Exercise 7.1: For \(n \in \mathbb{N} \), let \(P_n \) be the convex hull of all even 0-1-vectors. More precisely, let
\[
P_n = \text{conv}\{x \in \{0,1\}^n : \sum_{i=0}^n x_i \equiv 0 \pmod{2}\}.
\]
Prove \(rc(P_n) = 2^{\Theta(n)} \), i.e., \(P_n \) has an exponential relaxation complexity.

(4 Points)

Exercise 7.2: Let \(G \) be a connected graph, \(T \subseteq V(G) \) with \(|T|\) even, and \(F \subseteq E(G) \). A subset \(C \subseteq E(G) \) is called a \(T \)-cut if \(C = \delta(U) \) for some \(U \subseteq V(G) \) with \(|U \cap T|\) odd. Prove:

(i) \(F \) has nonempty intersection with every \(T \)-join if and only if \(F \) contains a \(T \)-cut.

(ii) \(F \) has nonempty intersection with every \(T \)-cut if and only if \(F \) contains a \(T \)-join.

(4 Points)

Exercise 7.3: Let \(G \) be a graph with edge weights \(c : E(G) \rightarrow \mathbb{R}_{>0} \). A set \(F \subseteq E(G) \) is called odd cover if the graph which results from \(G \) by successively contracting each \(e \in F \) is Eulerian. Show that it is possible in polynomial time to find an odd cover \(F \) that minimizes \(c(F) \) or to decide that none exists. We use the notation \(c(F) := \sum_{e \in F} c(e) \) for edge sets \(F \subseteq E(G) \).

(4 Points)

Exercise 7.4: Show that the following algorithm finds in a graph \(G \) (which is not a forest) with edge weights \(w : E(G) \rightarrow \mathbb{R} \) a cycle \(C \subseteq E(G) \) that minimizes \(\frac{w(C)}{|C|} \) in strongly polynomial time: First reduce all edge lengths by \(\max\{w(e) | e \in E(G)\} \). Then find a minimum-weight \(\emptyset \)-join \(J \). If \(w(J) = 0 \) output a cycle of length 0, otherwise add \(\frac{-w(J)}{|J|} \) to all edge lengths and iterate (i.e. find again a minimum-weight \(\emptyset \)-join).

(4 Points)

Deadline: Tuesday, November 25, 2014, before the lecture.

Information: Submissions by groups of one or two students are allowed.