈ J

with

1. J ∪ {ei} 6∈ F , (J ∪ {ei}) \ {fi} ∈ F and c(fi) = c(ei) for all i = 1, . . . l, and

2. J ∪ {ej} 6∈ F , (J ∪ {ej}) \ {fi} ∈ F or c(fi) > c(ej) for 1 ≤ i 6= j ≤ l.

Then (J \ {f1, . . . , fl}) ∪ {e1, . . . , el} ∈ F .

Proof. The proposition is proven by induction on l. For l=1 the statement follows from the first
assumption. Let l > 1, h := arg min1≤i≤l c(fi), µ := c(fh), and J ′ := (J \ {fh}) ∪ {eh}. By
the first assumption we have J ′ ∈ F .

For X ∈ F , let C(X, y) denote the unique F-circuit if X ∪ {y} 6∈ F and the empty set if
X ∪ {y} ∈ F . We claim:

C(J ′, ej) = C(J, ej) for all j 6= h.

If so, the two assumptions of the statement hold and we can apply induction hypothesis.
Let j 6= h. Assume C(J ′, ej) 6= C(J, ej). Then we have fh ∈ C(J, ej). But by the second

and first assumption µ = c(fh) > c(ej) = c(fj) ≥ µ, a contradiction.

Lemma 4.30. After a change in the weight-splitting of Algorithm 10, the weight-splitting still
certifies Jk.

Proof. The initial weight-splitting c1 = c, c2 = 0 is obviously certifying J = ∅. Consider the
first iteration where the claim fails. Let c1, c2 denote the old weight-splitting, let p denote the old
arc costs in G, and let p′ denote the new arc costs. We will show that the new weight-splitting
fulfills the conditions of Proposition 4.28.

Suppose that (e, f) is a type-(3) arc, i.e. e 6∈ J . Then

p′(e, f) = −(c1(e)− σe) + (c1(f)− σf) = p(e, f) + σe − σf .

44

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Algorithm 10 Primal-Dual Weighted Matroid Intersection Algorithm
Instance: Two matroidsM1 = (E,F1) andM2 = (E,F2) .
Output: A maximum cardinality set J ∈ F1 ∩ F2 and a verifier A ⊆ E.
k := 0;
J0 := ∅;
c1 = c; c2 = 0;
while Jk is neither anM1-basis nor anM2-basis do

ADJUST WEIGHT-SPLITTING (“DUAL ADJUST”):
Construct G = G(M1,M2, Jk, c

1, c2);
Find shortest path tree rooted in s with distance d(v) for each v ∈ V (G);
for v ∈ E do

σv := min{dv, dt};
c1(v) := c1(v)− σv;
c2(v) := c2(v) + σv;

end for

AUGMENT (“PRIMAL ADJUST”):
Construct G = G(M1,M2, Jk, c

1, c2);
if there is an s-t-dipath in G then

Find shortest s-t-dipath P having as few arcs as possible;
Augment Jk by P to obtain Jk+1;
k++;

else
Choose p s.t. c(Jp) ≥ c(Ji), 1 ≤ i ≤ k;
return Jp;

end if
end while

If σe = d(t), then p′(e, f) ≥ p(e, f) + d(t) − d(t) = p(e, f) ≥ 0. Otherwise, σe = d(e) and
p′(e, f) ≥ p(e, f) + d(e)− d(f) ≥ 0, because the d-values are shortest path labels with respect
to p.

The proof for type-(4) arcs is similar. By definition type-(1) and type-(2) arcs have nonnega-
tive costs. Altogether, a) in Proposition 4.28 is satisfied.

Now suppose that condition b) in the Proposition is violated, i.e. there exist f ∈ Jk, e 6∈ Jk
such that Jk∪{e} ∈ F1 and c1(e)−σe > c1(f)−σf (the “new c1

0” is greater than c1(f)−σf). As
c1(e) ≤ c1

0 ≤ c1(f), we must have σf > σe and, thus, σe = d(e) (otherwise σe = d(t) ≥ σf).
Therefore,

c1(e)− d(e) > c1(f)− σf ≥ c1(f)− d(t) ≥ c1(f)− (d(e) + c1
0 − c1(e)).

We conclude c1(f) < c1
o, a contradiction.

Observe that by construction type-(1) arcs will always have cost zero, because c2 is initialized
as c2 = 0 and direct successors e of s have distance d(e) = 0 and σe = 0 throughout the
algorithm.

45

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Lemma 4.31. In Algorithm 10, every arc of P has cost zero.

Proof. Let P ′ be the shortest s-t-dipath with respect to p dertermined by c1, c2 before the
change of the weight-splitting. Then for any (u, v) ∈ E(P ′) we have d(u) + p(u, v) = d(v).
Thus, d(v) ≤ d(t) for all v ∈ V (P ′). Now consider a type-(3) arc (e, f) of P ′. Then the new
cost is p′(e, f) = p(e, f) − (−σe) + (−σf) = p(e, f) + d(e) − d(f) = 0. Similarly, for a
type-(4) arc (f, e) of P ′ we get p′(f, e) = p(f, e)− d(e) + d(f) = 0.

Now, for a type-(2) arc (e, t) (not necessarily on P ′), consider

c1(e)− σe ≤ c1(e)− d(e) ≤ c1(e)− d(t) + p(e, t) = c1
0 − d(t). (4.4)

If e? is the second last node of P ′, then d(t) ≥ d(e), so σe = d(e) and d(e) + p(e, t) = d(t).
Thus, both inequlities in (4.4) hold with equality.

Now among all e ∈ E such that (e, t) is an arc in G, c1(e)− σe is maximized by e?, which,
thus, will determine the new value of c1

0. Therefore, p′(e?, t) = 0.
Type-(1) arcs have cost zero throughout the course of the algorithm. It follows that every

shortest path with respect to p′ has zero length (one example is P ′) and as p′ ≥ 0, every arc has
length zero.

Lemma 4.32. In Algorithm 10, if Jk ∈ F1 ∩ F2, then Jk+1 ∈ F1 ∩ F2.

