Exercise Set 2

Exercise 2.1. Let G be a bipartite graph. For each $v \in V(G)$, let $<_v$ be a linear ordering of $\delta(v)$. Prove that there is a matching $M \subseteq E(G)$ such that for each $e \in E(G) \setminus M$ there is an edge $f \in M$ and a vertex $v \in V(G)$ such that $v \in (e \cap f)$ and $e <_v f$.

(5 points)

Exercise 2.2. Let G be a graph, n := |V(G)| even, and for any set $X \subseteq V(G)$ with $|X| \leq \frac{3}{4}n$ we have

$$\left|\bigcup_{x\in X} \Gamma(x)\right| \ge \frac{4}{3}|X|.$$

Prove that G has a perfect matching.

Hint: Let S be a set violating the Tutte condition. Prove that the number of connected components in G - S with just one element is at most $\max\left\{0, \frac{4}{3}|S| - \frac{1}{3}n\right\}$. Consider the cases $|S| \ge \frac{n}{4}$ and $|S| < \frac{n}{4}$ separately.

(5 points)

Exercise 2.3. Let $S = \{1, \ldots, n\}$ for some $n \ge 1$.

(i) Suppose $0 \le k \le n-1$ and consider the bipartite graph $G = (A \dot{\cup} B, E)$ where

$$A := \{ X \subseteq S : |X| = k \},\$$

$$B := \{ Y \subseteq S : |Y| = k + 1 \},\$$

$$E := \{ \{ X, Y \} : X \in A, Y \in B, X \subseteq Y \}$$

Show that there is a matching covering A if k < n/2, and that there is a matching covering B if k > n/2 - 1.

(ii) Suppose \mathcal{F} is a family of subsets of S with the property that no element of \mathcal{F} is contained in another element of \mathcal{F} . Show that:

$$|\mathcal{F}| \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$$

and that this bound is tight (for every n).

(2+4 points)

Deadline: October 27. Further information on lecture and exercises can be found in the corresponding eCampus course at:

https://ecampus.uni-bonn.de/goto_ecampus_crs_2772883.html

In case of any questions feel free to contact me at armbruster@or.uni-bonn.de.