
1

BonnTools: Mathematical Innovation for Layout
and Timing Closure of Systems on a Chip

Bernhard Korte, Dieter Rautenbach, and Jens Vygen

Abstract— The BonnTools provide innvovative solutions for
layout and timing closure that are used for many of the most
complex integrated circuits. During 20 years of cooperation
between the University of Bonn and IBM, new mathematical
foundations and algorithms have been developed for the need
of new technologies and leading-edge designs. In this paper we
present the main ideas for placement, routing, timing optimiza-
tion, and clock tree synthesis, which are the foundation of a
continuing success story.

Index Terms— physical design, layout, placement, routing,
timing optimization, clock tree synthesis

I. INTRODUCTION

The rapid development of VLSI technology, the abun-
dance of interesting and clearly defined optimization problems
arising in various design steps, the huge and exponentially
increasing instance sizes, and the economic relevance make
VLSI design a most appealing application area of mathematics.

The Research Institute for Discrete Mathematics at the
University of Bonn has been working on problems arising
in VLSI design for twenty years. Since 1987 there exists an
intensive and growing cooperation with IBM, in the course
of which more than one thousand chips of IBM and its
customers have been designed with BonnTools. These contain
complete solutions for placement, timing closure, clock tree
synthesis, and routing, which have been developed in Bonn
and are being used in many design centers all over the world.
In 2005 the cooperation was extended to include Magma
Design Automation. BonnTools are now also part of Magma’s
products and are used by its customers.

The distinguishing feature of BonnTools is their innovative
mathematics. Almost all classical combinatorial optimization
problems arise at some stage in VLSI design (cf. [26], [25]),
and very efficient algorithms for these problems can be used
to solve various subproblems in the design flow. However,
many problems do not fit into standard patterns and need
new customized algorithms. Many such algorithms have been
developed by our group in Bonn and are now part of the
design flow. By new technological challenges, new orders of
magnitude in instance sizes, and new foci on objectives like
power or yield, new problems arise constantly and classical
problems require new solutions. This makes this field most
interesting not only for engineers, but also for mathematicians.

In this paper we describe the key mathematical components
of BonnTools. They are all used intensively for complex
industrial chips. Many microprocessor series and hundreds of

The authors are with the Research Institute for Discrete Mathematics,
University of Bonn, Lennéstr. 2, 53113 Bonn, Germany

Manuscript received April 12, 2006; revised August 31, 2006

ASICs, including the most complex system-on-a-chip (SoC)
designs, have been designed with these tools. In almost all
cases the design is not done in a hierarchical mode, but with
millions of movable objects on the top level, a few of which
are large macros representing memory or logic cores or analog
components. This almost flat design style allows for better
solutions and decreases design cost and time-to-market, but
poses challenges to running times of algorithms in order to
meet tight turn-around-time requirements.

This paper is organized as follows. First, in Section II, we
describe our placement tool BonnPlace and its key algorithmic
ingredients. Global placement uses quadratic placement and a
new multisection algorithm. Detailed placement is based on a
sophisticated minimum cost flow formulation.

In Section III we proceed to timing optimization, where we
concentrate on the three most important topics: repeater trees,
logic restructuring, and choosing physical realizations of gates
(sizing and Vt-assignment). These are the main components of
BonnTimeOpt, and each uses very new mathematical theory.

As described in Section IV, BonnCycleOpt further opti-
mizes the timing and robustness by enhanced clock skew
scheduling. It computes a time interval for each clock input
of a storage element. BonnClock, our tool for clock tree
synthesis, constructs clock trees meeting these time constraints
and minimizing power consumption.

Finally, Section V is devoted to routing. Our router, Bonn-
Route, contains the first global router that directly considers
timing, power, and yield, and is provably close to optimal.
The unique feature of our detailed router is an extremely fast
implementation of Dijkstra’s shortest path algorithm, allowing
us to find millions of shortest paths even for long-distance nets
in very reasonable time.

II. PLACEMENT

BonnPlace consists of global and detailed placement. Global
placement ends with an infeasible placement, but with over-
laps that can be removed by local moves: there is no large
region that contains too many objects. Detailed placement, or
legalization, takes the global placement as input and legalizes
it by making only local changes.

Our global placement has two major components: quadratic
placement and multisection.

At each stage the chip area [xmin, xmax] × [ymin, ymax]
is partitioned by coordinates xmin = x0 ≤ x1 ≤ x2 ≤
. . . ≤ xn−1 ≤ xn = xmax and ymin = y0 ≤ y1 ≤ y2 ≤
. . . ≤ ym−1 ≤ ym = ymax into an array of regions Rij =
[xi−1, xi] × [yj−1, yj] for i = 1, . . . , n and j = 1, . . . ,m.
Initially, n = m = 1. Each movable object is assigned to one
region (cf. Figure 1).

2

Fig. 1. The initial four levels of the global placement with 1, 4, 16, and 64
regions. Colors indicate the assignment of the movable objects to the regions.

In the course of global placement, columns and rows of
this array, and thus the regions, are subdivided, and movable
objects are assigned to subregions. After global placement,
these rows correspond to circuit rows with the height of
standard cells, and the columns are small enough so that no
region contains more than a few dozen movable objects. On a
typical chip in 65 nm technology we have, depending on the
library and die size, about 5000 rows and 1000 columns.

A. Quadratic Placement

Quadratic placement means solving

min
∑

N∈N

w(N)
|N | − 1

∑
p,q∈N

(Xp,q + Yp,q),

where N is the set of nets, each net N is a set of pins, |N | is
its cardinality (which we assume to be at least two), and w(N)
is the weight of the net, which can be any positive number.
For two pins p and q of the same net, Xp,q is the function
(i) (x(C) + x(p)− x(D)− x(q))2 if p belongs to movable

object C with offset x(p), q belongs to movable object
D with offset x(q), and C and D are assigned to regions
in the same column.

(ii) (x(C) + x(p)− v)2 if p belongs to movable object C
with offset x(p), C is assigned to region Ri,j , q is
fixed at a position with x-coordinate u, and v =
max{xi−1,min{xi, u}}.

(iii) (x(C) + x(p)− xi)
2 + (x(D) + x(q)− xi′−1)

2 if p be-
longs to movable object C with offset x(p), q belongs
to movable object D with offset x(q), C is assigned to
region Ri,j , D is assigned to region Ri′,j′ , and i < i′.

(iv) 0 if both p and q are fixed.
Yp,q is defined analogously, but with respect to y-coordinates,
and with rows playing the role of columns.

In its simplest form, with n = m = 1, quadratic placement
gives coordinates that optimize the weighted sum of squares of
Euclidean distances of pin-to-pin connections (cf. the top left
part of Figure 1). Replacing multiterminal nets by cliques (i.e.
considering a connection between p and q for all p, q ∈ N) is
the best one can do, as was shown in [10]. Dividing the weight
of a net by |N | − 1 is necessary to prevent large nets from
dominating the objective function. Splitting nets along cut
coordinates as in (ii) and (iii), first proposed in [42], partially
linearizes the objective function and reflects the fact that long
nets will be buffered later.

There are several reasons for optimizing this quadratic
objective function. Firstly, delay along unbuffered wires grows
quadratically with the length. Secondly, quadratic placement
yields unique positions for most movable objects, allowing
one to deduce much more information than the solution to
a linear objective function would yield. Thirdly, as shown
in [47], quadratic placement is stable, i.e. almost invariant
to small netlist changes. Finally, quadratic placement can be
solved extremely fast.

To compute a quadratic placement, first observe that the
two independent quadratic forms, with respect to x- and y-
coordinates, can be solved independently in parallel. More-
over, each row and column can be considered separately and
in parallel. We solve each quadratic program by the conjugate
gradient method with incomplete Cholesky preconditioning.
The running time depends on the number of variables, i.e. the
number of movable objects, and the number of nonzero entries
in the matrix, i.e. the number of pairs of movable objects that
are connected. As large nets result in a quadratic number of
connections, we replace large cliques, i.e. connections among
large sets of pins in the same net that belong to movable
objects assigned to regions in the same column (or row when
considering y-coordinates), equivalently by stars, introducing
a new variable for the center of a star. This has been proposed
in [42] and [8].

The running time to obtain sufficient accuracy grows
slightly faster than linearly. There are linear-time multigrid
solvers, but they do not seem to be faster in practice. We can
compute a quadratic placement within at most a few minutes
for 5 million movable objects. This is for the unpartitioned
case n = m = 1; the problem becomes easier by partitioning,
even when sequential running time is considered.

It is probably not possible to add linear inequality con-
straints to the quadratic program without a significant impact
on the running time. However, linear equality constraints can
be added easily, as was shown by [22]. Before partitioning,
we analyze the quadratic program and add center-of-gravity
constraints to those regions whose movable objects are not
sufficiently spread. As the positions are the only information
considered by partitioning, this is necessary to avoid random
decisions.

B. Multisection
Quadratic placement usually has many overlaps which can-

not be removed locally. Before legalization we have to ensure
that no large region is overloaded. For this our global place-
ment has a second main ingredient, which we call multisection.

3

��

��

��

��

�	

�

�

��

��

��

��

��

��

� ��

C1, . . . , Cn

R1, . . . , Rk

Fig. 2. Modeling multisection as a Hitchcock transportation problem. All
arcs are oriented from left to right and are uncapacitated. Vertices on the left
correspond to movable objects and have supply a1, . . . , an. Vertices on the
right correspond to subregions and have demand b1, . . . , bk . The cost of an
arc (Ci, Rj) is d(i, j). Note that k � n.