Proof. Let P be the path found by the algorithm with vertices s, e1, f1, . . . , em, fm, em+1, t.
We show thatM1, Jk ∪ {e1}, {f1, . . . , fm}, and {e2, . . . , em+1} satisfy the requirements of
Proposition 4.29. First note that Jk ∪ {e1} ∈ F1 as (s, e1) ∈ E(G). The first condition
in Proposition 4.29 follows from the fact that every arc in P has length zero. The second
condition follows from the fact that P has fewest edges and weigths are nonnegative. Thus
by Proposition 4.29 Jk+1 ∈ F1. Similarly, it can be shown that Jk+1 ∈ F2 by applying the
proposition toM1, Jk ∪ {em+1}, {f1, . . . , fm}, and {e1, . . . , em}
Lemma 4.33. After an augmentation in Algorithm 10, the weight-splitting certifies Jk+1.

Proof. Let P be the path found in the AUGMENT-step of Algorithm 10. We show that Jk+1 is
c1-optimal among all common independent sets of cardinality k + 1. Let em+1 be the second
last node of P . Then by Lemma 4.31 c1(em+1) = c1

0, so em+1 is the heaviest element that
can be added freely to Jk such that Jk ∪ {em+1} ∈ F2. Thus, Jk ∪ {em+1} is c1-optimal of
cardinality k + 1 in F2.

Now because each arc on P has cost zero each element of Jk on P has the same c1-weight
as its immediate predecessor (that is not in Jk). Therefore, Jk+1 has the same c1-weight as
Jk ∪ {em+1} and it is c1-optimal of cardinality k + 1 in F2.

The c2-optimality follows similarly.

This completes the proof of Theorem 4.24 and shows that Algorithms 9 and 10 work
correctly. Both algorithms take at most |E| iterations, which in turn are dominated by the graph
construction and shortest path search. For Algorithm 9 this takes O(|E|2 log |E|) time, while
for Algorithm 10 this can be accomplished in O(|E|2) time, because the shortest path with
fewest edges can be found by breadth-first search using zero-cost arcs only. We conclude.

Theorem 4.34. The WEIGHTED MATROID INTERSECTION PROBLEM can be solved in time
O(|E|3θ), where θ is the time for calling the independent set oracle.

46

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

4.4 Polymatroids
The rank-function r of a matroidM = (E,F) is submodular, i.e.

r(X) + r(Y) ≥ r(X ∩ Y) + r(X ∪ Y) for all X, Y ⊆ E.

In Theorem 4.5, we have seen that incedence vectors of independent sets in F are corners of
the matroid polytope (4.1):{

x ∈ RE : x ≥ 0,
∑
e∈A

xe ≤ r(A) for all A ⊆ E

}
.

Polymatroids generalize matroid-polytopes.

Definition 4.35. A polymatroid is a polytope

P (f) :=

{
x ∈ RE : x ≥ 0,

∑
e∈A

xe ≤ f(A) for all A ⊆ E

}
,

where E is a finite set and f : 2E → R+ is a submodular function.

For a matroid rank-function r the polymatroid P (r) is its matroid-polytope.

Proposition 4.36. For any polymatroid f can be chosen such that f(∅) = 0 and f is monotone,
i.e. f(X) ≤ f(Y) for all X ⊆ Y ⊆ E

Proof. See exercise sheets.

Thus the defining function f for a polymatroid satisfies two central characteristics of a
matroid rank-function, i.e. submodularity and monotonicity, but the third characteristic |X| ≥
f(X) may be violated. It turns out that optimization over a polymatroid can be done by a
similar greedy algorithm (Algorithm 11).

Proposition 4.37. Let E = {e1, . . . , en} and f : 2E → R be a submodular function
with f(∅) ≥ 0. Let b : E → R with b(e1) ≤ f({e1}) and b(ei) ≤ f({e1, . . . , ei}) −
f({e1, . . . , ei−1}) for i = 2, . . . , n. Then∑

a∈A

b(a) ≤ f(A) for A ⊆ E.

Proof. We prove the statement by induction in i = max{j : ej ∈ A}. The assertion is trivial
for A = ∅. Let i ≥ 1. Then∑

a∈A b(a) =
∑

a∈A\{ei} b(a) + b(ei)

≤ f(A \ {ei}) + b(ei)
≤ f(A \ {ei}) + f({e1, . . . , ei})− f({e1, . . . , ei−1})
≤ f(A),

where the inequalities follow from the induction hypothesis, the choice of b, and the submodu-
larity of f (with X = A 3 ei and Y = {e1, . . . , ei−1}).

47

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Algorithm 11 Polymatroid Greedy Algorithm
Instance: A finite set E and a submodular, monotone function f : 2E → R+ with f(∅) ≥ 0
(given by an oracle), and a vector c ∈ RE

Output: A vector x ∈ P (f) with cᵀx maximum.
Sort E = {e1, . . . , en} such that c(e1) ≥ · · · ≥ c(ek) > 0 ≥ c(ek+1) ≥ · · · ≥ c(en).
if k ≥ 1 then

x(e1) := f({e1});
end if
for i = 2, . . . , k do

x(ei) := f({e1, . . . , ei})− f({e1, . . . , ei−1});
end for
for i = k + 1, . . . , n do

x(ei) := 0;
end for

Theorem 4.38. The Polymatroid Greedy Algorithm correctly finds an x ∈ P (f) with cᵀx
maximum. If f is integral, then x is integral.

Proof. Let x be the output of the Polymatroid Greedy Algotrithm for E, f , and c. By construc-
tion, if f is integral so is x. As f is monotone, x ≥ 0, and by Proposition 4.37 x ∈ P (f).

