
Combinatorial Optimization

Jens Vygen

University of Bonn, Research Institute for
Discrete Mathematics, Lennéstr. 2, 53113 Bonn,
Germany

Combinatorial optimization problems arise in
numerous applications. In general, we look for
an optimal element of a finite set. However, this
set is too large to be enumerated; it is implicitly
given by its combinatorial structure. The goal is
to develop efficient algorithms by understanding
and exploiting this structure.

1 Some Important Problems

We first give some classical examples. We refer
to the chapter on −→ Graph Theory for basic no-
tation. In a digraph, we denote by δ+(X) and
δ−(X) the set of edges leaving and entering X,
respectively; here X can be a vertex or a set of
vertices. In an undirected graph, δ(X) denotes
the set of edges with exactly one endpoint in X.

1.1 Spanning trees

Here we are given a finite connected undirected
graph (V,E) (so V is the set of vertices and E
the set of edges) and weights on the edges, i.e.,
c(e) ∈ R for all e ∈ E. The task is to find a set
T ⊆ E such that (V, T) is a (spanning) tree and∑
e∈T c(e) is minimum. (Recall that a tree is a

connected graph without cycles.)
The figure below shows on the left a set V of

eight points in the Euclidean plane. Assuming
that (V,E) is the complete graph on these points
and c is the Euclidean distances, the right-hand
side shows an optimal solution.

1.2 Maximum flows

Given a finite directed graph (V,E), two vertices
s, t ∈ V (source and sink), and capacities u(e) ∈
R≥0 for all e ∈ E, we look for an s-t-flow f :
E → R≥0 with f(e) ≤ u(e) for all e ∈ E and

f(δ−(v)) = f(δ+(v)) for all v ∈ V \ {s, t} (flow
conservation: the total entering flow equals the
total leaving flow at any vertex except s and t).
The goal is to maximize f(δ−(t))− f(δ+(t)), i.e.,
the total amount of flow shipped from s to t. This
is called the value of f .

The figure below shows an example. The left-
hand side displays an instance, the capacities are
shown next to the edges. The right-hand side
shows an s-t-flow of value 7. This is not optimal.

s

a b

c t

9 3

6

7
5

1 1 s

a b

c t

4 3

2

3
5

1 1

1.3 Matching

Given a finite undirected graph (V,E), find a
matching M ⊆ E that is as large as possible.
(A matching is a set of edges whose endpoints are
all distinct.)

1.4 Knapsack

Given n ∈ N, positive integers ai, bi (profit and
weight of item i, for i = 1, . . . , n), and B (the
knapsack’s capacity), find a subset I ⊆ {1, . . . , n}
with

∑
i∈I bi ≤ B, such that

∑
i∈I ai is as large

as possible.

1.5 Traveling salesman

Given a finite set X with metric d, find a bijection
π : {1, . . . , n} → X such that the length of the
corresponding tour,

n−1∑
i=1

d(π(i), π(i+ 1)) + d(π(n), π(1)),

is as small as possible.

1.6 Set covering

Given a finite set U and subsets S1, . . . , Sn of U ,
find the smallest collection of these subsets whose
union is U , i.e., I ⊆ {1, . . . , n} with

⋃
i∈I Si = U

and |I| minimum.

1

2

2 General Formulation and Goals

2.1 Instances and solutions

These problems have many common features.
In each case, there are infinitely many in-

stances, each of which can be described (up to
renaming) by a finite set of bits, and in some cases
a finite set of real numbers.

For each instance, there is a set of feasible so-
lutions. This set is finite in most cases. In the
maximum flow problem it is actually infinite, but
even here one can restrict w.l.o.g. to a finite set
of solutions; see below.

Given an instance and a feasible solution, we
can easily compute its value.

For example, in the matching problem, the in-
stances are the finite undirected graphs; for each
instance G the set of feasible solutions are the
matchings in G; and for each matching, its value
is simply its cardinality.