The basic idea is to partition a region and assign each
movable object to a subregion. While capacity constraints have
to be observed, the total movement should be minimized, i.e.
the positions of the quadratic placement should be changed as
little as possible.

More precisely, let C1, . . . , Cn be the movable objects
in a region, with sizes a1, . . . , an. Let R1, . . . , Rk be the
subregions with capacities b1, . . . , bk, and let d(i, j) denote
the cost of moving Ci to Rj . Then we look for an assignment
f : {1, . . . , n} → {1, . . . , k} such that

∑
i:f(i)=j ai ≤ bj for

j = 1, . . . , k and
∑n

i=1 d(i, f(i)) is minimum.
This partitioning strategy has been proposed in [42] for k =

4, and then generalized to arbitrary k in [8]. The problem
is NP-hard, but it suffices to solve the fractional relaxation,
where we look for g : {1, . . . , n} × {1, . . . , k} → [0, 1] such
that

∑k
j=1 g(i, j) = 1 for i = 1, . . . , n,

∑n
i=1 g(i, j)ai ≤ bj

for j = 1, . . . , k, and
∑n

i=1

∑k
j=1 g(i, j)d(i, j) is minimum.

The reason is that from any optimum fractional solution an
almost integral one, with at most k − 1 fractionally assigned
movable objects, can easily be obtained [45].

This fractional relaxation is a Hitchcock transportation
problem (cf. Figure 2), and can thus be solved by standard
minimum cost flow algorithms (cf. [26]). However, these
have a superquadratic running time and are too slow. For the
quadrisection case, where k = 4 and d is the `1-distance,
we described a linear-time algorithm in [45], which is quite
complicated but very efficient. For the general case Brenner
[5] recently proposed an O(nk2(log n + k log k))-algorithm.
This is extremely fast also in practice and has replaced the
quadrisection algorithm of [45] in BonnPlace.

The idea is based on the well-known successive shortest
paths algorithm (cf. [26]). Assume a1 ≥ a2 ≥ · · · ≥ an.
We assign the objects in this order. A key observation is that
for doing this optimally we need to re-assign only O(k2)
previously assigned objects and thus can apply a minimum
cost flow algorithm in a digraph whose size depends on k
only. Note that k is less than 10 in all our applications, while
n can be in the millions.

Figure 3 shows a multisection example where the movable
objects are assigned optimally to nine regions.

Fig. 3. Example for multisection: objects are assigned to 3× 3 subregions.
The colors reflect the assignment: the red objects are assigned to the top left
region, the yellow ones to the top middle region, and so on. This assignment
is optimal with respect to total `1-distance.

C. Overall Global Placement

With these two components, quadratic placement and mul-
tisection, our global placement can be described. Each level
begins with a quadratic placement. Before subdividing the
array of regions further, we fix macro cells that are too
large to be assigned completely to a subregion. Our macro
placement uses minimum cost flow, branch-and-bound, and
greedy techniques. Interaction of small and large blocks in
placement is still not fully understood, and placing large
macros in practice typically requires a significant amount of
manual interaction.

After partitioning the array of regions, the movable objects
are assigned to the resulting subregions. Several strategies are
applied (see [8] for details), but the core subroutine in each
case is the multisection described above. An important further
step is repartitioning, where 2 × 2 or even 3 × 3 subarrays
of regions are considered and all their movable objects are
reassigned to these regions, essentially by computing a local
quadratic placement followed by multisection.

There are further components which reduce routing con-
gestion [7], deal with timing and resistance constraints, and
handle other constraints like user-defined bounds on coordi-
nates or distances of some objects. Global placement ends
when the rows correspond to cell rows. Typically there are
fewer columns than rows as most movable objects are wider
than high. Therefore we often use 2×3 partitioning in the late
stages of global placement.

D. Detailed Placement

Detailed placement, or legalization, considers standard cells
(movable objects of unit height) only; all others are fixed
beforehand. The task is to place the standard cells legally
without changing the (illegal) input placement too much. It

4

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

2

1 1

3

1

2 1

2

2

4

1

2
41

1

2

2 5

5

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

14

4
2

2
5 5 5

6

63

3

3

6 − 3 − 5

3 − 4 6 − 1

1

1
3
2

2 1

1

2
5

4

4 − 2 − 5 2−3−5−4

2 − 1 − 4

2 4
1

Fig. 4. An example with two zones and six regions, each of width 10 (top
left), the supply (red) and demand (green) regions and intervals with their
supply and demand (bottom left), and the minimum cost flow instance (right)
with a solution shown in brown numbers. To realize this flow, objects of size
2, 2, and 5, respectively, have to be moved from the top regions downwards.

is quite natural to model this problem as a minimum cost
flow problem, where flow goes from supply regions with too
many objects to demand regions with extra space [43]. We
have refined this approach in [11] and describe this enhanced
legalization algorithm, which is part of BonnPlace, in the
following.

It consists of three phases. By a zone we mean a maximal
part of a cell row that is not blocked by any fixed objects,
i.e. can be used for legalization. The first phase guarantees
that no zone contains more cells than fit into it. The second
phase places the cells legally within each zone in the given
order. When minimizing quadratic movement, this can be done
optimally in linear time, as shown in [11] (see also [20] and
[9]). Finally, some post-optimization heuristics (like exchang-
ing two cells, but also much more complicated operations) are
applied.

The most difficult and important phase is the first one. If
the global placement is very dense in some areas, a significant
number of cells have to be moved. As phase two works in
each zone separately, phase one has to guarantee that no zone
contains more objects than fit into it.

In order to prevent large distance movements within the
zones in phase two, wide zones are partitioned into regions.
Each movable object is assigned to a region. Unless all
movable objects that are assigned to a region R can be placed
legally with their center in R, some of them have to be
moved out of R. But this is not sufficient: in addition, it may
be necessary to move some objects out of certain sequences
of consecutive regions. More precisely, for a sequence of
consecutive regions R1, . . . , Rk within a zone, we define its
supply by

supp(R1, . . . , Rk) :=

max

{
0,

k∑
i=1

(w(Ri)− a(Ri))−
1
2
(wl(R1) + wr(Rk))

−
∑

1≤i<j≤k,(i,j) 6=(1,k)

supp(Ri, . . . , Rj)

}
,

Fig. 5. Small part of a real chip in legalization. Supply regions and intervals
are shown in red, demand regions and intervals in green. The blue edges
represent the minimum cost flow, and their width is proportional to the amount
of flow.

where a(Ri) is the width of region Ri, w(Ri) is the total width
of cells that are currently assigned to region Ri, and wl(Ri)
and wr(Ri) are the widths of the leftmost and rightmost cell
in Ri, respectively, or zero if Ri is the leftmost (rightmost)
region within the zone.

If supp(R1, . . . , Rk) is positive, (R1, . . . , Rk) is called
a supply interval. Similarly, we define the demand of each
sequence of consecutive regions, and the demand intervals.
The regions, supply intervals and demand intervals form a di-
graph in which we compute a minimum cost flow that cancels
demands and supplies. The construction of this minimum cost
flow instance is illustrated in Figure 4. Figure 5 shows a typical
result on a real chip.

Finally the flow is realized by moving objects along flow
arcs. We scan the arcs carrying flow in topological order and
solve a multi-knapsack problem by dynamic programming for
selecting the best set of cells to be moved for realizing the
flow on each arc.

The minimum cost flow formulation yields an optimum
solution under some assumptions, and an excellent one in
practice. Experimental results show that the gap between a
computed solution and a theoretical lower bound is only
approximately 10%, and neither timing nor routability is
significantly affected [6].

III. TIMING OPTIMIZATION

In this section we describe the main ingredients of Bonn-
TimeOpt, our timing optimization routines. These include
algorithms for the construction of timing- and routing-aware
fanout trees (repeater trees), for the timing-oriented logic
restructuring and optimization, and for the timing- and power-
aware choice of different physical realizations of individual
gates. Each is based on new mathematical theory.

Altogether, these routines combined with appropriate net
weight generation and iterative placement runs form the so-
called fast timing-driven placement loop, our solution for
timing closure. Using these new very fast subroutines, we
managed to decrease the overall turn-around time for timing

5

closure, including full placement and timing optimization,
from more than a week to 26 hours on the largest designs.

A. Fanout Trees

On an abstract level the task of a fanout tree is to carry a
signal from one gate, the root r of the fanout tree, to other
gates, the sinks s1, . . . , sn of the fanout tree, as specified by
the netlist. If the involved gates are not too numerous and
not too far apart, then this task can be fulfilled just by a metal
connection of the involved pins, i.e. by a single net without any
repeaters. But in general we need to insert repeaters (buffers
or inverters).

In fact, fanout trees are a very good example for the
observation mentioned in the introduction that the develop-
ment of technology continually creates new complex design
challenges that also require new mathematics for their solution.
Whereas circuit delay traditionally dominated the interconnect
delay and the construction of fanout trees was of secondary
importance for timing, the feature size shrinking is about to
change this picture drastically. Extending the current trends
one can predict that in future technologies more than half of all
circuits of a design will be needed just for bridging distances,
i.e. in fanout trees.