Now assume there is a y ∈ RE+ with cᵀy > cᵀx. Similar to the Dual Greedy Algorithm in the
proof of Theorem 4.5 we set dj := c(ej)− c(ej+1) (j = 1, . . . , k− 1), dk := c(ek), and obtain:

k∑
j=1

dj

j∑
i=1

x(ej) = cᵀx < cᵀy ≤
k∑
j=1

c(ej)y(ej) =
k∑
j=1

dj

j∑
i=1

y(ej). (4.5)

As d ≥ 0, there exists an index j ∈ {1, . . . , k} with
∑j

i=1 y(ei) >
∑j

i=1 x(ei). But as∑j
i=1 x(ei) = f({e1, . . . , ej}) this means that y 6∈ P (f).

The following theorem on the intersection of two polymatroids allows us to derive several
interesting results.

Theorem 4.39. (Edmonds [1970,1979]) Let E be a finite set and f, g : 2E → R+ two
submodular functions. Then the following system of inequalities is TDI:∑

e∈A xe ≤ f(A) (A ⊆ E),∑
e∈A xe ≤ g(A) (A ⊆ E),

x ≥ 0.

Corollary 4.40. (Edmonds [1970]) Let (E,F1) and (E,F2) be two matroids with rank func-
tions r1 and r2. Then the convex hull of the incedence vectors of the elements of F1 ∩ F2 is the
polytope {

x ∈ RE+ :
∑
e∈A

xe ≤ min{r1(A), r2(A)} for all A ⊆ E

}
.

48

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Proof. By Theorem 4.39 the system is TDI, and since rank functions are integral the polytope
is integral (TDI-systems with integral right hand side are integral).

Since r1(A) ≤ |A| for all A ⊂ E, the vertices are 0-1-vectors, and thus incidence vectors of
common independent sets, i.e. representing elements in F1 ∩ F2.

Vice versa, each incedence vector of an element in F1 ∩ F2 satisfies the inequalities of the
polytope.

Corollary 4.41. (Edmonds [1970]) Let E be a finite set, and f, g : 2E → R+ be submodular
and monotone functions with f(∅) = g(∅) = 0. Then

max{1ᵀx : x ∈ P (f) ∩ P (g)} = min
A⊆E

(f(A) + g(E \ A)).

Furthermore, if f and g are integral there exists an integral maximum solution x.

Proof. Consider the dual to

max{1ᵀx : x ∈ P (f) ∩ P (g)},

which is

min

{∑
A⊆E

(f(A)yA + g(A)zF) : y, z ≥ 0,
∑

A⊆E:e∈A

(yA + zA) ≥ 1 for all e ∈ E

}
.

By Theorem 4.39 it has an integral solution y, z. Let

B :=
⋃

A:yA≥1

A and C :=
⋃

A:zA≥1

A

By integrality and the inequalities for each e ∈ E in the dual, we have B ∪ C = E. Since f
and g are submodular, and f(∅) = g(∅) = 0,∑

A⊆E

(f(A)yA + g(A)zA) ≥ f(B) + g(C) ≥ f(B) + g(E \B),

where the second inequality follows from E \B ⊆ C and the monotonicity of g, proving “≥”.
The inequality “≤” is trivial, because for any A ∈ E, we obtain a feasible solution by setting

yA := 1 and zE\A := 1 and all other components to zero.

As a special case we get Theorem 4.10.

Corollary 4.42. (Frank’s Discrete Sandwich Theorem [1982]) Let E be a finite set and f, g :
2E → R such that f is supermodular, g is submodular, and f ≤ g. Then there exists a modular
function h : 2E → R with f ≤ h ≤ g. If f and g are integral, h can also be chosen integral.

49

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Proof. We may assume that f(∅) = g(∅) and f(E) = g(E).
Let M := 2 max{|f(A)| + |g(A)| : A ⊆ E}. Let f ′(A) := g(E) − f(E \ A) + M |A|

and g′(A) := g(A)− f(∅) +M |A| for all A ⊆ E. By construction, f ′ and g′ are nonnegative,
submodular, monotone, and f ′(∅) = g′(∅) = 0. Corollary 4.41 yields

max{1ᵀx : x ∈ P (f ′) ∩ P (g′)}
= minA⊆E(f ′(A) + g′(E \ A))
= minA⊆E(g(E)− f(E \ A) +M |A|+ g(E \ A)− f(∅) +M |E \ A|}
≥ g(E)− f(∅) +M |E|.

So let x ∈ P (f ′) ∩ P (g′) with 1ᵀx = g(E)− f(∅) +M |E|. If f and g are integral, x can be
chosen integral. Define h′(A) :=

∑
e∈A xe and h(A) := h′(A) + f(∅)−M |A| for all A ⊆ E.

Then h is modular. Moreover, for all A ⊆ E, we have h(A) ≤ g′(A) + f(∅)−M |A| = g(A)
and h(A) = 1

ᵀx−h′(E\A)+f(∅)−M |A| ≥ g(E)+M |E|−M |A|−f ′(E\A) = f(A).

4.5 Greedoids
Greedoids are a generalization of matroids, where we are dropping the subclusiveness axoim
(M2). Thus, a greedoid is not an independence system. They were introduced by Korte and
Lovasz in 1980. We will see that generally optimizing over greedoids is NP-hard. But we can
specify certain necessary and sufficient conditions on the objective functions so that a greedy
algorithms works.

Definition 4.43. (Greedoid) A set system (E,F) is accessible if ∅ ∈ F and for anyX ∈ F\{∅}
there exists an x ∈ X with X \ {x} ∈ F .

A greedoid is a set system (E,F) satisying (M1) and (M3).

Note that Greedoids are accessible.

Theorem 4.44. Let (E,F) be an accessible set system. The following statements are equiva-
lent:

1. For anyX ⊆ Y ⊂ E and z ∈ E\Y withX∪{z} ∈ F and Y ∈ F we have Y ∪{z} ∈ F .

2. F is closed under union.

Definition 4.45. An accessible set system (E,F) that is closed under union is called an
antimatroid.

Proposition 4.46. Every antimatroid is a greedoid.

Proposition 4.47. Let (E,F) be a set system such that F is closed under union and ∅ ∈ F .
Define

τ(A) :=
⋂
{X ⊆ E : A ⊆ X,E \X ∈ F}.