Even if the number of feasible solutions is fi-
nite, it cannot be bounded by a polynomial in the
instance size (the number of bits that is needed
to describe the instance). For example, there
are nn−2 trees (V, T) with V = {1, . . . , n} (this
is Cayley’s formula). Similarly, the number of
matchings on n vertices, subsets of an n-element
set, and permutations on n elements, grow expo-
nentially in n. One cannot enumerate all of them
in reasonable time except for very small n.

Whenever an instance contains real numbers,
we assume that we can do elementary operations
with them, or we actually assume them to be ra-
tionals with binary encoding.

2.2 Algorithms

The main goal in combinatorial optimization is to
devise efficient algorithms for solving such prob-
lems.

Efficient usually means polynomial-time (that
is: the number of elementary steps can be
bounded by a polynomial in the instance size).
Of course, the faster, the better.

Solving a problem usually means always (for ev-
ery given instance) computing a feasible solution
with optimum value.

We give an example of an efficient algorithm
solving the spanning tree problem in Section 3.

However, for NP-hard problems (like the last
three examples in our list), this is impossible un-
less P=NP, and consequently one is satisfied with
less (see Section 5).

2.3 Other Goals

Besides developing algorithms and proving their
correctness and efficiency, combinatorial opti-
mization (and related areas) also comprises other
work:

• analyze combinatorial structures, such as
graphs, matroids, polyhedra, hypergraphs;

• establish relations between different combi-
natorial optimization problems: reductions,
equivalence, bounds, relaxations;

• prove properties of optimal (or near-optimal)
solutions;

• study the complexity of problems and estab-
lish hardness results;

• implement algorithms and analyze their
practical performance;

• apply combinatorial optimization problems
to real-world problems.

3 Greedy algorithm

The spanning tree problem has a very simple so-
lution: the greedy algorithm does the job. We can
start with the empty set and successively pick a
cheapest edge that does not create a cycle, until
our subgraph is connected. Formally:

1. Sort E = {e1, . . . , em} so that c(e1) ≤ · · · ≤
c(em).

2. Let T be the empty set.

3. For i = 1, . . . ,m do:
if (V, T ∪ {ei}) contains no cycle,
then add ei to T .

In our example, the first four steps would add
the four shortest edges (shown in bold on the left-
hand side below). Then the dotted edge is exam-
ined, but it is not added as it would create a cycle.
The right-hand side shows the final output of the
algorithm.

3

This algorithm can be easily implemented so
that it runs in O(nm) time, where n = |V | and
m = |E|. With a little more care, a running
time of O(m log n) can be obtained. So this is
a polynomial-time algorithm.

This algorithm computes a maximal set T such
that (V, T) contains no cycle. In other words,
(V, T) is a tree. It is not completely obvious that
the output (V, T) is always an optimal solution,
i.e., a tree with minimum weight. Let us give the
nice and instructive proof of this fact:

3.1 Proof of correctness

Let (V, T ∗) be an optimal tree, and choose T ∗

so that |T ∗ ∩ T | is as large as possible. Suppose
T ∗ 6= T .

All spanning trees have exactly |V | − 1 edges,
implying that T ∗ \ T 6= ∅. Let j ∈ {1, . . . ,m} be
the smallest index with ej ∈ T ∗ \ T .

Since the greedy algorithm did not add ej to T ,
there must be a cycle with edge set C ⊆ {ej} ∪
(T ∩ {e1, . . . , ej−1}) and ej ∈ C.

(V, T ∗ \ {ej}) is not connected, so there is a
set X ⊂ V with δ(X) ∩ T ∗ = {ej}. (Recall that
δ(X) denotes the set of edges with exactly one
endpoint in X.)

Now |C ∩ δ(X)| is even, so at least two. Let
ei ∈ (C ∩ δ(X)) \ {ej}. Note that i < j and thus
c(ei) ≤ c(ej).