An instance of the repeater tree problem consists of (i)
the arrival time AT (r) at the root r and a required ar-
rival time RAT (s) at each sink s, (ii) a parity in {+,−}
for each sink indicating whether it requires the signal or
its inversion, (iii) placement information for the root and
the sinks Pl(r), P l(s1), P l(s2), ..., P l(sn) ∈ [xmin, xmax] ×
[ymin, ymax], (iv) physical information about the driver
strength of r and the input capacitances InputCap(si) of the
sinks, and (v) physical information about the wiring and the
library of available repeaters.

The procedure that we propose for fanout tree construction
[4] works in two phases. The criticality of the individual sinks
is estimated by taking their required signal arrival times, their
input capacitances, their distance from the root, and the driver
strength of the root into account. The first phase generates a
preliminary topology for the fanout tree, which connects very
critical sinks in such a way as to maximize the minimum slack,
and which minimizes wiring for non-critical sinks. During the
second phase the resulting topology is finalized and buffered
in a bottom-up fashion using mainly inverters and respecting
the parities of the sinks.

In order to quantify the criticality of an individual sink s, we
estimate the slack σs that arises at s if we connect s to r via
an optimally buffered 2-terminal fanout tree. Since optimally
buffering a 2-point connection approximately linearizes the
delay as a function of the distance, we can consider the delay
from r to s to be proportional to their distance and obtain

σs := RAT (s)−AT (r)− cwiredist(Pl(r), P l(s))
−f1(InputCap(s))− f2(r)

where f1 and f2 are estimates of the delay effects of the input
capacitance of s and the driver strength of r. We determine the
involved constants and functions in a preprocessing step. The
striking accuracy of this very simple delay model is illustrated

0 0.5 1 1.5 2

estimated delay (ns)

0

0.5

1

1.5

2

ex
ac

t d
el

ay
 a

ft
er

 b
uf

fe
ri

ng
 a

nd
 s

iz
in

g
(n

s)

Fig. 6. The simple timing model used for topology generation matches actual
timing results after buffering well.

in Figure 6, which compares the estimated delay with the
measured delay after buffering and sizing.

The individual sinks are now inserted one by one into the
preliminary topology in order of non-increasing criticality,
i.e. non-decreasing value of σs. A preliminary topology is a
pair (T, P l) where T is an arborescence and Pl : V (T) →
[xmin, xmax]× [ymin, ymax] is an embedding of the vertices of
T in the chip area. T is rooted at r and the leaves of T are
precisely the sinks si. In T the root r has one child and all
internal nodes have exactly two children.

When we insert a new sink s, we consider all arcs e =
(u, v) ∈ E(T) of the preliminary topology constructed so far
and estimate the effect of subdividing e by a new internal node
w and connecting s to w in a shortest possible way.

The additional wiring amounts to le = dist(Pl(s), P l(w)).
In order to quantify the delay effects, one has to observe that

the final fanout tree will contain some first gates on the paths
from w to the sinks. These represent an additional capacitance.
We model this by adding a delay contribution cnode to the
estimated delays on the two branches emanating at w. cnode

is determined during preprocessing and is about 10 to 20ps.
The sink s will be inserted in an arc e of T that maximizes

ξσe − (100 − ξ)le, where σe estimates the corresponding
worst slack. The parameter ξ ∈ [0, 100] allows us to favor
slack maximization for timing critical instances or wiring
minimization for non-critical instances. Figure 7 gives an
example for a preliminary topology.

In most cases it is reasonable to choose values for ξ that
are neither too small nor too large. Nevertheless, in order
to mathematically validate our procedure we have proved
optimality statements for the extreme values ξ = 0 and
ξ = 100. If we ignore timing (ξ = 0), the final length of
the topology is at most 3/2 times the minimum length of a
rectilinear Steiner tree connecting the root and the sinks. If we
ignore wiring (ξ = 100), the topology realizes the optimum
slack within our delay model (up to cnode for non-integral
input) [4].

After inserting all sinks into the preliminary topology, the
second phase begins, in which we insert the actual inverters.
For each sink s we create a cluster C containing only s. In
general a cluster C is assigned a position Pl(C), a set of sinks
S(C) all of the same parity, and an estimate W (C) for the

6

r

b

c

a RAT: -15
delay: -16
slack: -1

RAT: -16
delay: -13
slack: -3

RAT: -11
delay: -11
slack: -0

4

2
5

6

2

2

3

Fig. 7. An example for topology generation with AT (r) = 0, cwire = 1,
cnode = 2, f1 = f2 = 0, and three sinks a, b and c with displayed required
arrival times. The criticalities are σa = 15 − 0 − (4 + 2 + 6) = 3, σb =
16− 0− (4 + 2 + 3) = 7, and σc = 11− 0− (4 + 5) = 2. Our algorithm
first connects the most critical sink c to r. The next critical sink is a which is
inserted into the only arc (r, c) creating an internal node w. For the insertion
of the last sink b there are now three possible arcs (r, w), (w, a), and (w, c).
Inserting b into (w, a) creates the displayed topology whose worst slack is
−1, which is best possible here.

wiring capacitance of a net connecting a circuit at position
Pl(C) with the sinks in S(C). The elements of S(C) are
either original sinks of the fanout tree or inverters that have
already been inserted.

There are three basic operations on clusters. Firstly, if
W (C) and the total input capacitance of the elements of S(C)
reach certain thresholds, we insert an inverter I at position
Pl(C) and connect it by wire to all elements of S(C). We
create a new cluster C ′ at position Pl(C) with S(C ′) = {I}
and W (C) = 0. As long as the capacitance thresholds are not
attained, we can move the cluster along arcs of the preliminary
topology towards the root r. By this operation W (C) increases
while S(C) remains unchanged. Finally, if two clusters happen
to lie on a common position and their sinks are of the same
parity, we can merge them, but we may also decide to add
inverters for some of the involved sinks. This decision again
depends on the capacitance thresholds and on the objectives
timing and wirelength.

During buffering, the root connects to the clusters via the
preliminary topology and the clusters connect to the original
sinks si via appropriately buffered nets. Once all clusters have
been merged to one which arrives at the root r, the construction
of the fanout tree is completed.

The optimality statements which we proved within our delay
model and the final experimental results show that the second
phase nearly optimally buffers the desired connections. Our
procedure is extremely fast. The topology generation solved
4.6 million instances with up to 10000 sinks from a current
90 nm design in less than 100 seconds on a 2.6 GHz Opteron
machine [4], and the buffering is completed in less than 10
minutes. On average we deviated less than 1.5 % from the
minimum length of a rectilinear Steiner tree when minimizing
wire length, and less than 2 ps from the theoretical upper slack

bound when maximizing worst slack.
We are currently including enhanced buffering with respect

to timing constraints, wire sizing, and plane assignment in
our algorithm. We are also considering an improved topology
generation, in particular when placement or routing resources
are limited.

B. Fanin Trees

Whereas in the last section one signal had to be propagated
to many destinations via a logically trivial structure, we now
look at algorithmic tasks posed by the opposite situation in
which several signals need to be combined to one signal
as specified by some Boolean expression. The netlist itself
implicitly defines such a Boolean expression for all relevant
signals on a design. The decisions about these representations
were taken at a very early stage in the design process, i.e.
in logic synthesis, in which physical effects could only be
crudely estimated. At a relatively late stage of the physical
layout process much more accurate estimates are available. If
most aspects of the layout have already been optimized but
we still see negative slack at some gates, changing the logic
that feeds the gate producing the late signal is among the last
possibilities for eliminating the timing problem. Traditionally,
late changes in the logic are a delicate matter and only
very local modifications replacing some few gates have been
considered, also due to the lack of global algorithms.

To overcome the limitations of purely local and conservative
changes, we have developed a totally novel approach that
allows for the redesign of the logic on an entire critical
path taking all timing and placement information into account
[35]. Whereas most procedures for Boolean optimization of
combinational logic are either purely heuristic or rely on
exhaustive enumeration and are thus very time consuming,
our approach is much more effective.

Assume that we are given a critical path P which combines
a number of signals x1, x2, . . . , xn arising at certain times
AT (xi) and locations Pl(xi) by a sequence g1, g2, . . . , gm of
gates such that gj takes as inputs the output of gj−1 and some
of the xi and the output signal of gm is required at a certain
location within a given required arrival time.

Our algorithm first generates a standard format. It decom-
poses complex gates on P into elementary and- and or-gates
with fanin two plus inversions. Applying the de Morgan rules
we eliminate all inversions but those on input signals of P . We
arrive at a situation in which P is essentially represented by
a sequence of and- and or-gates. Equivalently, we could do
with nand-gates only, and we will indeed use nands for the
final realization. However, for the sake of a simpler description
of our algorithm, and- and or-gates are more suitable.