Then τ is a closure operator, i.e. τ satisfies (S1)-(S3).

Theorem 4.48. Let (E,F) be a set system such that F is closed under union and ∅ ∈ F .
Then (E,F) is accessible if and only if the closure operator of Proposition 4.47 satisfies
the anti-exchange property: if X ⊆ E, y, z,∈ E \ τ(X), y 6= z and z ∈ τ(X ∪ {y}), then
y 6∈ τ(X ∪ {z}).

50

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

4.6 Submodular Function Maximization
Let f : 2E → R be a submodular function. Submodularity can equivalently be characterized as

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y) (4.6)

for all X ⊆ Y ⊆ E and x ∈ E, capturing the principle of diminishing returns in economics.
Given a non-negative submodular function, the unconstrained submodular function maxi-

mization problem (USM) is to find a subset S ⊂ E that maximizes f(S). USM covers many
well studied optimization problems such as Max-Cut, Max-DiCut that are known to be NP-hard.

We present a recent radnomized 1/2-approximation algorithms by [1] that is using the so
called double-greedy technique. We assume that the n := |E| elements of E are given in an
arbitrary order E = {e1, e2, . . . , en}.

4.6.1 Deterministic USM
We first present a deterministic 1/3-approximation algorithm. It maintains two sets X and Y ,
which are initialized as the empty set X = ∅, and as the universe Y = E. In each iteration
1 ≤ i ≤ n either ei is added to X or it is removed from Y so that after n iterations X = Y .

Algorithm 12 Deterministic Double Greedy Algorithm for USM
Instance: A finite set E and a submodular function f : 2E → R+.
Output: A set S ⊆ E

X0 ← ∅, Y0 ← E
for i = 1→ n do

ai ← f(Xi−1 ∪ {ei})− f(Xi−1);
bi ← f(Yi−1 \ {ei})− f(Yi−1);
if ai ≥ bi then

Xi ← Xi−1 ∪ {ei}, Yi ← Yi−1

else
Xi ← Xi−1, Yi ← Yi−1 \ {ei}

end if
end for
return S ← Xn(= Yn);

Lemma 4.49. For every 1 ≤ i ≤ n, ai + bi ≥ 0.

Proof. This follows from submodularity as follows. First note that (Xi−1∪{ei})∪(Yi\{ei}) =
Yi−1 and (Xi−1 ∪ {ei}) ∩ (Yi \ {ei}) = Xi−1. Thus,

ai + bi = (f(Xi−1 ∪ {ei})− f(Xi−1)) + (f(Yi−1 \ {ei})− f(Yi−1))
= (f(Xi−1 ∪ {ei}) + f(Yi−1 \ {ei}))− (f(Xi−1)− f(Yi−1))
≥ 0,

where the inequality follows from the submodularity (4.6).

51

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Let OPT denote an optimum solution and define OPTi := (OPT ∪Xi) ∩ Yi (1 ≤ i ≤ n).
Thus, OPTi coincides with Xi, Yi on the elements 1, . . . , i, and it coincides with OPT on the
elements i+ 1, . . . , n. In particular OPT0 = OPT and OPTn = Xn = Yn.

Lemma 4.50. For every 1 ≤ i ≤ n

f(OPTi−1)− f(OPTi) ≤ (f(Xi)− f(Xi−1)) + (f(Yi)− f(Yi−1)) .

Proof. W.l.o.g ai ≥ bi, i.e. Xi ← Xi−1 ∪ {ei} and Yi ← Yi−1 (the other case is proven
analogously). Then OPTi = OPTi−1 ∪ {ei}. Thus, we need to prove

f(OPTi−1)− f(OPTi) ≤ f(Xi)− f(Xi−1) = ai.

If ei ∈ OPT , the left hand side of the last inequality is 0 and ai ≥ 0 since ai + bi ≥ 0 by
Lemma 4.49.

Otherwise, if ei 6∈ OPT , then ei 6∈ OPTi−1. Thus, OPTi−1 = ((OPT ∪Xi−1) ∩ Yi−1) ⊆
Yi−1 \ {ei}. Applying submodularity we get:

f(OPTi−1)− f(OPTi−1 ∪ {ei}) ≤ f(Yi−1 \ {ei})− f(Yi−1) = bi ≤ ai.

This allows us to prove the main result of the deterministic algorithm.

Theorem 4.51 (Buchbinder et al. 2012). Algorithm 12 returns a 1/3-approximation for the
unconstrained submodular function maximization problem.

Proof. By Lemma 4.50 we get.

n∑
i=1

(f(OPTi−1)− f(OPTi)) ≤
n∑
i=1

(f(Xi)− f(Xi−1)) + (f(Yi)− f(Yi−1)) .

Collapsing the telescopic sum we get:

f(OPT0)− f(OPTn) ≤ (f(Xn)− f(X0)) + (f(Yn)− f(Y0)) ≤ f(Xn) + f(Yn).

As OPT0 = OPT and OPTn = Xn, we get f(Xn) ≥ 1
3
OPT .

Remark 4.52. Buchbinder et al. [1] gave an example, for which Algorithm 12 provides only a
(1/3 + ε)-approximation. Thus, the analysis is best possible.

52

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Algorithm 13 Randomized Double Greedy Algorithm for USM
Instance: A finite set E and a submodular function f : 2E → R+.
Output: A set S ⊆ E

X0 ← ∅, Y0 ← E
for i = 1→ n do

ai ← f(Xi−1 ∪ {ei})− f(Xi−1);
bi ← f(Yi−1 \ {ei})− f(Yi−1);
a′i ← max{ai, 0};
b′i ← max{bi, 0};

p =

{
a′i/(a

′
i + b′i) if (a′i + b′i) > 0,

1 if (a′i + b′i) = 0;

With probability p do:
Xi ← Xi−1 ∪ {ei}, Yi ← Yi−1

Else:
Xi ← Xi−1, Yi ← Yi−1 \ {ei}

end for
return S ← Xn(= Yn);

4.6.2 Randomized USM
Replacing the deterministic choices in Algorithm 12, we can achieve a 1/2-factor approximation
(in expectation). Algorithm and analysis are similar to the deterministic one.

