
Combinatorial Optimization
Winter Term 2022/2023

Professor Dr. Stephan Held
Susanne Armbruster

Programming Exercise 2

Exercise P.2. Task: Implement the algorithm for the Undirected Chinese
Postman Problem.

Usage: Your program should be named chinese_postman, and it should be called
as follows:

chinese_postman input_graph output_tour

Input: The arguments input_graph and output_tour are mandatory, i.e. your
program should exit with an error message if they are not present. Here, the
file input_graph encodes the input graph for which your program should find a
shortest Chinese Postman tour, and you should write the postman tour you found
(and nothing else) to output_tour (see Output below).

The file input_graph is given in DIMACS format as defined on the previous
programming exercise.

Output: Your program should return a shortest Chinese postman tour in G by
writing the complete DIMACS encoding of the tour into the file output_tour. A
tour is encoded as follows in DIMACS format. The encoding starts with a header
of the form
TYPE : TOUR
DIMENSION : n
LENGTH : k
TOUR_SECTION
where n is the number of vertices in the instance and k is the total length of your
tour. Each of the following k lines consists of a single integer i with 1 ≤ i ≤ n,
which are the vertices in the order in which they are visited in the Postman tour.
Please note that for most tours, this includes listing some vertices several times.
Finally, the encoding ends with these two lines:
-1
EOF

Programming conditions: Your program should be written in C or C++, although
the use of C++ is strongly encouraged. By default, your program will be com-
piled using g++ 11.1.0 using C++20. Different compilers or compiler versions are



Combinatorial Optimization
Winter Term 2022/2023

Professor Dr. Stephan Held
Susanne Armbruster

available upon request. Your program will be compiled using -pedantic -Wall
-Wextra -Werror, i.e., all warnings are enabled and each remaining warning will
lead to compilation failure. Program evaluation will be performed on Linux. The
standard library as well as a one of the provided libraries for solving the Minimum
Weight Perfect Matching Problem (see Help below) can be used as you
wish. No other libraries are allowed.

Submission Format: Your submission should consist of a single archive file in the
.zip, .tar.gz or .tar.bz2 format, which contains all contents of your top level direc-
tory (but not the directory itself). For easier testing, your submission must contain
a bash script compile.sh in its top level directory, which builds the executable
(e.g. by directly calling the compiler or by executing some make command) when
called without any arguments. Your executable must be called chinese_postman
(as implied above) and be created in a subfolder called bin of the top level di-
rectory. Since you will (most likely) be linking against a library for solving the
Minimum Weight Perfect Matching Problem, you should also provide a
copy of the library located at the correct relative path with your submission.

Algorithm evaluation: The algorithm is to be implemented as described in the
lecture by computing a T-join on the all vertices of odd degree and then computing
a Eulerian tour in the graph combined with its T-join.

Code evaluation: Your code must implement the Undirected Chinese Post-
man Algorithm correctly. Running time in practice will also be evaluated, as
well as the elegance, cleanness and organization of your code. Make sure to add
good documentation and give the variables, functions and types meaningful names
that make their role clear. Break your complicated functions into small simple
ones, break your program into a few units etc. Of course, your program should
not trigger undefined behavior. In particular, your program should be valgrind-
clean, i.e. it should not leak memory and should not perform invalid operations on
memory.

Help: The website for the exercise class contains a set of test instances for test-
ing your code. Moreover, an updated class to store an undirected graph with
edge weights, a public solver (free for academic use) for the Minimum Weight
Perfect Matching Problem (blossomV) and example code for reading in a
graph and calling the solver is provided, so you can start implementing the algo-
rithm right away. Included is also a file README that contains further important
information.

(64 points)

Deadline: December 22, via email to armbruster@or.uni-bonn.de.

mailto:armbruster@or.uni-bonn.de