We now design an alternative, logically equivalent repre-
sention of the signal produced by gm as a function of the xi

in such a way that late input signals do not pass through too
many logic stages of this alternative representation. This is
easy if this sequence consists either just of and-gates or just
of or-gates. The most difficult case occurs if the and- and
or-gates alternate, i.e. the function calculated by P is of the

7

c e gd f h

f(a,...,h)

a

b

g

h

e

f

c

d

a

b
f(a,...,h)

g

h

e

f

c

d

a

b

f(a,...,h)

Fig. 8. Three logically equivalent circuits for the function f(a, b, ..., h) that
correspond to the formulas f(a, ..., h) = ((((((a∧b)∨c)∧d)∨e)∧f)∨g)∧h,
f(a, ..., h) = ((a∧b)∧((d∧f)∧h))∨(((((c∧d)∧f)∨(e∧f))∧h)∨(g∧h)),
and f(a, ..., h) = ((((a∧b)∧d)∨(c∧d))∧(f∧h))∨(((e∧f)∧h)∨(g∧h)).
The first path is a typical input of our procedure and the two alternative
netlists have been obtained by the dynamic programming procedure based
on the identity (1). Ignoring wiring and assuming unit delays for the gates,
the second netlist would for instance be optimal for AT (a) = AT (b) =
AT (g) = AT (h) = 3, AT (e) = AT (f) = 1, and AT (c) = AT (d) = 0
leading to an arrival time of 6 for f(a, ..., h) instead of 10 in the input path.

form

f(x1, x
′
1, x2, x

′
2, . . . , xn, x

′
n)

:= ((· · · (((x1 ∧ x′1) ∨ x2) ∧ x′2) · · ·) ∨ xn) ∧ x′n)

=
n∨

i=1

xi ∧

 n∧
j=i

x′j

 .

In this case we apply dynamic programming based on identi-
ties like the following:

f(x1, . . . , x
′
n) =f(x1, . . . , x

′
l) ∧

 n∧
j=l+1

x′j

 ∨ f(xl+1, . . . , x
′
n)

(1)

Our dynamic programming procedure maintains sets of useful
subfunctions such as f(xi, . . . , x

′
j) and

∧j
k=i x

′
k together

with estimated timing and placement information. In order to
produce the desired final signal, these sets of subfunctions
are combined using small sets of gates, and the timing and
placement information is updated. We maintain only those
representations that are promising. The final result of our algo-
rithm is found by backtracking through the data accumulated
by the dynamic programming. After having produced a faster
logical representation, we apply de Morgan rules once more

and collapse several consecutive elementary gates to more
complex ones if this improves the timing behaviour. In many
cases this results in structures mainly consisting of nand-gates
and inverters.

Our procedure is very flexible and contains the purely local
changes as a special case. Whereas the dynamic programming
procedure is quite practical and easily allows us to incorporate
physical insight as well as technical constraints, we can vali-
date its quality theoretically by proving interesting optimality
statements.

For example, let ε > 0 be arbitrarily small. If we neglect
placement information, assume non-negative integer arrival
times and further assume a unit delay for and- and or-
gates, then the arrival time of the signal as calculated by our
alternative realization is within a factor of (1 + ε) of the best
possible arrival time over all circuits using arbitrary gates with
fanin two [37].

Besides the described procedure for logic optimization on
critical paths we have developed theoretical machinery for
designing complex subfunctions taking timing information into
account [36].

C. Gate Sizing and Vt-Assignment
The two problems considered in this section consist of

making individual choices from some discrete sets of possible
physical realizations for each gate of the netlist such that some
global objective function is optimized.

For gate sizing one has to determine the size of the
individual gate measured for instance by its area or power
consumption. This size affects the input capacitance and driver
strength of the gate and therefore has an impact on timing. A
larger gate typically decreases downstream delay and increases
upstream delay.

Whereas the theoretically most well-founded approaches
for the gate sizing problem rely on convex programming
formulations [13], these approaches typically suffer from their
algorithmic complexity and restricted timing model. In many,
especially local situations, approaches that choose gate sizes
heuristically can produce competitive results because it is
much easier to incorporate local physical insight into heuristic
selection rules than into a sophisticated convex program. In
BonnTimeOpt we use both, a global formulation and convex
programming for the general problem as well as heuristics for
special purposes.

For the simplest form of the global formulation we consider
a directed graph G which encodes the netlist of the design. For
a set V0 of nodes v we are given signal arrival times av and
we must choose gate sizes x = (xv)v∈V (G) ∈ [l, u] ⊆ RV (G)

and arrival times for nodes not in V0 minimizing
∑

v∈V (G) xv

subject to the timing constraints av + d(v,w)(x) ≤ aw for
all arcs (v, w) ∈ E(G). The delay d(v,w)(x) of some arc
(v, w) is modeled by an arbitrary linear function with positive
coefficients depending on quotients of the form xw

xv
. Dualizing

the timing constraints via Lagrange multipliers λuv ≥ 0, the
dual optimality conditions imply that (λe)e∈E of an optimal
solution constitutes a non-negative flow on the graph G [13].

For given dual variables the problem reduces to minimizing
a weighted sum of the gate sizes x and delays duv(x) subject

8

to x ∈ [l, u], which can be done by a simple iterative procedure
with linear convergence rate [38]. The overall algorithm is the
classical constrained subgradient projection method (cf. [28]).
The known convergence guarantees for this algorithm require
an exact projection, which means that we have to determine
the above-mentioned non-negative flow on G that is closest to
some given vector (λe)e∈E .

Since this exact projection is actually the most time-
consuming part, practical implementations use crude heuristics
having unclear impact on convergence and quality. To over-
come this limitation, we proved in [39] that the convergence
of the algorithm is not affected by executing the projection
in an approximate and much faster way. This results in a
stable, fast, and theoretically well-founded implementation of
the subgradient projection procedure for gate sizing.

The second optimization problem that we consider in this
section is Vt-assignment. A physical consequence of feature
size shrinking is that leakage power consumption represents
a growing part of the overall power consumption of a chip.
Increasing the threshold voltage of a circuit reduces its leakage
but increases its delay. Modern libraries offer circuits with
different threshold voltages. The optimization problem that we
face is to choose the right threshold voltages for all circuits,
which minimize the overall (leakage) power consumption
while respecting timing restrictions.

We first consider a netlist in which every circuit is realized
in its slowest and least-leaky version. We define an appropriate
graph G whose arcs are assigned delays, and some of whose
arcs correspond to circuits for which we could choose a faster
yet more leaky realization. For each such arc e we can estimate
the power cost ce per unit delay reduction. We add a source
node s joined to all primary inputs and to all output nodes
of memory elements and a sink node t joined to all primary
outputs and to all input nodes of memory elements. Then we
perform a static timing analysis on this graph and determine
the set of arcs E′ that lie on critical paths.

The general step now consists in finding a cheapest s-t-
cut (S, S̄) in G′ = (V (G), E′) by a max-flow calculation
in an auxiliary network. Arcs leaving S that can be made
faster contribute ce to the cost of the cut, and arcs entering
S that can be made slower contribute −ce to the cost of the
cut. Furthermore, arcs leaving S that cannot be made faster
contribute ∞ to the cost of the cut, and arcs entering S that
cannot be made slower contribute 0 to the cost of the cut.

If we have found such a cut of finite cost, we can improve
the timing at the lowest possible power cost per time unit
by speeding up the arcs from S to S̄ and slowing down (if
possible) the arcs from S̄ to S. This optimality statement is
proved in [32] subject to the simplifying assumptions that
the delay/power dependence is linear and that we can realize
arbitrary Vt-values within a given interval, which today’s
libraries typically do not allow. Nevertheless, the linearity of
the delay/power dependence approximately holds locally and
the discrete choosable values are close enough.

We point out that the described approach is not limited
to Vt-assignment. It can be applied whenever we consider
roughly independent and local changes and want to find an
optimal set of operations that corrects timing violations at

minimum cost. This has been part of BonnTools for some time
[14], but previously without using the possibility of slowing
arcs from S̄ to S, and thus without optimality properties.

IV. CLOCK SCHEDULING AND CLOCKTREE
CONSTRUCTION

Most computations on chips are synchronized. Each storage
element (register, flip-flop, latch) receives a periodic clock
signal, controlling the times when the bit at the data input is to
be stored and transferred to further computations in the next
cycle. Today it is well-known that striving for simultaneous
clock signals (zero skew), as most chip designers did for a
long time, is not optimal. By clock skew scheduling, i.e. by
choosing individual clock signal arrival times for the storage
elements, one can improve the performance. However, this also
makes clock tree synthesis more complicated. For nonzero
skew designs it is very useful if clock tree synthesis does
not have to meet specified points in time, but rather time
intervals. We proposed this methodology together with new
algorithms in [2], [3], and [18]. Here we describe the basic
ideas underlying BonnCycleOpt and BonnClock, the tools
realizing this solution.

A. Clock Skew Scheduling

Let us define the latch graph as the digraph whose vertex
set is the set of all storage elements and which contains an
arc (x, y) if the netlist contains a path from the output of x to
the input of y. Let d(x, y) denote the maximum delay from x
to y. If all storage elements have the same frequency 1

T (i.e.,
their cycle time is T), then a zero skew solution is feasible
only if all delays are at most T . With clock skew scheduling
one can relax this condition. In other words, for given delays
one can improve the performance. In this simple case, we ask
for arrival times a(x) of clock signals at all storage elements
x such that a(x) + d(x, y) ≤ a(y) + T holds for each arc
(x, y) of the latch graph. Such arrival times exist if and only
if the latch graph has no directed cycle such that the mean
delay of its arcs is greater than T [3]. The optimal feasible
cycle time T and feasible clock signal arrival times a(t) can
be computed by minimum mean cycle algorithms, e.g. those
of Karp [21] and Young, Tarjan, and Orlin [48].

This simple situation is unrealistic. Today’s systems on
a chip have multiple frequencies and often several hundred
different clock domains. The situation is further complicated
by transparent latches, user-defined timing tests, and various
advanced design methodologies.