Lemma 4.50 is now replaced by the following variant.

Lemma 4.53. For every 1 ≤ i ≤ n,

E [f(OPTi−1)− f(OPTi)] ≤
1

2
E [f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] , (4.7)

where the expectations are taken over the random choices of the algorithm.

Proof. Note that it suffice to prove (4.7) conditioned on any event of the form Xi−1 = Si−1,
when Si−1 ⊆ {e1, . . . , ei−1} and the probabolity that Xi−1 = Si−1 is non-zero.

Hence, we fix such an event Si−1. The remainder of this proof assumes that everything is
conditioned on this event. Then, the following quantities become constants: Yi−1 = Si−1 ∪
{ei, . . . , en}, OPTi−1 = (OPT ∪Xi−1)∩Yi−1, ai, and bi. By Lemma 4.49: ai+bi ≥ 0. Hence,
it suffices to consider the following three cases.

Case 1 (ai ≥ 0 and bi ≤ 0): Then p = 1, and Yi = Yi−1 = Si−1 ∪ {ei, . . . , en} and
Xi ← Si∪{ei}. Thus, f(Yi)− f(Yi−1) = 0 and OPTi = (OPT ∪Xi)∩Yi = OPTi−1∪{ei}.
We claim that

f(OPTi−1)− f(OPTi−1 ∪ {ei}) ≤
1

2
(f(Xi)− f(Xi−1)) =

ai
2
.

If ei ∈ OPT , f(OPTi−1)− f(OPTi ∪ {ei}) = 0 ≤ ai
2

. If ei 6∈ OPT , then OPTi ⊆ Yi \ {ei}
and by the submodularity of f : f(OPTi−1)−f(OPTi−1∪{ei}) ≤ f(Yi−1 \{ei})−f(Yi−1) =

53

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

bi ≤ 0 ≤ ai
2
, where the last inequality follows from the current case condition (ai ≥ 0 and

bi ≤ 0).
Case 2 (ai < 0 and bi > 0): Then p = 0 and the case is analoguos to Case 1.
Case 3 (ai ≥ 0 and bi ≥ 0): Now a′i = a′i and b′i = bi. With probabiliy p = ai/(ai + bi),

Xi ← Xi−1 ∪{ei} and Yi = Yi−1, and with probability (1− p) = bi/(ai + bi), Xi ← Xi−1 and
Yi = Yi−1 \ {ei}. Thus

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] = p (f(Xi−1 ∪ {ei})− f(Xi−1)) +
(1− p) (f(Yi−1 \ {ei})− f(Yi−1)])

=
a2i +b2i
ai+bi

.

(4.8)

Now we upper bound the left hand side of (4.7). Recall, OPTi = (OPT ∪ Xi) ∩ Yi and,
thus,

E[f(OPTi−1)− f(OPTi)] = p (f(OPTi−1)− f(OPTi−1 ∪ {ei})) +
(1− p) (f(OPTi−1)− f(OPTi−1 \ {ei})) +

≤ aibi
ai+bi

.
(4.9)

To see the final inequality, note that ei ∈ Yi−1 and ei 6∈ Xi−1. We consider two cases:
If ei 6∈ OPTi−1, then (f(OPTi−1)− f(OPTi−1 \ {ei})) = 0. Furthermore, as OPTi−1 =

(OPT ∪Xi−1) ∩ Yi−1 ⊆ Yi−1 \ {ei}, by submodilarity,

f(OPTi−1)− f(OPTi−1 ∪ {ei}) ≤ f(Yi−1 \ {ei})− f(Yi−1) = bi.

If ei 6∈ OPTi−1, then f(OPTi−1)− f(OPTi−1 ∪ {ei}) = 0 and
Xi−1 ⊆ ((OPT ∪Xi−1) ∩ Yi−1) \ {ei} = OPTi−1 \ {ei}. By submodularity

f(OPTi−1)− f(OPTi−1 \ {ei}) ≤ f(Xi−1 ∪ {ei})− f(Xi−1) = ai,

proving (4.9).
Substituting (4.8) and (4.9) in to (4.7), we need to show

aibi
ai + bi

≤ 1

2

a2
i + b2

i

ai + bi
,

which follows from the binomial formula.

Similar to the deterministic case, we can now conclude the main result:

Theorem 4.54 (Buchbinder et al. 2012). Algorithm 13 returns a solution S with E[f(S)] ≥
f(OPT)/2.

Proof. We sum up (4.7) for all 1 ≤ i ≤ n and collapse the telescopic sum to obtain

E[f(OPT0)− f(OPTn)] ≤ 1

2
E[f(Xn)− f(Xi−1) + f(Yn)− f(Yi−1)] ≤ E[f(Xn) + f(Yn)]

2
.

With OPT0 = OPT and OPTn = Xn = Yn = S, we obtain the desired result E[f(S)] ≥
f(OPT)/2.

The algorithm is in a sense best possible:

Remark 4.55. Feige et al. have shown that any algorithm for (USM) based on oracle calls,
providing a (1/2 + ε)-approximation for any ε > 0 requires an exponential number of oracle
calls [2].

54

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

4.7 Submodular Function Minimization

SUBMODULAR FUNCTION MINIMIZATION PROBLEM

Input: A finite set U , a submodular function f : sU → Z (given by an oracle)

Task: Find a subset X ⊆ U with f(X) minimum

Lemma 4.56. Let U be a finite set and f : 2U → Z. Then f is submodular if and only if

f(S + e)− f(S) ≥ f(T + e)− f(T) for all S ⊂ T ⊂ T + e.

4.7.1 Schrijvers Algorithm
Definition 4.57. For a finite set U and a submodular function f : 2U → Z, the base polyhe-
dron is defined by

B(f) :=

{
x ∈ RU :

∑
u∈A

x(u) ≤ f(A) for all A ⊆ U,
∑
u∈U

x(u) = f(U)

}
.

