Exercise Set 9

Exercise 9.1. Let G be a graph, $u: E(G) \rightarrow \mathbb{N} \cup\{\infty\}$ and $b: V(G) \rightarrow \mathbb{N}$. Prove Theorem 2.29 from the lecture, i.e. show that (G, u) has a perfect b-matching if and only if for any two disjoint subsets $X, Y \subseteq V(G)$ the number of connected components C in $G-X-Y$ for which $\sum_{c \in V(C)} b(c)+\sum_{e \in E_{G}(v(C), Y)} u(e)$ is odd does not exceed

$$
\sum_{v \in X} b(v)+\sum_{y \in Y}\left(\sum_{e \in \delta(y)} u(e)-b(y)\right)-\sum_{e \in E_{G}(X, Y)} u(e)
$$

Exercise 9.2. Let G be an undirected graph and $T \subseteq V(G)$ with $|T|=2 k$ even. Prove that the minimum cardinality of a T-cut in G equals the maximum of $\min _{i=1}^{k} \lambda_{s_{i}, t_{i}}$ over all pairings $T=\left\{s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right\}$, where $\lambda_{s, t}$ denotes the maximum number of pairwise edge-disjoint s - t-paths.

Exercise 9.3. Find an instance (G, T, c) of the minimum weight T-join problem such that c is conservative and there exists a minimum weight T-join J that can not be written as a disjoint union of the edge sets of $\frac{|T|}{2} c$-shortest paths with endpoints in T and possibly some zero-weight circuits.

Exercise 9.4. Let G be an undirected graph and $T \subseteq V(G)$ such that $|T|$ is even. Show that the convex hull of incidence vectors of T-joins in G is given by the set P of all $x \in[0,1]^{E(G)}$ satisfying
$\sum_{e \in F}\left(1-x_{e}\right)+\sum_{e \in \delta(X) \backslash F} x_{e} \geq 1 \forall X \subseteq V(G), F \subseteq \delta(X)$ such that $|X \cap T|+|F|$ is odd.
Hint: First show that the incidence vector of every T-join in G satisfies the given constraints. Next, show that every vertex of P is the incidence vector of a T-join in G by showing that for each cost function $c \in \mathbb{R}^{E(G)}$, there exists a T-join J such that the incidence vector χ^{J} of J minimizes $c^{T} x$ over P. To this end, let
$E^{-}:=\{e \in E(G): c(e)<0\}$ and, for a vector $x \in P$, consider the vector \bar{x} given by

$$
\bar{x}_{e}= \begin{cases}x_{e} & , e \in E(G) \backslash E^{-} \\ 1-x_{e} & , e \in E^{-}\end{cases}
$$

and prove that \bar{x} is contained in the up-hull of the $T \Delta \operatorname{odd}\left(E^{-}\right)$-polyhedron of G. Finally, recall Lemma 2.30 and its proof.

Deadline: December 15, before the lecture. The websites for lecture and exercises can be found at:
https://ecampus.uni-bonn.de/goto_ecampus_crs_2772883.html
In case of any questions feel free to contact me at armbruster@or.uni-bonn.de,