Moreover, it is not sufficient to maximize the frequency
only. The delays that are input to clock skew scheduling are
necessarily estimates: detailed routing will be done later and
will lead to different delays. Thus one would like to have as
large a safety margin (roughly equivalent to positive slack; cf.
[46]) as possible. In other words, the available slack should
be distributed carefully, and the slack histogram (cf. Figure 9)
should be lexicographically optimal.

Next, signals can also be too fast, and although such early-
mode violations can be repaired by buffering, this can be very

9

Fig. 9. Slack histograms showing the improvement due to clock skew
scheduling and appropriate clock tree synthesis; left: zero skew, right: with
BonnClock trees. Each histogram row represents a slack interval (in ns) and
shows the number of slacks in this range. The placements on top are also
colored according to these slacks.

expensive, and clock skew scheduling can remove most early-
mode violations at almost no cost.

Finally, it is very hard to realize arbitrary individual ar-
rival times exactly; moreover this would lead to high power
consumption in clock trees. Computing time intervals rather
than points in time is much better. Without making critical
paths any worse, the power consumption (and use of space and
wiring resources) by clock trees can be reduced drastically.

We have therefore proposed a three-stage clock skew
scheduling approach in [3]. First, only late-mode slacks are
considered. More precisely, we consider only those slacks that
cannot be increased by inserting extra delays (user-defined
timing tests may imply that this set is different from the set
of late-mode slacks). Then we reduce early-mode violations
(more precisely, slacks that can be increased by inserting extra
delays), without decreasing any small or negative late-mode
slacks. Thirdly, we compute a time interval for each storage
element such that whenever each clock signal arrives within
the specified time interval, no small or negative slack will
decrease.

In the next section we discuss how to balance a certain set
of slacks while not decreasing others.

B. Slack Balancing Models and Algorithms

In [3] and [17], generalizing the early work of Schneider
and Schneider [40] and Young, Tarjan and Orlin [48], we
have developed slack balancing algorithms for very general
situations. The most general problem can be formulated as
follows. Given a directed graph G (the timing graph), d :
E(G) → R (delays), a set F0 ⊆ E(G) (arcs where we are not
interested in positive slack) and a partition F of E(G) \ F0

(groups of arcs in which we are interested in the worst slack
only), and weights w : E(G) \ F0 → R>0 (sensitivity of
slacks), the task is to find arrival times π : V (G) → R with
π(x) + d(e) ≤ π(y) for e = (x, y) ∈ F0 such that the vector
of relevant slacks(

min

{
π(y)− π(x)− d(e)

w(e)

∣∣∣∣∣ e = (x, y) ∈ F

})
F∈F

(after sorting entries in non-decreasing order) is lexicograph-
ically maximal. In [46] we justified this model theoretically.
Note that the delays d include cycle adjusts and thus can be
negative (for an internal arc e = (x, y) of a normal flip-
flop, d(e) is the propagation delay minus the cycle time).
The conditions for e ∈ F0 correspond to standard timing
propagation rules.

The problem can be solved in O(min{n4 log2 n +
n2m logm, n4 log n + n2m log2 n log log n, wmax(mn +
n2 log n)}) time in general [17] and in O(mn+n2 log n) time
for unit weights [3]. In practice it can be solved much faster if
we replace π(y)−π(x)−d(e)

w(e) by min{Θ, π(y)−π(x)−d(e)}, i.e.
ignore slacks beyond a certain threshold Θ, which we typically
set to 50ps for early-mode slacks and 300ps for late-mode
slacks.

Positive slacks which have been obtained previously and
should not be decreased can be modeled simply by increasing
the corresponding delays. Time intervals for clock signal
arrival times also correspond to positive slack on the arcs
corresponding to storage elements.

The basic algorithm iteratively determines the most critical
cycle and contracts it. By working on the timing graph rather
than on the latch graph, we can consider all complicated timing
constraints, different frequencies, etc. directly. On the other
hand, contracting parts of the timing graph efficiently is not
easy. In our experiments it turned out to be most efficient to
use a combination of the latch graph and the timing graph,
incorporating the advantages of both models.

Figure 9 shows a typical result on a leading-edge ASIC. The
left-hand side shows the slacks after timing-driven placement,
but without clock skew scheduling, assuming zero skew and
estimating the on-chip variation on clock tree paths with
300ps. The right-hand side shows exactly the same netlist
after clock skew scheduling and clock tree synthesis. The
slacks have been obtained with a full timing analysis as used
for signoff, also taking on-chip variation into account. All
negative slacks have disappeared. In this case we improved
the frequency of the most critical clock domain by 27%. The
corresponding clock tree is shown in Figure 12. It runs at 1.033
Gigahertz [18]. Next we explain how BonnClock constructs
such a clock tree, using the input of clock skew scheduling
by BonnCycleOpt.

C. Clock Tree Synthesis

The input to BonnClock is a set of sinks, a time interval for
each sink, a set of possible sources, a logically correct clock
tree serving these sinks, a library of inverters and other books
that can be used in the clock tree, and a few parameters, most
importantly a slew target. The goal is to replace the initial

10

Fig. 10. Different stages of a clock tree construction using BonnClock.
The colored octagons indicate areas in which inverters (current sinks) can
be placed. The colors correspond to arrival times within the clock tree: blue
for signals close to the source, and green, yellow, and red for later arrival
times. During the bottom-up construction the octagons slowly converge to the
source, here located approximately at the center of the chip.

tree by a logically equivalent clock tree which ensures that all
clock signals arrive within the specified time intervals.

First, the input tree is condensed to a minimal tree by
identifying equivalent books and removing buffers and inverter
pairs. For simplicity we will assume here that the tree contains
no special logic and can be constructed with inverters only.

Next we do some preprocessing to determine the approxi-
mate distance to a source from every point on the chip, taking
into account that some macros can prevent us from going
straight towards a source.

BonnClock then proceeds in a bottom-up fashion (cf. Figure
10). Consider a sink s whose earliest feasible arrival time is
latest, and consider all sinks whose arrival time intervals con-
tain this point in time. Then we want to find a set of inverters
that drives at least s but maybe also some of the other sinks.
For each inverter we have a maximum capacitance which it
can drive, and the goal is to minimize power consumption.

The input pins of the newly inserted inverters become new
sinks, while the sinks driven by them are removed from the
current set of sinks. When we insert an inverter, we fix neither
its position nor its size. Rather we compute a set of octagons as
feasible positions by taking all points with a certain maximal
distance from the intersection of the sets of positions of its

���
���
���

���
���
���

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

admissible placement
area of predecessor

white area too far from

placement area of inverter

source

area of predecessor
preliminary placement

 source

Fig. 11. Computation of the feasible area for a predecessor of an inverter.
From all points that are not too far away from the placement area of the
inverter (blue) we subtract unusable areas (e.g., those blocked by macros)
and points that are too far away from the source. The result (green) can again
be represented as a union of octagons.

successors, and subtracting blocked areas and all points that
are too far away from a source (cf. Figure 11).

The inverter sizes are determined only at the very end
after constructing the complete tree. During the construction
we work with solution candidates. A solution candidate is
associated with an inverter size, an input slew, a feasible arrival
time interval for the input, and a solution candidate for each
successor. We prune dominated candidates, i.e. those for which
another candidate with the same input slew exists whose time
interval contains the time interval of the former. Thus the time
intervals imply a natural order of the solution candidates with
a given input slew.

Given the set of solution candidates for each successor, we
compute a set of solution candidates for a newly inserted
inverter as follows. For each input slew at the successors
we simultaneously scan the corresponding candidate lists in
the natural order and choose maximal intersections of these
time intervals. For such a non-dominated candidate set we try
all inverter sizes and a discrete set of input slews and check
whether they fit. If so, a new candidate is generated.

After an inverter is inserted but before its solution candi-
dates are generated, the successors are placed at a final legal
position. It may be necessary to move other objects, but with
BonnPlace legalization (cf. Section II-D) we can usually avoid
moves with a large impact on timing. There are some other
features which pull sinks towards sources, and which cause
sinks that are ends of critical paths to be joined early in order
to bound negative timing effects due to on-chip variation.

The inverter sizes are selected at the very end by choosing
a solution candidate at the root. The best candidate (i.e.
the best overall solution) with respect to timing and power
consumption is chosen. Due to discretizing slews, assuming
bounded RC delays, and legalization, the timing targets may
be missed by a small amount, in the order of 20ps. But this
impacts the overall timing result only if the deviation occurs
in opposite directions at the ends of a critical path.

The overall power consumption is dominated by the bottom
stage, where 80–90% of the power is consumed. Therefore the
first clustering is very important.

The basic mathematical problem that we face here can
be formulated as follows: Given a set D of sinks, input
capacitances d : D → R+, a basic cost f ∈ R+ for inserting
an inverter, and a capacitance limit u ∈ R+, the task is to

11

Fig. 12. Gigahertz clock tree built by BonnClock based on the result of
BonnCycleOpt shown in Figure 9. Colors indicate different arrival times as
in Figure 10. Each net is represented by a star connecting the source to all
sinks.

find a partition D = D1∪̇ · · · ∪̇Dk and Steiner trees Ti for Di

(i = 1, . . . , k) with c(E(Ti)) + d(Di) ≤ u for i = 1, . . . , k
such that

∑k
i=1 c(E(Ti)) + kf is minimum.

The first constant-factor approximation algorithm for this
problem was given in [27]. It computes a minimum span-
ning tree on the sinks, removes expensive edges, and splits
overloaded connected components. It runs in O(n log n) time
for n sinks and yields excellent results. We combine it with
a greedy augmentation approach [18] when there are many
non-matching arrival time intervals, and with an exchange and
merge heuristic for postoptimization.