Let T ∗∗ := (T ∗\{ej})∪{ei}. Then (V, T ∗∗) is a
tree with c(T ∗∗) = c(T ∗)− c(ej) + c(ei) ≤ c(T ∗).
So T ∗∗ is also optimal. But T ∗∗ has one edge
more in common with T (the edge ei) than T ∗,
contradicting the choice of T ∗.

3.2 Generalizations

In general (and for any of the other problems
above), no simple “greedy” algorithm will always
find an optimal solution.

The reason that it works for spanning trees is
that here the feasible solutions form the bases of
a matroid. Matroids are a well-understood com-
binatorial structure that can in fact be character-
ized by the optimality of the greedy algorithm.

Generalizations like optimization over the in-
tersection of two matroids or minimization of sub-
modular functions (given by an oracle) can also
be solved in polynomial time, with more compli-
cated combinatorial algorithms.

4 Duality and Min-Max Equations

Relations between different problems can lead to
many important insights and algorithms. We give
some well-known examples.

4.1 Max-Flow Min-Cut Theorem

We begin with the maximum flow problem and its
relation to s-t-cuts. An s-t-cut is the set of edges
leaving X (denoted by δ+(X)) for a set X ⊂ V
with s ∈ X and t /∈ X.

The total capacity of the edges in such an s-t-
cut, denoted by u(δ+(X)), is an upper bound on
the value of any s-t-flow f in (G, u). This is be-
cause this value is precisely f(δ+(X))−f(δ−(X))
for every set X containing s but not t, and
0 ≤ f(e) ≤ u(e) for all e ∈ E.

The famous max-flow min-cut theorem says
that the upper bound is tight: the maximum
value of an s-t-flow equals the minimum capac-
ity of an s-t-cut.

In other words: if f is any s-t-flow with max-
imum value, then there is a set X ⊂ V with
s ∈ X, t /∈ X, f(e) = u(e) for all e ∈ δ+(X),
and f(e) = 0 for all e ∈ δ−(X).

Indeed, if no such set exists, we can find a di-
rected path P from s to t in which each edge
e = (v, w) is either an edge of G with f(e) < u(e),
or the reverse e′ := (w, v) is an edge of G with
f(e′) > 0. (This follows from letting X be the set
of vertices that are reachable from s along such
paths.)

Such paths are called augmenting paths because
along such a path we can augment the flow by
increasing the flow on forward edges and decreas-
ing it on backward edges. Some flow algorithms
(but generally not the most efficient ones) start
with the all-zero flow and successively find an
augmenting path.

The figure below shows how to augment the
flow shown in Section 1.2 by one unit along the
path a−c−b− t. The resulting flow with value 8,

4

shown on the right, is optimal, as is proved by the
s-t-cut δ+({s, a, c}) = {(a, b), (c, t)} of capacity 8.

s

a b

c t

4 3

2

3
5

1 1 s

a b

c t

4 3

3

4
5

1 0

The above relation also shows that for finding
an s-t-cut with minimum capacity, it suffices to
solve the maximum flow problem. This can also
be used to compute a minimum cut in an undi-
rected graph or to compute the connectivity of a
given graph.

Any s-t-flow can be decomposed into flows on s-
t-paths, and possibly on cycles (but cyclic flow is
redundant as it does not contribute to the value).
This decomposition can be done greedily, and
then the list of paths is sufficient to recover the
flow. This shows that one can restrict to a fi-
nite number of feasible solutions without loss of
generality.

4.2 Disjoint paths

If all capacities are integral (i.e., are integers), one
can find a maximum flow by always augmenting
by 1 along an augmenting path, until none ex-
ists anymore. This is not a polynomial-time algo-
rithm (because the number of iterations can grow
exponentially in the instance size), but it shows
that in this case there is always an optimal flow
that is integral. An integral flow can be decom-
posed into integral flows on paths (and possibly
cycles).

