Chip Design
S. Held, S. Hougardy, J. Vygen

Research Institute for Discrete Mathematics,
University of Bonn, Lennéstr. 2, 53113 Bonn,
Germany

1 Introduction

An integrated circuit or chip contains a collection
of electronic circuits — composed of transistors
— that are connected by wires to fulfill some de-
sired functionality. The first integrated circuit
was built in 1958 by Jack Kilby. It contained one
single transistor. As predicted by Gordon Moore
in 1965, the number of transistors per chip dou-
bles roughly every two years. Soon the process of
creating chips became known as very large-scale
integration (VLSI). In 2014, the most complex
chips contain billions of transistors on a few cm?.

In this article, we concentrate on the design
of digital logic chips. Analog integrated circuits
have much fewer transistors and more complex
design rules, and thus are still largely designed
manually. In a memory chip, the transistors are
packed in a very regular structure, which makes
their design rather easy. In contrast, the design
of VLSI digital logic chips is impossible without
advanced mathematics.

New technological challenges, exponentially
fast increasing instance sizes, and shifting objec-
tives like power consumption or yield constantly
create new and challenging mathematical prob-
lems. This has made chip design one of the
most interesting application areas for mathemat-
ics during the last 40 years. This will continue
for at least the next two decades, although tech-
nology scaling might slow down at some point.

1.1 Hierarchical Chip Design

Due to its enormous complexity, the design of
VLSI chips is usually done hierarchically. A hier-
archical design makes it possible to distribute the
design task to different teams. Moreover, it can
reduce the overall effort, and it makes the design
process more predictable and more manageable.
For hierarchical design, a chip is subdivided
into logical units, each of which may be subdi-
vided into several levels of smaller units. An obvi-

ous advantage of hierarchical design is that com-
ponents that are used multiple times need to be
designed only once. In particular, almost all chips
are designed based on a library of so-called books,
pre-designed integrated circuits that realize sim-
ple logical functions such as AND or NOT or a
simple memory element. A chip often contains
many instances of the same book; these instances
are often called circuits.

The books are composed of relatively few tran-
sistors and are pre-designed at an early stage.
For their design one needs to work at the tran-
sistor level and hence follow more complicated
rules. Once a book (or any hierarchical unit) is
designed, its properties that are relevant for the
design of the next higher level (e.g., minimum
distance constraints, timing behavior, power con-
sumption) are computed and stored. Most books
are designed so that they have a rectangular
shape and the same height. This makes it eas-
ier to place them in rows or columns.

1.2 The Chip Design Flow

The first step in chip design is the specification of
the desired functionality and the technology that
shall be used. In logic design, this functionality
is made precise using some hardware description
language. This hardware description is converted
into a metlist that specifies which circuits have to
be used and how they have to be connected to
achieve the required functionality.

The physical design step takes this netlist as
input and outputs the physical location of each
circuit and each wire on the chip. It will also
change the netlist (in a logically equivalent way)
in order to meet timing constraints.

Before fabricating the chip (or fixing a hierar-
chical unit for later use on the next higher level),
physical verification verifies that the physical lay-
out meets all constraints and implements the de-
sired functionality, and timing analysis checks
that all signals arrive in time. Further testing
will be done with the hardware once a chip is
manufactured.

From a mathematical point of view, physical
design is the most interesting part of chip de-
sign as it requires the solution of several differ-
ent challenging mathematical problems. There-
fore we will describe this in more detail below.

Figure 1: Placement (left) and routing (right) of a chip with 4496 492 circuits and 5091 819 nets with 762 meters
of wires. Large rectangles are pre-designed units, e.g. memory arrays or microprocessors. On the right-hand

side, a Steiner tree connecting the five pins of one net is highlighted.

1.3 Physical Design

Input of physical design is a netlist and a chip
area. The netlist contains a set of circuits. Each
circuit is an instance of a book and has some pins
that must be connected to some other pins. More-
over, the netlist includes pins on the chip area
which are called I/O-ports and connect the chip
to the outside. The set of all pins is partitioned
into nets. All pins that belong to the same net
have to be connected to each other by wires.