By exploiting the time intervals, which are single points
only for the few most critical storage elements, and by using an
algorithm with provable performance guarantee we can reduce
the power consumption substantially.

V. ROUTING

Due to the enormous instance sizes, most routers including
BonnRoute consist of at least two major parts, global and
detailed routing. Global routing defines an area for each
net to which the search for actual wires in detailed routing
is restricted. As global routing works on a much smaller
graph, we can globally optimize the most important design
objectives. Moreover, global routing has another important
function: decide for each placement whether a feasible routing
exists and if not, give a certificate of infeasibility.

BonnRoute does not contain any step between global and
detailed routing, in particular no track assignment. Track
assignment can save running time of the local router for very
easy chips. For complex and dense chips track assignment
often requires numerous rip-up-and-reroute efforts, which give
rise to a substantial increase of the total running time. Due to

Fig. 13. An instance of the edge-disjoint paths problem for estimating global
routing capacities. Dashed lines bound global routing regions. Here we show
four wiring planes, each with a commodity (shown in different colors), in
alternating preference directions.

our accurate capacity estimation and very fast shortest path
algorithm in detailed routing, we do not need any hint other
than that provided by global routing.

A. The Global Routing Graph

The global router works on a three-dimensional grid graph
which is obtained – as usual – by partitioning the chip area into
regions. For classical Manhattan routing this can be done by
an axis-parallel grid. In any case, these regions are the vertices
of the global routing graph. Adjacent regions are joined by an
edge, with a capacity value indicating how many wires of unit
width can join the two regions.

For each net we consider the regions that contain at least
one of its pins. These vertices of the global routing graph have
to be connected by a Steiner tree. If a pin consists of shapes
in more than one region we may assign it to one of them, say
the one which is closest to the center of gravity of the whole
net, or by solving a group Steiner tree problem.

The quality of the global routing depends heavily on the
capacity of the global routing edges. A rough estimate has
to consider blockages and certain resources for nets whose
pins lie in one region only. These nets are not considered in
global routing. However, they may use global routing capacity.
Therefore we route very short nets, which lie in one region
or in two adjacent regions, first in the routing flow, i.e. before
global routing. They are then viewed as blockages in global
routing. Yet these nets may be rerouted later in local routing
if necessary.

Routing short nets before global routing makes better capac-
ity estimates possible, but this also requires more sophisticated
algorithms than are usually used for this task. We consider a
vertex-disjoint paths problem for every set of four adjacent
global routing regions, illustrated in Figure 13. There is a
commodity for each wiring plane, and we try to find as many
paths for each commodity as possible. Each path may use the

12

plane of its commodity in preference direction and adjacent
planes in the orthogonal direction.

An upper bound on the total number of such paths can
be obtained by considering each commodity independently
and solving a maximum flow problem. However, this is
too optimistic and too slow. Instead we compute a set of
vertex-disjoint paths (i.e., a lower bound) by a new and very
fast multicommodity flow heuristic [29]. It is essentially an
augmenting path algorithm but exploits the special structure of
a grid graph. For each augmenting path it requires only O(k)
constant-time bit pattern operations, where k is the number
of edges orthogonal to the preferred wiring direction in the
respective layer. In practice, k is less than three for most paths.

This very fast heuristic finds a number of edge-disjoint paths
in the region of 90% of the (weak) max-flow upper bound.
For a complete chip with about one billion paths it needs
5 minutes of computing time whereas a complete max-flow
computation with our implementation of the Goldberg-Tarjan
algorithm would need more than a week.

Please note that this algorithm is used only for a better
capacity estimation, i.e. for generating accurate input to the
main global routing algorithm. However, this better capacity
estimate yields much better global routing solutions and allows
the detailed router to realize these solutions.

B. Global Routing

In its simplest version, the global routing problem amounts
to packing Steiner trees in a graph with edge capacities. A
fractional relaxation of this problem can be efficiently solved
by an extension of methods for the multicommodity flow
problem. However, the approach does not consider today’s
main design objectives which are timing, signal integrity,
power consumption, and manufacturing yield. Minimizing the
total length of all Steiner trees is no longer important. Instead,
minimizing a weighted sum of the capacitances of all Steiner
trees, which is equivalent to minimizing power consumption, is
an important objective. Delays on critical paths also depend on
the capacitances of their nets. Wire capacitances can no longer
be assumed to be proportional to the length, since coupling
between neighboring wires plays an increasingly important
role. Small detours of nets are often better than the densest
possible packing. Spreading wires can also improve the yield.

Our global router is the first algorithm with a provable
performance guarantee which takes timing, coupling, yield,
and power consumption into account directly. Our global
routing algorithm extends earlier work on multicommodity
flows, fractional global routing, and randomized rounding.

Let G be the global routing graph, with edge capacities
u : E(G) → R and lengths l : E(G) → R+. Let N be the
set of nets. For each N ∈ N we have a set YN of feasible
Steiner trees. The set YN may contain all Elmore-delay-
optimal Steiner trees of N or, in many cases, it may contain
all possible Steiner trees for N in G. Actually, we do not need
to know the set YN explicitly. The only assumption which we
make is that for each N ∈ N and any ψ : E(G) → R+ we
can find a Steiner tree Y ∈ YN with

∑
e∈E(Y) ψ(e) (almost)

minimum sufficiently fast. This assumption is justified since

in practical instances almost all nets have less than, say, 10
pins and thus a dynamic programming algorithm for finding
an optimum Steiner tree is very fast. With w(N, e) ∈ R+ we
denote the width of net N at edge e. A straightforward integer
programming formulation of the global routing problem is:

min
∑

N∈N

∑
e∈E(G)

l(e)
∑

Y ∈YN |e∈E(Y)

xN,Y

s.t.
∑

N∈N

∑
Y ∈YN :e∈E(Y)

w(N, e)xN,Y ≤ u(e) (e ∈ E(G))

∑
Y ∈YN

xN,Y = 1 (N ∈ N)

xN,Y ∈ {0, 1} (N ∈ N , Y ∈ YN)

Here the decision variable xN,Y is 1 iff the Steiner tree
Y is chosen for net N . The decision whether this integer
programming problem has a feasible solution is already NP-
complete. Thus, we relax the problem by assuming xN,Y ∈
[0, 1]. Raghavan and Thompson [33], [34] proposed solving
the LP relaxation first, and then using randomized rounding to
obtain an integral solution whose maximum capacity violation
can be bounded. Although the LP relaxation has exponentially
many variables, it can be solved in practice for moderate
instance sizes since it has only |E(G)|+|N | many constraints.
Therefore all but |E(G)| + |N | variables are zero in an
optimum solution. However, for current complex chips with
millions of nets and edges, all exact algorithms for solving
the LP relaxation are far too slow.

Fortunately, there exist combinatorial fully polynomial ap-
proximation schemes, i.e. algorithms that compute a feasible
solution of the LP relaxation which is within a factor of 1+ ε
of the optimum, and whose running time is bounded by a
polynomial in |V (G)| and 1

ε , for any accuracy ε > 0. If
each net has exactly two pins, YN contains all possible paths
connecting N , and w ≡ 1, the global routing problem reduces
to the edge-disjoint paths problem whose fractional relaxation
is the multicommodity flow problem. Shahrokhi and Matula
[41] have developed this first fully polynomial approximation
scheme for multicommodity flows. Carden, Li and Cheng [12]
first applied this approach to global routing, while Albrecht
[1] applied a modification of the approximation algorithm by
Garg and Könemann [16]. However, these approaches did not
consider the above-mentioned design objectives, like timing,
power, and yield.

The power consumption of a chip induced by its wires is
proportional to the weighted sum of all capacitances, weighted
by switching activities. The capacitance of a net consists of
area capacitance, proportional to length times width, fringing
capacitance, proportional to length, and coupling capacitance,
proportional to length if adjacent wires exist. The coupling
capacitance also depends on the distance between adjacent
wires. In older technologies coupling capacitances were quite
small and therefore could be ignored. In deep submicron
technologies coupling matters a lot.

Since the width w(e,N) of a wire of net N at edge e is
known, we also know the maximum capacitance of this wire

13

under the assumption that parallel wires run at both sides with
minimum distance. We denote this maximum capacitance by
l(e,N). We further assume that extra space s(e,N) assigned
to a wire reduces the coupling capacitance by v(e,N), and for
less extra space the capacitance reduction is linear. This means
that the space w(N, e)+y(e,N)s(e,N) with 0 ≤ y(e,N) ≤ 1
results in a capacitance l(e,N) − y(e,N)v(e,N). This is –
of course – a simplification, since coupling does not depend
linearly on distance and also blockages, pin shapes and vias
are ignored. Yet, quite accurate results can be obtained by this
simple model.

Similarly to minimizing power consumption based on the
above capacitance model, we can optimize yield by replacing
capacitance by “critical area”, i.e. the sensitivity of a layout
to random defects [30].