By a slight modification of the polymatroid greedy algorithm (Algorithm 11) we can derive
the following result.

Theorem 4.58. The vertices of the base polyhedron is precisely the set of vectors b≺ for all
total orders ≺ of U , where

b≺(u) := f({v ∈ U : v � u})− f({v ∈ U : v ≺ u})

for u ∈ U .

Schrijver’s algorithm maintains a point x ∈ B(f) that is represented by an explicit convex
combination x = λ1b

≺1 + · · · + λkb
≺k of vertices of B(f). At termination x will provide a

certificate of optimality, also showing the following theorem, which for now will motivate the
algorithm.

Theorem 4.59. Let f : sU → Z be a submodular function such that f(∅) = 0. Then

min
S⊆U

f(S) = max{x−(U) : x ∈ B(f)},

where x−(U) =
∑

u∈U x
−(u) =

∑
u∈U min(0, x(u)).

The algorithm starts with k = 1 and x = b≺1 and an arbitrary order ≺1. On the fly the
algorithm will create new total orders applying the following operation. For a total order ≺
and s, u ∈ U we denote by ≺s,u the total order that results from ≺ by moving u just before s.
By ΞU we denote the incedence vector of u ∈ U .

Theorem 4.60. (Schrijver [2000]) SCHRIJVER’S ALGORITHM works correctly.

55

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Algorithm 14 Schrijver’s Algorithm
Instance: A finite set U = {1, . . . , n} and a submodular function f : 2U → Z with f(∅) = 0.
Output: A subset X ⊆ U with f(X) minimum.

Set k := 1, let ≺1 be any total order on U , and set x := b≺1 .

BUILD GRAPH:
Set D := (U,A), where A = {(u, v) | u ≺i v for some i ∈ {1, . . . , k}}.
Let P := {v ∈ U | x(v) > 0} and N := {v ∈ U | x(v) < 0}.
Let X be the set of vertices not reachable from P in the digraph D.
if N ⊆ X then

stop
else

let d(v) denote the distance from P to v in D.
end if
Choose the vertex t ∈ N reachable from P with (d(t), t) lexicographically maximum.
Choose the maximal vertex s with (s, t) ∈ A and d(s) = d(t)− 1.
Let i ∈ {1, . . . , k} such that α := |{v | s ≺i v �i t}| is maximum

. the number of indices attaining this maximum will be denoted by β.

CHANGE SOLUTION:
Compute a number ε with 0 ≤ ε ≤ −x(t) and write x′ := x+ ε(χt − χs) as an explicit

convex combination of at most n vectors, chosen among b≺1 , . . . , b≺k and b≺
s,u
i for all

u ∈ U with s ≺i u �i t, with the additional property that b≺i does not occur if
x′(t) < 0.

Set x := x′, rename the vectors in the convex combination of x as b≺1 , . . . , b≺k′ , set k := k′,
go to BUILD GRAPH.

56

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Theorem 4.61. (Schrijver [2000]) Each iteration can be performed inO(n3 +γn2) time, where
γis the time for an oracle call.

Lemma 4.62. (Vygen 2003) SCHRIJVER’S ALGORITHM terminates after O(n5) iterations.

Theorem 4.63. The SUBMODULAR FUNCTION MINIMIZATION PROBLEM can be solved in
O(n8 + γn7) time, where γ is the time for an oracle call.

Corollary 4.64. Linear functions over the intersection of two polymatroids can be optimized
in polynomial time.

4.8 Symmetric Submodular Functions
Definition 4.65. A submodular function F : 2U → R is called symmetric if

f(A) = f(U \ A) for all A ⊆ U.

Minimizing symmetric submodular functions is trivial since by symmetrie, submodularity,
and again symmetrie

2f(∅) = f(∅) + f(U) ≤ f(A) + f(U \ A) = 2f(A)

for all A ⊆ U . Thus, we are looking for a non-empty proper subset A ⊂ U minimizing f(A).

Lemma 4.66. Given a symmetric submodular function f : 2U → R with n := |U | ≥ 2, we
can find two elements x, y ∈ U with x 6= y and f({x}) = min{f(X) : x ∈ X ⊆ U \ {y} in
O(n2θ) time, where θ is the time bound for the oracle for f .

Theorem 4.67. (Queranne [1998]) Given a symmetric submodular function f : 2U → R, we
can find in O(n3θ) time a nonempty proper subset A of U such that f(A) is minimum, where θ
is the time bound for the oracle for f .

57

5 Survivable Network Design

SURVIVABLE NETWORK DESIGN PROBLEM

Input: An undirected graph G with weights c : E(G) → R+, and a connectivity
requirement rxy ∈ Z+ for each x, y ∈ V (G).

Task: Find a minimum weight subgraph H of G such that for each x, y there are at
least rx,y edge disjoint paths from x to y in H .

Example 5.1. The STEINER TREE PROBLEM is an important special case. In this problem
there is a set T ⊆ V (G) of terminals and

rxy =

{
1 if x, y ∈ T.
0 otherwise.

The GENERALIZED STEINER TREE PROBLEM is a SURVIVABLE NETWORK DESIGN

PROBLEM, where rxy ∈ {0, 1} for all x, y ∈ V (G).

Example 5.2. Solutions to the SURVIVABLE NETWORK DESIGN PROBLEM, where rxy = k
for all x, y ∈ V (G) are k-edge-connected subgraphs.

Given a SURVIVABLE NETWORK DESIGN PROBLEM, we define a function f : 2V (G) → Z+

by f(∅) := f(V (G)) := 0 and

f(S) := max
x∈S,y∈V (G)\S

rxy for ∅ 6= S ⊂ V (G).