The task of the physical design step is to assign
a location to each circuit on the chip area (place-
ment) and to specify locations for all the wires
that are needed to realize the netlist (routing).
Placement and routing are also called layout (see
Figure 1).

A layout has to satisfy many constraints. For
example, design rules specify the minimum width
of a wire, the minimum distance between two dif-
ferent wires, or legal positions for the circuits.

Moreover, a chip works correctly (at the desired
clock frequency) only if all signals arrive in time
(neither too early nor too late). This is described
by timing constraints. Usually it is impossible to
meet all timing constraints without changing the
netlist. This is called timing optimization. Of

course, any changes must ensure that the netlist
remains logically equivalent.

Due to the complexity of the physical design
problem, placement, routing, and timing opti-
mization are treated largely as independent sub-
problems. However, they are of course not in-
dependent. Placement must already ensure that
a feasible routing can be found and timing con-
straints can be met. Changes in timing optimiza-
tion must be reflected by placement and routing.
Finally, routing must also consider timing con-
straints.

We describe some of the mathematical aspects
of these three subproblems in the following.

2 Placement

Placement asks for feasible locations of all cir-
cuits on the chip area such that a given objective
function is minimized. Here, a feasible location
means that all circuits must completely lie within
the chip area and no two circuits overlap. Nor-
mally, the chip area and all circuits have a rect-
angular shape. Thus, finding a feasible placement
is equivalent to placing a set of small rectangles
disjointly within some larger rectangle. This is

known as the rectangle packing problem.

No efficient algorithm is known that is guaran-
teed to solve the rectangle packing problem for all
possible instances. However, finding an arbitrary
feasible placement is usually easy in practice.

2.1 Netlength Minimization

The location of the circuits on the chip area is pri-
marily responsible for the total wire length that
is needed for wiring all the nets in the netlist. If
the total wire length is too long, a chip will not
be routable. Moreover, the length of the wires
greatly impacts the signal delays and the power
consumption of a chip. Thus, a reasonable ob-
jective function of the placement problem is to
minimize the total wire length.

As this cannot be computed efficiently, esti-
mates are used. Most notably, the bounding
box length of a net is obtained by taking half
the perimeter of a smallest axis-parallel rectan-
gle that contains all its pins. A commonly used
quadratic netlength estimate is obtained by sum-
ming up the squared euclidean distances between
each pair of pins in the net and dividing this value
by one less than the number of pins.

No efficient algorithms are known for finding
a placement that minimizes the total netlength
with respect to any such estimate, even if we only
ask for a solution that is by an arbitrarily large
constant factor worse than an optimum solution.
Under additional assumptions such as all circuits
having exactly the same size, one can find a place-
ment in polynomial time whose total netlength
is O(logn) worse than an optimum placement,
where n denotes the number of circuits.

2.2 Placement in Practice

As mentioned above, finding an arbitrary feasible
placement is usually easy. Moreover, one can de-
fine local changes to a feasible placement that re-
sults in another feasible placement. Thus general
local search based heuristics (such as simulated
annealing) can be applied. However, such meth-
ods are prohibitively slow for today’s instance
sizes with several million circuits.

Another paradigm, motivated by some theoret-
ical work, is called min-cut. Here the netlist is
partitioned into two parts, each with roughly half

of the circuits, such that as few nets as possible
cross the cut. The two parts will be placed on
the left and right part of the chip area, respec-
tively, and partitioned further recursively. Un-
fortunately, the bipartitioning problem cannot be
solved well, and the overall paradigm lacks sta-
bility properties and displays inferior quality of
results.

A third paradigm, analytical placement, is pre-
dominantly used in practice today. It begins by
ignoring the constraint that circuits must not
overlap; then minimizing netlength (bounding
box or quadratic) is relatively easy. For sev-
eral reasons (faster to solve, more stable, better
spreading), quadratic netlength is minimized in
practice. This is equivalent to solving a system
of linear equations with sparse positive definite
matrix.

