Exercise Set 3

Exercise 3.1. A set of students applies for a set of seminars. Each student chooses exactly three seminars. Two seminars are chosen by 40 students, all others by fewer.
(a) Prove that each student can be assigned to a seminar they chose without assigning more than 13 students to any seminar.
(b) Show how to compute such an assignment in $\mathcal{O}\left(n^{2}\right)$ time, where n is the number of seminars.
(3+1 points)

Exercise 3.2. Let G be a graph and M a matching in G that is not maximum. In this exercise we use the terminology disjoint subgraphs/paths/circuits and mean it quite literally: Two subgraphs are disjoint if they have no edges and no vertices in common. (Note that the term vertex-disjoint paths is often used to mean that two paths have no inner-vertices in common, but possibly endpoints.)
(i) Show that there are $\nu(G)-|M|$ disjoint M-augmenting paths in G.
(ii) Show the existence of an M-augmenting path of length at most $\frac{\nu(G)+|M|}{\nu(G)-|M|}$.
(iii) Let P be a shortest M-augmenting path in G and P^{\prime} an $(M \Delta E(P))$-augmenting path. Prove $\left|E\left(P^{\prime}\right)\right| \geq|E(P)|+2 \cdot\left|E(P) \cap E\left(P^{\prime}\right)\right|$.

Consider the following algorithm: We start with the empty matching and in each iteration augment the matching along a shortest augmenting path. Let P_{1}, P_{2}, \ldots be the sequence of augmenting paths chosen.
(iv) Show that if $\left|E\left(P_{i}\right)\right|=\left|E\left(P_{j}\right)\right|$ for $i \neq j$, then P_{i} and P_{j} are disjoint.
(v) Show that the sequence $\left|E\left(P_{1}\right)\right|,\left|E\left(P_{2}\right)\right|, \ldots$ contains less than $2 \sqrt{\nu(G)}+1$ different numbers.

From now on, let G be bipartite and set $n:=|V(G)|$ and $m:=|E(G)|$.
(vi) Given a non-maximum matching M in G show that we can find in $O(n+m)$ time a family \mathcal{P} of disjoint shortest M-augmenting paths such that if M^{\prime} is the matching obtained by augmenting M over every path in \mathcal{P}, then

$$
\begin{aligned}
& \min \left\{|E(P)|: P \text { is an } M^{\prime} \text {-augmenting path }\right\} \\
& \quad>\min \{|E(P)|: P \text { is an } M \text {-augmenting path }\}
\end{aligned}
$$

(vii) Describe an algorithm with runtime $O(\sqrt{n}(m+n))$ that solves the CARDInality Matching Problem in bipartite graphs.

$$
(1+1+2+2+2+3+1=12 \text { points })
$$

Deadline: November 3, before the lecture. The websites for lecture and exercises can be found at:
https://ecampus.uni-bonn.de/goto_ecampus_crs_2772883.html
In case of any questions feel free to contact me at armbruster@or.uni-bonn.de,