Now that the SURVIVABLE NETWORK DESIGN PROBLEM can be formulated as an integer
linear program:

min
∑

e∈E(G) c(e)xe
s.t. xe ∈ {0, 1} (e ∈ E(G))∑

e∈δ(S) xe ≥ f(S) (S ⊆ V (G)).
(SNDILP)

Definition 5.3. A function f : 2U → Z+ is called proper if it satisfies the following three
conditions:

1. f(S) = f(U \ S) for all S ⊆ U (symmetry)

2. f(A ∪B) ≤ max{f(A), f(B)} for all A,B ⊆ U with A ∩B = ∅.

3. f(∅) = 0.

59

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

The function f arising from the SURVIVABLE NETWORK DESIGN PROBLEM, as above is
obviously proper.

Definition 5.4. A function f : 2U → Z+ is called weakly supermodular if at least one of the
following conditions hold for A,B ⊆ U :

1. f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (supermodularity)

2. f(A) + f(B) ≤ f(A \B) + f(B \ A)

Proposition 5.5. A proper function f : 2U → Z+ is weakly supermodular.

We now show how the SEPARATION PROBLEM for the LP-relaxation of (SNDILP) can be
solved using Gomory-Hu trees. Unfortunately, we cannot hope to find an optimal integral
solution in polynomial time, because they would be solutions for NP-hard problems, e.g. the
minimum Steiner tree problem, and ¶ = NP has not been proven yet.

Lemma 5.6. Let G be a undirected graph with edge capacities u : E(G)→ R+, f : 2V (G) →
Z+ be a proper function, and H be a Gomory-Hu tree for (G, u).

Then for every ∅ 6= S ⊂ V (G) we have

1.
∑

e′∈δG(S) u(e′) ≥ maxe∈δH(S)

∑
e′∈δG(Ce) u(e′) and

2. f(S) ≤ maxe∈δH(S) f(Ce),

where Ce and V (H) \ Ce are the connected components of H − e.

Theorem 5.7. Let G be an undirected graph x ∈ RE(G)
+ and f : 2V (G) → Z+ be a proper

function given by an oracle. The we can find in time O(n4 + nθ) a set S ⊆ V (G) with∑
e∈δG(S) xe < f(S) or decide, that no such set exists. Here n = |V (G)| and θ is the time

needed to query the oracle.

This theorem allows us also to check whether (SNDILP) has feasible solutions.

5.1 A primal dual approxmation algorithm
In this section it we will develop a primal-dual algorithm for finding an edge set F , whose
incidence vector fulfills (SNDILP). The algorithm runs in

k := max
S⊆V (G)

f(S) = max
x∈V (G)

f({x})

phases, where the second equality holds, because f is proper. In iteration 1 ≤ p ≤ k we
consider the proper function fp defined by

fp(S) := max{f(S) + p− k, 0}.

The function values of f1 are either zero or one and the empty set is almost feasible. In phase p,
the incidence vector of the current edge set F will be modified to such that it satisfies (SNDILP)
w.r.t. fp. Thus, it will be almost satisfied w.r.t. fp+1 at the beginning of phase p+ 1.

We will present an approximation algorithm that works well if k is not too large, e.g. for
generalized Steiner tree problems.

60

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Definition 5.8. Let g be some proper function, F ⊆ E(G) and X ⊆ V (G). We say that X is
violated with respect to (g, F) if |δF (X)| < g(X).

The minimal violated sets with respect the (g, F) are the active sets with respect to (g, F).
F ⊆ E(G) satisfies g if no set is violated with respect to (g, F).
F ⊆ E(G) almost satisfies g if |δF (X)| ≥ g(X)− 1 for all X ⊆ V (G).

The following lemma shows that active sets are pairwise disjoint and, thus, their number is
linearly bounded.

Lemma 5.9. Given a proper function g, a set F ⊆ E(G) almost satisfying g, and two violated
sets A,B ⊆ V (G). Then either A \B and B \ A are both violated or A ∪B and A ∩B are
both violated. The active sets w.r.t. (g, F) are pairwise disjoint.

The active sets can be computed using Gomory-Hu trees.

Theorem 5.10. (Gabow, Goemans, Williamson [1998]) Given a proper (oracle) function g
and a set F ⊆ E(G) almost satisfying g. Then the active sets with respect to (g, F) can be
computed in O(n4 + n2θ) time, where n = |V (G)| and θ is the time needed to query the oracle
for g.

By Fp we denote the set F at the end of phase p and F0 := ∅.

61

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

Algorithm 15 Primal-Dual Algorithm for Network Design
Input: An undirected graph G, weights c : E(G)→ R+, and an oracle for a proper function
f : 2V (G) → Z+.
Output: A set F ⊆ E(G) satisfying f .

if E(G) does not satisfy f then
stop . the problem is infeasible.

end if
Set F := ∅, k := max

v∈V (G)
f({v}), and p := 1.

START PHASE:
Set i := 0.
Set π(v) := 0 for all v ∈ V (G).
Let A be the family of active sets with respect to (F, fp), where fp is defined by

fp(S) := max{f(S) + p− k, 0} for all S ⊆ V (G).
while A 6= ∅ do

Set i := i+ 1.

Set ε := min

{
c(e)− π(v)− π(w)

|{A ∈ A : e ∈ δG(A)}|
| e = {v, w} ∈

⋃
A∈A

δG(A) \ F

}
,

and let ei be some edge attaining this minimum.
Increase π(v) by ε for all v ∈

⋃
A∈A

A.

Set F := F ∪ {ei}.
Update A.

end while
for j := i down to 1 do

if F \ {ej} satisfies fp then
set F := F \ {ej}.

end if
end for
if p = k then

stop,
else

set p := p+ 1 and
go to START PHASE:.

end if

Lemma 5.11. At each stage of phase p the set F almost satisfies fp and F \ Fp−1 is a forest.
At the end of phase p, Fp satisfies fp.

Lemma 5.12. Determining ε and ei in the While-loop of Algorithm 15 can be done in O(mn).

Theorem 5.13. (Goemans et al. [1994]) Algorithm 15 returns a set F satisfying f in O(kn5 +
kn3θ) time, where k = maxS⊆V (G) f(S), n = |V (G)|, and θ is the time for querying the oracle.