The placement that minimizes quadratic
netlength typically has many overlapping circuits.
Two strategies for working towards a feasible
placement exist: either the objective function
is modified in order to pull circuits away from
overloaded regions, or a geometric partitioning is
done. For geometric partitioning one can assign
the circuits efficiently to four quadrants (or more
than four regions) such that no region contains
more circuits than fit into it and the total (lin-
ear or quadratic) movement is minimized. The
assignment to the regions can then be translated
into a modified quadratic optimization problem.

Both strategies (as well as min-cut placement)
are iterated until the placement is close to legal;
that means roughly: there exists a legal place-
ment in which all circuits are placed nearby. This
ends the global placement phase.

After global placement (whether analytic or
min-cut), the solution must be legalized. Here,
given an illegal placement as input, we ask for a
legal placement that differs from the input as lit-
tle as possible. The common measure is the sum
of the squared distances. Unfortunately, only spe-
cial cases of this problem can be solved optimally
fast enough, even when all circuits have the same
height and are to be arranged in rows.

3 Routing

In routing we must connect for each net the set
of its pins by wires. The positions of the pins
are determined by the placement. Wires can run
on different wiring planes (sometimes more than
10), which are separated by insulating material.
Wires of adjacent planes can be connected by so-
called wvias. In almost all current technologies,
all wire segments run horizontally or vertically.
For efficient packing, every plane is used predom-
inantly in one direction; horizontal and vertical
planes alternate.

Wires can have different width, complicated
spacing requirements, and other rules to obey.
Although important, such rules do not change the
overall nature of the problem.

Before all nets are routed, some areas are al-
ready used by power supply or clock grids. They
must also be designed, but this is still largely done
manually.

3.1 Steiner trees

The minimal connections for a net can be mod-
eled as Steiner trees. A Steiner tree for a given set
of terminals (pins) is a minimal connected graph
containing these terminals and possibly other ver-
tices; see Figure 1. If wiring is restricted to
pre-defined routing tracks, the space available for
routing a single net can be modeled as an undi-
rected graph. Finding a shortest Steiner tree for
a given set of terminals in a graph is NP-hard,
and the same holds even for shortest rectilin-
ear Steiner trees in the plane. Moreover, short-
est is not always good for meeting timing con-
straints, and the routing graph is huge (it can
have more than 10! vertices). Therefore, routing
algorithms mostly use fast variants of Dijkstra’s
algorithm in order to find a shortest path between
two components, and compose the Steiner trees
of such paths. If done carefully, this is at most a
factor 2(t — 1)/t worse than optimal, where ¢ is
the number of terminals (=pins in the net).

3.2 Packing Steiner Trees

Since already finding one shortest Steiner tree
is hard, it is not surprising that finding vertex-
disjoint Steiner trees in a given graph is even

harder. In fact, it is NP-hard even if every net
has only two pins and the graph is a planar grid.
Nevertheless, it could be possible to solve such
problems if the instance sizes are not too large.

Current detailed routing algorithms route the
nets essentially sequentially, revising earlier deci-
sions as necessary (rip-up and re-route). To speed
up the sequential routing approach and to im-
prove the quality of results, a global routing step
is done in the beginning. Here, the routing space
is modeled by a coarser graph, whose vertices nor-
mally correspond to rectangular areas (induced
by a grid) on a certain plane. Two vertices are
connected if they correspond to the same area
on adjacent planes or to horizontally or vertically
(depending on the routing direction of the plane)
adjacent areas on the same plane. Edges have
capacities, depending on how many wires we can
pack between the corresponding areas.

Then global routing asks for finding a Steiner
tree for each net, such that the number (more
generally: total width) of Steiner trees using an
edge does not exceed its capacity. This problem is
still NP-hard, and the global routing graphs can
still be large (they often have more than 107 ver-
tices). Nevertheless, global routing can be solved
quite well in theory and practice. The best ap-
proach with a theoretical guarantee is based on
first approximately solving a fractional relaxation
(called min-max resource sharing, a generaliza-
tion of multi-commodity flows), then applying
randomized rounding to obtain an integral solu-
tion, and finally correcting local violations (in-
duced by rounding).

Global routing is also done at earlier stages of
the design flow, e.g. during placement, in order to
estimate routability and exhibit areas with possi-
ble routing congestion.