Hence, in the special case of unit capacities, an
integral flow can be regarded as a set of pairwise
edge-disjoint s-t-paths. Therefore, the max-flow
min-cut theorem implies the following theorem,
due to Karl Menger:

Let (V,E) be a directed graph and s, t ∈ V .
Then the maximum number of paths from s to
t that are pairwise edge-disjoint equals the mini-
mum number of edges in an s-t-cut.

Other versions of Menger’s theorem exist, for
instance, for undirected graphs and for (inter-
nally) vertex-disjoint paths.

In general, finding disjoint paths with pre-
scribed endpoints is difficult: For example, it is

NP-complete to decide whether in a given di-
rected graph with vertices s and t there is a path
P from s to t and a path Q from t to s such that
P and Q are edge-disjoint.

4.3 LP duality

The maximum flow problem (and also gener-
alizations like minimum-cost flows and multi-
commodity flows) can be formulated as linear pro-
grams in a straightforward way.

Most other combinatorial optimization prob-
lems involve binary decisions and can be for-
mulated naturally as (mixed-)integer linear pro-
grams. We give an example for the matching
problem.

The matching problem can be written as inte-
ger linear program

max
{
1
>x : Ax ≤ 1, xe ∈ {0, 1} ∀e ∈ E

}
where A is the vertex-edge-incidence matrix of
the given graph G = (V,E), 1 = (1, 1, . . . , 1)>

denotes an appropriate all-one vector (so 1
>x is

just an abbreviation of
∑
e∈E xe), and ≤ is meant

component-wise. The feasible solutions to this
integer linear program are exactly the incidence
vectors of matchings in G.

Solving integer linear programs is NP-hard in
general (cf. Section 5.2), but linear programs
(without integrality constraints) can be solved in
polynomial time (−→ Continuous Optimization).
This is one reason why it is often useful to con-
sider the linear relaxation, which here is:

max
{
1
>x : Ax ≤ 1, x ≥ 0

}
,

where 0 and 1 denote appropriate all-zero and
all-one vectors, respectively. Now the entries of x
can be any real numbers between 0 and 1.

The dual LP is:

min
{
y>1 : y>A ≥ 1, y ≥ 0

}
.

By weak duality, every dual feasible vector y
yields an upper bound on the optimum. (Indeed,
if x is the incidence vector of a matching M and
y ≥ 0 with y>A ≥ 1, then |M | = 1

>x ≤ y>Ax ≤
y>1.)

If G is bipartite, it turns out that these two
LPs actually have integral optimal solutions. The

5

minimal integral feasible solutions of the dual LP
are exactly the incidence vectors of vertex covers
(sets X ⊆ V such that every edge has at least one
endpoint in X).

In other words, in any bipartite graph G, the
maximum size of a matching equals the minimum
size of a vertex cover. This is a theorem of Dénes
Kőnig. It can also be deduced from the max-flow
min-cut theorem.

For general graphs, this is not the case, as for
example the triangle (complete graph on three
vertices) shows. Nevertheless, the convex hull of
incidence vectors of matchings in general graphs
can also be described well: it is{
x : Ax ≤ 1, x ≥ 0,

∑
e∈E[A]

xe ≤
⌊ |A|

2

⌋
∀A ⊆ V

}
,

where E[A] denotes the set of edges whose end-
points both belong to A. This was shown by Jack
Edmonds (1965), who also found a polynomial-
time algorithm. In contrast, the problem of find-
ing a minimum vertex cover in a given graph is
NP-hard.

5 Dealing with NP-Hard Problems

The other three problems mentioned above (see
Sections 1.4, 1.5, and 1.6) are NP-hard: they have
a polynomial-time algorithm if and only if P=NP.

Since most researchers believe that P6=NP, they
gave up looking for polynomial-time algorithms
for NP-hard problems. Weaker goals strive for
algorithms that, for instance,

• solve interesting special cases in polynomial
time;

• run in exponential time but faster than triv-
ial enumeration;

• always compute a feasible solution whose
value is at most k times worse than the opti-
mum (so-called k-approximation algorithms;
see Section 5.1);

• are efficient or compute good solutions for
most instances, in some probabilistic model;

• are randomized (use random bits in their
computation) and have a good expected be-
haviour; or

• run fast and produce good results in practice
although there is no proof (heuristics).