62

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

To proove an approximation ratio, we implicitly construct a dual feasible solution of the LP
relaxation and bound the difference of the cost of the solution constructed by Algorithm 15 and
the dual solution. Let us take a look at the LP relaxation

min
∑

e∈E(G)

c(e)xe

s.t.
∑
e∈δ(S)

xe ≥ f(S) (S ⊆ V (G)).

xe ≤ 1 (e ∈ E(G))
xe ≥ 0 (e ∈ E(G)).

(LP)

and its dual

max
∑

S⊆V (G)

f(S)yS −
∑

e∈E(G)

ze

s.t.
∑

S:e∈δ(S)

yS ≤ c(e) + ze (e ∈ E(G)).

yS ≥ 0 (S ⊂ V (G))
ze ≥ 0 (e ∈ E(G)).

(DP)

We implicitly construct dual solutions (y(p), z(p)) during the course of Algorithm 15. At the
beginning of phase p, we initialize y(p) = 0. Then at each iteration y(p)

A is increased by ε for
each active set A ∈ A. Furthermore, we set

z(p)
e :=

∑

S:e∈δ(S)

y
(p)
S if e ∈ Fp−1.

0 otherwise.

In the algorithm, the dual solution is represented by the π variables. Note that π(v) =∑
S:v∈S yS for all v ∈ V (G). By our definition of (y(p), z(p)) we get.

Lemma 5.14. For each phase p ∈ {1, . . . , k}, (y(p), z(p)) is a feasible solution of (??).

Lemma 5.15. For each phase p ∈ {1, . . . , k},∑
S⊆V (G)

y
(p)
S ≤

1

k − p+ 1
OPT (G, c, f),

where OPT (G, c, f) is the value of an optimum integral solution.

Lemma 5.16. At each iteration of any phase p ∈ {1, . . . , k},∑
A∈A

|δFp \ Fp−1(A)| ≤ 2|A|.

where OPT (G, c, f) is the value of an optimum integral solution.

63

Stephan Held Definitions & Theorems, Combinatorial Optimization, 2014/15

To prove this lemma we use tree representations:

Definition 5.17. Let T be a digraph such that the underlying undirected graph is a tree. Let U
be a finite set and ϕ : U → V (T). Let F := {Se | e ∈ E(T)}, where for e = (x, y) we define

Se := {s ∈ U | ϕ(s) is in the same connected component of T − e as y}.

Then (T, ϕ) is called a tree-representation of (U,F).

Proposition 5.18. Let (U,F) be a set system with a tree-representation (T, ϕ). Then (U,F) is
cross-free. If T is an arborescence, then (U,F) is laminar. Moreover, every cross-free family
has a tree-representation, and for laminar families, an arborescence can be chosen as T .

Now, we can bound the cost increase in a phase.

Lemma 5.19. (Williamson [1995]) For each p ∈ {1, . . . , k},∑
e∈Fp\Fp−s

c(e) ≤ 2
∑

S⊆V (G)

y
(p)
S .

Finally, we obtain the following approximation result.

Theorem 5.20. Algorithm 15 returns a set F which satisfies f and whose weight is at most
2H(k)OPT (G, c, f) in O (kn5 + kn3θ) time, where n = |V (G)|, k = maxS⊆V (G) f(S),
H(k) = 1 + 1

2
+ · · ·+ 1

k
, and θ is the time required by the oracle for f .

5.2 Iterative LP-Rounding
• Kamal Jain: A Factor 2 Approximation Algorithm for the Generalized Steiner Network

Problem. Combinatorica, Volume 21, Issue 1, pp 39-60. 2001.

• Section 23 of book by Vijay Vazirani: Approximation Algorithms, Springer, 2003.

5.3 Degree Bounded Network Design Problems
• Lap Chi Lau, Joseph (Seffi) Naor, Mohammad R. Salavatipour, and Mohit Singh: Sur-

vivable Network Design with Degree or Order Constraints. SIAM J. Comput., 39(3),
1062–1087, 2009.

64

Bibliography

[1] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz, A tight linear
time (1/2)-approximation for unconstrained submodular maximization, Proceedings of the
2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (Washington,
DC, USA), FOCS ’12, IEEE Computer Society, 2012, pp. 649–658.

[2] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák, Maximizing non-monotone submodular
functions, SIAM J. Comput. 40 (2011), no. 4, 1133–1153.

65

	Matching
	Matchings and Alternating Paths
	Bipartite Matching
	The Tutte Matrix and Randomized Matching
	Tutte's Matching Theorem
	Ear-Decompositions of Factor-Critical Graphs
	Edmond's matching algorithm
	Growing forests — an O(n3) Variant
	Notes on even Faster Algorithms

	Gallai Edmonds Decomposition
	Weighted Matching Algorithm
	The Matching Polytope

	Extended Formulations
	The Spanning Tree Polytope
	Relaxation Complexity

	T-Joins and b-Matchings
	T-Joins
	T-Join Applications
	Christofides' Approximation Algorithm for the Metric TSP
	The Shortest Path Problem for Undirected Graphs
	The Chinese Postman Problem

	T-Joins and T-Cuts
	The T-Join Polytope

	Excursus on Gomory-Hu Trees
	Finding Minimum-Capacity T-Cuts
	b-Matchings
	The Padberg-Rao Theorem

	Matroids & Generalization
	Properties, Axioms, Constructions
	Matroid Intersection
	Matroid Intersection Algorithm
	Matroid Constructions
	Matroid Partitioning

	Weighted Matroid Intersection
	Polymatroids
	Greedoids
	Submodular Function Maximization
	Deterministic USM
	Randomized USM

	Submodular Function Minimization
	Schrijvers Algorithm

	Symmetric Submodular Functions

	Survivable Network Design
	A primal dual approxmation algorithm
	Iterative LP-Rounding
	Degree Bounded Network Design Problems

	Bibliography