Moreover, we can also consider timing restrictions. This can
be done by excluding from the set YN all Steiner trees with
large detours, or by imposing upper bounds on the weighted
sums of capacitances of nets that belong to critical paths.
For this purpose, we first do a static timing analysis under
the assumption that every net has some expected capacitance.
The set YN will contain only Steiner trees with capacitance
below this expected value. We enumerate all paths which
have negative slacks under this assumption. We compute the
sensitivity of the nets of negative slack paths to capacitance
changes, and use these values to translate the delay bound to
appropriate bounds on the weighted sum of capacitances for
each path. To compute reasonable expected capacitances we
can apply weighted slack balancing (cf. Section IV-B) using
delay sensitivity and congestion information. Altogether we
get a family M of subsets of N with N ∈ M and bounds
U : M→ R+ and weights c(M,N) ∈ R+ for N ∈M ∈M.

With these additional assumptions and this notation we can
generalize the original integer programming formulation of the
global routing problem to:

min λ

subject to∑
Y ∈YN

xN,Y = 1 (N ∈ N)

∑
N∈M

c(M,N)

 ∑
Y ∈YN

∑
e∈E(Y)

l(e,N)xN,Y

−
∑

e∈E(G)

v(e,N)ye,N

 ≤ λU(M)

(M ∈M)

∑
N∈N

 ∑
Y ∈YN :e∈E(Y)

w(N, e)xN,Y + s(e,N)ye,N

 ≤ λu(e)

(e ∈ E(G))

ye,N ≤
∑

Y ∈YN :e∈E(Y)

xN,Y (e ∈ E(G), N ∈ N)

ye,N ≥ 0 (e ∈ E(G), N ∈ N)
xN,Y ∈ {0, 1} (N ∈ N , Y ∈ YN)

Fig. 14. A typical global routing congestion map. Each edge corresponds to
approximately 100 global routing edges (and to approximately 10000 detailed
routing channels). Red, orange, yellow, green, and white edges correspond to
an average load of approximately 90–100%, 70–90%, 60–70%, 40–60%, and
less than 40%.

Now we again relax this integer program to a linear pro-
gram. In [44] we developed a fully polynomial approximation
scheme for this LP and its dual. The algorithm always gives
a fractional dual solution and therefore a certificate of infea-
sibility if a given placement is not routable. We also showed
how to make randomized rounding work [44].

This approach is quite general. It allows us to add further
linear constraints to the classical fractional primal-dual for-
mulation of the multicommodity flow problem. Here we have
modeled timing, yield, and power consumption, but we may
think of other constraints if further technological or design
restrictions come up.

Figure 14 shows a typical result of global routing. In the
dense (red and orange) areas the main challenge is to find
a feasible solution, while in other areas there is room for
optimizing objectives like power or yield. Experimental results
show a significant improvement over previous approaches
which optimized netlength and number of vias, both in terms
of power consumption and expected manufacturing yield [30].

C. Detailed Routing
The task of detailed routing is to determine the exact layout

of the metal realizations of the nets. We need an efficient data
structure that stores all metal shapes and allows fast queries.
Grid-based routers define routing tracks (and minimum dis-
tance) and work with a detailed routing graph G which is
an incomplete three-dimensional grid graph, i.e. V (G) ⊆
{xmin, . . . , xmax} × {ymin, . . . , ymax} × {1, . . . , zmax} and
((x, y, z), (x′, y′, z′)) ∈ E(G) only if |x − x′| + |y − y′| +
|z − z′| = 1.

The z-coordinate models the different routing layers of the
chip and zmax is typically around 10. We can assume without

14

loss of generality that the x- and y-coordinates correspond to
the routing tracks; typically the number of routing tracks in
each plane, i.e. xmax − xmin and ymax − ymin, is in the order
of magnitude of 105, resulting in a graph with approximately
1011 vertices. The graph is incomplete because some parts are
reserved for internal circuit structures or power supply, and
some nets may have been routed earlier.

To find millions of vertex-disjoint Steiner trees in such a
huge graph is very challenging. Thus we decompose this task,
route the nets and even the two-point connections making up
the Steiner tree for each net sequentially. Then the elementary
algorithmic task is to determine shortest paths within the
detailed routing graph (or within a part of it, as specified by
global routing).

Whereas the computation of shortest paths is probably the
most basic and well-studied algorithmic problem of discrete
mathematics [26], the size of G and the number of shortest
paths that have to be found concurrently makes the use of
textbook versions of shortest path algorithms impossible. The
basic algorithm for finding a shortest path connecting two
given vertices in a digraph with nonnegative arc weights is
Dijkstra’s algorithm. Its theoretically fastest implementation,
with Fibonacci heaps, runs in O(m+ n log n) time, where n
and m denote the number of vertices and edges, respectively
[15]. For our purposes this is much too slow. We therefore
apply various strategies to speed up Dijkstra’s algorithm.

Since we are not just looking for one path but have to embed
millions of disjoint trees, the information provided by global
routing is most important. For each two-point connection
global routing determines a corridor essentially consisting of
the global routing tiles to which this net was assigned in global
routing. If we find a shortest path for the two-point connection
within this corridor, the capacity estimates used during global
routing approximately guarantee that all desired paths can be
realized disjointly. Furthermore, we get a dramatic speedup
by restricting the path search to this corridor, which usually
represents a very small fraction of the entire routing graph.

The second important factor speeding up our shortest path
algorithm is the way in which we store the distance informa-
tion. Whereas Dijkstra’s algorithm labels individual vertices,
we consider intervals of consecutive vertices that are similar
with respect to their usability and their distance properties.
Since the layers are assigned preferred routing directions, the
intervals are chosen parallel to these. By the similarity of the
vertices in one interval we mean that their distance properties
can be encoded more efficiently than by storing numbers for
each individual vertex. If e.g. the distance increases by one
unit from vertex to vertex we just need to store the distance
information for one vertex and the increment direction. Our
version of Dijkstra’s algorithm [19] labels intervals instead
of vertices, and its time complexity therefore depends on the
number of intervals, which is typically about 100 times smaller
than the number of vertices. A sophisticated data structure for
storing the intervals and answering queries very fast is the
basis of this algorithm and also of our efficient shared-memory
parallelization.

The last factor speeding up our path search is the use of a
future cost estimate, which is a lower bound on the distance

Fig. 15. Dijkstra’s algorithm without (left) and with (right) future cost, point-
based (top) and interval-based (bottom). We require a shortest path from the
red vertex in the bottom left to the red vertex in the upper right part. Points
or intervals labeled by Dijkstra’s algorithm are shown in yellow. The running
time is roughly proportional to the number of labeled points (50 versus 24)
or intervals (7 versus 4 in this example).

of vertices to a given target set of vertices. Suppose we are
looking for a path from s to t in G with respect to edge
weights c : E(G) → R+, which reflect higher costs for vias
and jogs (wires orthogonal to the preferred direction) and can
also be used to find optimal rip-up sets. Let l(x) be a lower
bound on the distance from x to t for any vertex x ∈ V . Then
we may apply Dijkstra’s algorithm to the costs c′(x, y) :=
c({x, y})− l(x) + l(y). For any s-t-path P we have c′(P) =
c(P)− l(s) + l(t), and hence shortest paths with respect to c′

are also shortest paths with respect to c. If l is a good lower
bound, i.e. close to the exact distance, and satisfies the natural
condition l(x) ≤ c({x, y}) + l(y) for all {x, y} ∈ E(G),
then this results in a significant speedup. This is illustrated by
Figure 15.

If the future cost estimate is exact, our procedure will only
label intervals that contain vertices lying on shortest paths.

Clearly, improving the accuracy of the future cost estimate
improves the running time of the path search and there is
a tradeoff between the time needed to improve the future
cost and the time saved during path search. The fastest future
cost estimate which already leads to considerable speedup and
can be calculated in O(1) time is the `1-distance. We are
currently experimenting [31] with a much more accurate future
cost which relies on a preliminary labeling algorithm working
on the global routing tiles. Rather than labeling vertices
or intervals (=1-dimensional arrays of vertices) it labels 2-
dimensional arrays of vertices. The information computed by
this (very fast) preliminary labeling algorithm is then used to
compute excellent future cost estimates in constant time during
the main path search.

15

Fig. 16. A system on a chip designed in 2006 with BonnTools. This 90nm
design for a forthcoming IBM server has almost 5 million nets on the top
level and runs with frequencies up to 1.5GHz.

Finally, we note that the use of the detailed routing graph
as the basis of our interval data structure is not restricted to
grid-based routing styles. In fact, it does not matter whether
wires lie on or off predefined routing tracks. There is only
a slight overhead for wires thicker than one track. Our data
structure, although behaving in essentially the same way as
for grid-based routing, efficiently captures the geometry of
arbitrary (gridless) routing shapes. Each shape is associated
with the vertex of the detailed routing graph that represents
the area containing the shape. The intervals are thus associated
with (gridless) routing patterns. Since the total number of
different patterns is relatively small, the memory overhead
remains acceptable. The running time of the core routines,
in particular our implementation of Dijkstra’s algorithm, is
almost not affected. Thus our algorithmic solutions provide a
solid basis for grid-based and gridless libraries.

VI. CONCLUSION, OUTLOOK

We have demonstrated that mathematics can yield better
solutions for leading-edge chips. Several complete micro-
processor series (cf., e.g., [14], [23]) and many leading-
edge ASICs (cf., e.g., [24], [18]) have been designed with
BonnTools. Many additional ones are in the design centers at
the time of writing. A very recent example, a chip designed
by IBM with BonnTools in 2006, is shown in Figure 16.

On the other hand, chip design is inspiring a great deal
of interesting work in mathematics. Indeed, most classical
problems in combinatorial optimization, and many new ones,
have been applied to chip design. Some algorithms originally
developed for VLSI design automation are applied also in
other contexts.