5.1 Approximation algorithms

From a theoretical point of view, the notion of
approximation algorithms has proved to be most
fruitful. For example, for the knapsack problem
(cf. Section 1.4) there is an algorithm that for any
given instance and any given number ε > 0 com-
putes a solution at most 1 + ε times worse than
the optimum, and whose running time is propor-

tional to n2

ε . For the traveling salesman problem
(cf. Section 1.5 and −→ Traveling Salesman Prob-
lem), there is a 3

2 -approximation algorithm.
For set covering (cf, Section 1.6) there is no

constant factor approximation algorithm unless
P=NP. But consider the special case where we
ask for a minimum vertex cover in a given graph
G: here U is the edge set of G and Si = δ(vi) for
i = 1, . . . , n, where V = {v1, . . . , vn} is the vertex
set of G.

Here we can use the above-mentioned fact that
the size of any matching in G is a lower bound.
Indeed, take any (inclusion-wise) maximal match-
ing M (e.g., found by the greedy algorithm), then
the 2|M | endpoints of the edges in M form a ver-
tex cover. As |M | is a lower bound on the opti-
mum, this is a simple 2-approximation algorithm.

5.2 Integer linear optimization

Most classical combinatorial optimization prob-
lems can be formulated as integer linear programs

min
{
c>x : Ax ≤ b, x ∈ Zn

}
.

This includes all problems discussed in this chap-
ter, except the maximum flow problem, which is
in fact a linear program (−→ Continuous Opti-
mization). Often the variables are restricted to 0
or 1. Sometimes, some variables are continuous,
and others are discrete:

min
{
c>x : Ax+By ≤ d, x ∈ Rm, y ∈ Zn

}
.

Such problems are called mixed-integer linear
programs.

Discrete optimization comprises combinatorial
optimization but also general (mixed-)integer op-
timization problems with no special combinato-
rial structure.

6

For general (mixed-)integer linear optimiza-
tion, all known algorithms have exponential
worst-case running time. The most successful al-
gorithms in practice use a combination of cutting
planes and branch-and-bound (see Sections 6.2
and 6.7). These are implemented in advanced
commercial software. Since many practical prob-
lems (including almost all classical combinato-
rial optimization problems) can be described as
(mixed-)integer linear programs, such software
is routinely used in practice to solve small and
medium-size instances of such problems. How-
ever, combinatorial algorithms that exploit the
specific structure of the given problem are nor-
mally superior, and often the only choice for very
large instances.

6 Techniques

Since good algorithms have to exploit the struc-
ture of the problem, every problem requires differ-
ent techniques. Some techniques are quite general
and can be applied for a large variety of problems,
but in many cases they will not work well. Never-
theless we list the most important techniques that
have been applied successfully to several combi-
natorial optimization problems.

6.1 Reductions

Reducing an unknown problem to a known (and
solved) problem is the most important technique
of course. To prove hardness, one proceeds the
other way round: we reduce a problem that we
know to be hard to a new problem (that then also
must be hard). If reductions work in both ways,
problems can actually regarded to be equivalent.

6.2 Enumeration techniques

Some problems can be solved by skillful enumera-
tion. Dynamic programming is such a technique.
It works if optimal solutions arise from optimal
solutions to “smaller” problems by simple opera-
tions. Dijkstra’s shortest path algorithm is a good
example. Many algorithms on trees use dynamic
programming.

Another well-known enumeration technique is
branch-and-bound. Here one enumerates only

parts of a decision tree because lower and up-
per bounds tell us that the unvisited parts can-
not contain a better solution. How well this works
mainly depends on how good the available bounds
are.