4 Timing Optimization

A chip performs its computations in cycles. In
each cycle electrical signals start from registers
or chip inputs, traverse some circuits and nets,
and finally enter registers or chip outputs.
Timing optimization has to ensure that all sig-
nals arrive within a given cycle time. Under this
constraint, the power consumption is to be min-
imized. However, achieving the cycle time is al-

ready a difficult problem on its own.

4.1 Logic Synthesis

The structure of a boolean circuit has a big im-
pact on the performance and power consumption
of a chip. On the one hand the depth, i.e. the
maximum number of logic circuits on a combina-
torial path should be small to meet the cycle time.
On the other hand the total number of circuits to
realize a function should not be too big.

Almost all boolean functions have a minimum
representation size which is exponential in the
number of input variables. Hence, functions that
are realized in hardware are quite special.

Some very special functions, such as adders,
certain symmetric functions, or paths consist-
ing alternately of AND- and OR-circuits, can
be implemented optimally or near-optimally by
divide-and-conquer or dynamic programming al-
gorithms. But general logic synthesis is done by
(mostly local) heuristics today.

4.2 Repeater Trees

Another central task is to distribute a signal
from a source to a set of sinks. As the delay
along a wire grows almost quadratically with its
length, repeaters, i.e. circuits implementing the
identity function or inversion, have to be inserted
to strengthen the signal and linearize the growth.

For a given Steiner tree, repeaters can be in-
serted arbitrarily close to optimally in polynomial
time using dynamic programming.

A more difficult problem asks for the structure
of the Steiner tree (into which repeaters can be in-
serted). A minimum length Steiner tree can have
very long source-sink paths. In addition, every
bifurcation from a path adds capacitance and de-
lay. Thus, trees should not only be short, but also
consist of short paths with few bifurcations.

Combining approximation algorithms for min-
imum Steiner trees with Huffman coding, bi-
criteria algorithms can be derived, trading off to-
tal length and path delays.

4.3 Circuit Sizing

In circuit sizing, the channel widths of the under-
lying transistors are optimized. A wider channel

charges the capacitance of the output net faster,
but increases the input capacitances and, thus,
the delays of the predecessors. Assuming con-
tinuously scalable circuits and a simplified delay
model, the problem of finding optimum sizes for
all circuits can be transformed into a geometric
program. This can be solved by interior point
methods or by the subgradient method and La-
grangian relaxation.

However, rounding such a continuous solution
to discrete circuit sizes can corrupt the result.
Theoretical models for discrete timing optimiza-
tion, such as the discrete time-cost tradeoff prob-
lem, are not well-understood yet. Thus, local
search is used extensively for post-optimization.

4.4 Clocktree Construction

One of the few problems that can be solved ef-
ficiently in theory and in practice is clock skew
scheduling. FEach register triggers its stored bit
once per cycle. The times at which the signals
are released can be optimized such that the cycle
time is minimized. To this end a register graph
is constructed. Each register is represented by a
vertex. There is an arc if there is a signal path
between the corresponding registers. An arc is
weighted by the maximum delay of a path be-
tween the two registers. Now the minimum pos-
sible cycle time is given by the maximum mean
arc weight of a cycle in the graph. This reduces
to the well-solved mintmum mean cycle problem.
The challenging problem is then to distribute a
clock signal such that the optimal trigger times
are met. Here facility location algorithms for
bottom-up tree construction are combined with
dynamic programming for repeater insertion.

Further Reading

1. International Technology Roadmap for Semi-
conductors (ITRS). SEMATECH, Austin 2013,
http://www.itrs.net (annually updated).

2. Held, S., Korte, B., Rautenbach, D., Vygen, J.:
Combinatorial optimization in VLSI design. In:
” Combinatorial Optimization: Methods and Ap-
plications” (V. Chvétal, ed.), IOS Press, Ams-
terdam 2011, pp. 33-96.

3. Alpert, C.J., Mehta, D.P., Sapatnekar, S.S.
(eds.): Handbook of Algorithms for Physical De-
sign Automation. Taylor and Francis, Boca Ra-
ton 2009.