However, there remains a lot of work to do. Exponentially
increasing instance sizes continue to pose challenges. Even
some classical problems (e.g., logic synthesis) have no sat-
isfactory solution yet, and future technologies continuously
bring new problems. Yet we strongly believe that mathematics
will continue to play a vital role in facing these challenges.

ACKNOWLEDGEMENTS

We thank all current and former members of our team in
Bonn. Moreover, we thank our cooperation partners at IBM
and Magma.

REFERENCES

[1] Albrecht, C.: Global routing by new approximation algorithms for
multicommodity flow. IEEE Transactions on Computer Aided Design
of Integrated Circuits and Systems 20 (2001), 622–632

[2] Albrecht, C., Korte, B., Schietke, J., and Vygen, J.: Cycle time and slack
optimization for VLSI-chips. Proceedings of the IEEE International
Conference on Computer-Aided Design (1999), 232–238

[3] Albrecht, C., Korte, B., Schietke, J., and Vygen, J.: Maximum mean
weight cycle in a digraph and minimizing cycle time of a logic chip.
Discrete Applied Mathematics 123 (2002), 103–127

[4] Bartoschek, C., Held, S., Rautenbach, D., and Vygen, J.: Efficient
generation of short and fast repeater tree topologies. Proceedings of
the International Symposium on Physical Design (2006), 120–127

[5] Brenner, U.: A faster polynomial algorithm for the unbalanced Hitch-
cock transportation problem. Report No. 05954, Research Institute for
Discrete Mathematics, University of Bonn, 2005

[6] Brenner, U., Pauli, A., and Vygen, J.: Almost optimal placement legal-
ization by minimum cost flow and dynamic programming. Proceedings
of the International Symposium on Physical Design (2004), 2–9

[7] Brenner, U., and Rohe, A.: An effective congestion driven placement
framework. IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems 22 (2003), 387–394

[8] Brenner, U., and Struzyna, M.: Faster and better global placement by a
new transportation problem. Proceedings of the 42nd IEEE/ACM Design
Automation Conference (2005), 591–596

[9] Brenner, U., and Vygen, J.: Faster optimal single-row placement with
fixed ordering. Design, Automation and Test in Europe, Proceedings,
IEEE 2000, 117–121

[10] Brenner, U., and Vygen, J.: Worst-case ratios of networks in the
rectilinear plane. Networks 38 (2001), 126–139

[11] Brenner, U., and Vygen, J.: Legalizing a placement with minimum total
movement. IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems 23 (2004), 1597–1613

[12] Carden IV, R.C., Li, J., and Cheng, C.-K.: A global router with
a theoretical bound on the optimum solution. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 15 (1996),
208–216

[13] Chen, C.-P., Chu, C.C.N., and Wong, D.F.: Fast and exact simultaneous
gate and wire sizing by Lagrangian relaxation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 18 (1999),
1014–1025

[14] Fassnacht, U., and Schietke, J.: Timing analysis and optimization of
a high-performance CMOS processor chipset. Design, Automation and
Test in Europe, Proceedings, IEEE 1998, 325–331

[15] Fredman, M.L., and Tarjan, R.E.: Fibonacci heaps and their uses in
improved network optimization problems. Journal of the ACM 34
(1987), 596–615

[16] Garg, N., and Könemann, J.: Faster and simpler algorithms for multi-
commodity flow and other fractional packing problems. Proceedings of
the 39th Annual IEEE Symposium on Foundations of Computer Science
(1998), 300–309

[17] Held, S.: Algorithms for potential balancing problems and applications
in VLSI design [in German]. Diploma thesis, University of Bonn, 2001

[18] Held, S., Korte, B., Maßberg, J., Ringe, M., and Vygen, J.: Clock
scheduling and clocktree construction for high performance ASICs.
Proceedings of the IEEE International Conference on Computer-Aided
Design (2003), 232–239

[19] Hetzel, A.: A sequential detailed router for huge grid graphs. Design,
Automation and Test in Europe, Proceedings, IEEE 1998, 332–338

16

[20] Kahng, A.B., Tucker, P., and Zelikovsky, A.: Optimization of linear
placements for wirelength minimization with free sites. Proceedings of
the Asia and South Pacific Design Automation Conference, 1999, 241–
244

[21] Karp, R.M.: A characterization of the minimum mean cycle in a digraph.
Discrete Mathematics 23 (1978), 309–311

[22] Kleinhans, J.M., Sigl, G., Johannes, F.M., and Antreich, K.J.: GOR-
DIAN: VLSI placement by quadratic programming and slicing opti-
mization. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 10 (1991), 356–365

[23] Koehl, J., Baur, U., Ludwig, T., Kick, B., and Pflueger, T.: A flat, timing-
driven design system for a high-performance CMOS processor chipset.
Design, Automation, and Test in Europe, Proceedings, IEEE 1998, 312–
320

[24] Koehl, J., Lackey, D.E., and Doerre, G.W.: IBM’s 50 million gate
ASICs. Proceedings of the Asia and South Pacific Design Automation
Conference, IEEE 2003, 628–634

[25] Korte, B., Lovász, L., Prömel, H.J., and Schrijver, A. (Eds.): Paths,
Flows, and VLSI-Layout. Springer, Berlin 1990

[26] Korte, B., and Vygen, J.: Combinatorial Optimization: Theory and
Algorithms. Third edition. Springer, Berlin 2006

[27] Maßberg, J., and Vygen, J.: Approximation algorithms for network
design and facility location with service capacities. In: Approximation,
Randomization and Combinatorial Optimization; Proceedings of the 8th
International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX 2005); LNCS 3624 (C. Chekuri, K.
Jansen, J.D.P. Rolim, L. Trevisan, eds). Springer, Berlin 2005, pp. 158–
169

[28] Minoux, M.: Mathematical Programming: Theory and Algorithms. Wi-
ley, Chichester 1986

[29] Müller, D.: Determining routing capacities in global routing of VLSI
chips [in German]. Diploma thesis, University of Bonn, 2002

[30] Müller, D.: Optimizing yield in global routing. Proceedings of the IEEE
International Conference on Computer-Aided Design (2006), to appear

[31] Peyer, S., Rautenbach, D., and Vygen, J.: Generalizing Dijkstra’s al-
gorithm for shortest paths in huge graphs, with applications to VLSI
routing. Manuscript 2006.

[32] Philips, S., and Dessouky, M.: Solving the project time/cost tradeoff
problem using the minimal cut concept. Management Science 24 (1977),
393–400

[33] Raghavan, P., and Thompson, C.D.: Randomized rounding: a technique
for provably good algorithms and algorithmic proofs. Combinatorica 7
(1987), 365–374

[34] Raghavan, P., and Thompson, C.D.: Multiterminal global routing: a
deterministic approximation. Algorithmica 6 (1991), 73–82

[35] Rautenbach, D., Szegedy, C., and Werber, J.: Delay optimization of
linear depth Boolean circuits with prescribed input arrival times. Journal
of Discrete Algorithms, to appear

[36] Rautenbach, D., Szegedy, C., and Werber, J.: Fast circuits for functions
whose inputs have specified arrival times. Report No. 03933, Research
Institute for Discrete Mathematics, University of Bonn, 2003

[37] Rautenbach, D., Szegedy, C., and Werber, J.: Asymptotically opti-
mal Boolean circuits for functions of the form gn−1(gn−2(...g3(g2(
g1(x1, x2), x3), x4)..., xn−1), xn). Report No. 03931, Research Insti-
tute for Discrete Mathematics, University of Bonn, 2003

[38] Rautenbach, D., and Szegedy, C.: A class of problems for which cyclic
relaxation converges linearly. Report No. 04939, Research Institute for
Discrete Mathematics, University of Bonn, 2004

[39] Rautenbach, D., and Szegedy, C.: A subgradient method using alter-
nating projections. Report No. 04940, Research Institute for Discrete
Mathematics, University of Bonn, 2004

[40] Schneider, H., and Schneider, M.H.: Max-balancing weighted directed
graphs and matrix scaling. Mathematics of Operations Research 16
(1991), 208–222

[41] Shahrokhi, F., and Matula, D.W.: The maximum concurrent flow prob-
lem. Journal of the ACM 37 (1990), 318–334

[42] Vygen, J.: Algorithms for large-scale flat placement. Proceedings of the
34th IEEE/ACM Design Automation Conference (1997), 746–751

[43] Vygen, J.: Algorithms for detailed placement of standard cells. Design,
Automation and Test in Europe, Proceedings, IEEE 1998, 321–324

[44] Vygen, J.: Near-optimum global routing with coupling, delay bounds,
and power consumption. In: Integer Programming and Combinatorial
Optimization; Proceedings of the 10th International IPCO Conference;
LNCS 3064 (G. Nemhauser, D. Bienstock, eds.), Springer, Berlin 2004,
pp. 308–324

[45] Vygen, J.: Geometric quadrisection in linear time, with application to
VLSI placement. Discrete Optimization 2 (2005), 362–390

[46] Vygen, J.: Slack in static timing analysis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 25 (2006),
1876–1885

[47] Vygen, J.: New theoretical results on quadratic placement. Integration,
the VLSI Journal, to appear

[48] Young, N.E., Tarjan, R.E., and Orlin, J.B.: Faster parametric shortest
path and minimum balance algorithms. Networks 21 (1991), 205–221