6.3 Reducing or decomposing the
instance

Often, an instance can be pre-processed by re-
moving irrelevant parts. In other cases, one can
compute a smaller instance or an instance with a
certain structure, whose solution implies a solu-
tion of the original instance.

Another well-known technique is divide-and-
conquer. In some problems, instances can be
decomposed/partitioned into smaller instances,
whose solutions can then be combined in some
way.

6.4 Combinatorial or algebraic
structures

If the instances have a certain structure (like pla-
narity or certain connectivity or sparsity prop-
erties of graphs, cross-free set families, matroid
structures, submodular functions, etc.), this must
usually be exploited.

Also, optimal solutions (of relaxations or the
original problem) often have a useful structure.
Sometimes (e.g., by sparsification or uncrossing
techniques) such a structure can be obtained even
if it is not there originally.

Many algorithms compute and use a combi-
natorial structure as a main tool. This is often
a graph structure, but sometimes an algebraic
view can reveal certain properties. For instance,
the Laplacian matrix of a graph has many use-
ful properties. Sometimes simple properties, like
parity, can be extremely useful and elegant.

6.5 Primal-dual relations

We discussed LP duality, a key tool for many al-
gorithms, above. Lagrangian duality can also be
useful for nonlinear problems. Sometimes other
kinds of duality, like planar duality or dual ma-
troids are very useful.

7

6.6 Improvement techniques

It is natural to start with some solution and it-
eratively improve it. The greedy algorithm and
finding augmenting paths can be considered as
special cases. In general, some way of measur-
ing progress is needed so that the algorithm will
terminate.

The general principle of starting with any feasi-
ble solution and iteratively improving it by small
local changes is called local search. Local search
heuristics are often quite successful in practice,
but in many cases no reasonable performance
guarantees can be given.

6.7 Relaxation and rounding

Relaxations can arise combinatorially (by allow-
ing solutions that do not have a certain prop-
erty that was originally required for feasible solu-
tions), or by omitting integrality constraints of a
description as an optimization problem over vari-
ables in R

n.
Linear programming formulations can imply

polynomial-time algorithms even if they have ex-
ponentially many variables or constraints (by the
equivalence of optimization and separation). Lin-
ear relaxations can be strengthened by adding
further linear constraints, called cutting planes.

One can also consider non-linear relaxations.
In particular, semidefinite relaxations have been
used for some approximation algorithms.

Of course, after solving a relaxation, the orig-
inally required property must be restored some-
how. If a fractional solution is made integral, this
is often called rounding. Sophisticated rounding
algorithms for various purposes have been devel-
oped.

6.8 Scaling and rounding

Often, a problem becomes easier if the numbers
in the instance are small integers. This can be
achieved by scaling and rounding, of course at
a loss of accuracy. The knapsack problem (cf.
Section 1.4) is a good example: the best algo-
rithms use scaling and rounding and then solve
the rounded instance by dynamic programming.

In some cases, a solution of the rounded in-
stance can be used in subsequent iterations to

obtain more accurate, or even exact, solutions of
the original instance faster.

6.9 Geometric techniques

Geometric techniques are also playing an increas-
ing role. Describing (the convex hull of) feasible
solutions by a polyhedron is a standard technique.
Planar embeddings of graphs (if existent) can of-
ten be exploited in algorithms. Approximating a
certain metric space by a simpler one is an im-
portant technique in the design of approximation
algorithms.

6.10 Probabilistic techniques

Sometimes, a probabilistic view makes problems
much easier. For example, a fractional solution
can be viewed as a convex combination of extreme
points, or as a probability distribution. Arguing
over the expectation of some random variables
can lead to simple algorithms and proofs. Many
randomized algorithms can be derandomized, but
this often complicates matters.

Further Reading

1. Korte, B., Vygen, J. 2012. Combinatorial Op-
timization: Theory and Algorithms. Berlin:
Springer; 5th edition

2. Schrijver, A. 2003. Combinatorial Optimization:
Polyhedra and Efficiency. Berlin: Springer

