
Combinatorial Optimization
Winter Term 2022/2023

Professor Dr. Stephan Held
Susanne Armbruster

Programming Exercise 1

Exercise P.1. Task: Implement the Cardinality Matching Algorithm as
described in the lecture.

Usage: Your program should be called as follows:

program_name --graph file1.dmx

Input: The argument, file1.dmx, is mandatory (i.e., your program should exit
with an error message if it is not present), and it encodes the graph G for which
your program should find a maximum cardinality matching.

File file1.dmx is expected to be in DIMACS format, which is used to encode
undirected graphs as follows: All lines beginning with a c are comments. Now,
ignoring any comment-lines, to encode a graph G, the first line has the format

p edge n m

where n = |V (G)| and m = |E(G)|. From this, V (G) is implicitly identified with
{1, . . . , n}. Note that vertex indices start with 1 in the DIMACS format. The
following m lines have the format

e i j

representing that {i, j} ∈ E(G).

Output: Your program should return a maximum cardinality matching M in G
by writing the complete DIMACS encoding of the subgraph (V (G), M) to the
standard output. Your implementation should achieve a runtime of O(n3).

Use of heuristics: As an extra speed-up, if you wish, you may use some heuristics.
For example, you can start with a greedy routine to add edges to M0 until it is
maximal.

Programming language: Your program should be written in C or C++, although
the use of C++ is strongly encouraged. By default, your program will be com-
piled using g++ 11.1.0 using C++20. Different compilers or compiler versions are

Combinatorial Optimization
Winter Term 2022/2023

Professor Dr. Stephan Held
Susanne Armbruster

available upon request. Your program will be compiled using -pedantic -Wall
-Wextra -Werror, i.e., all warnings are enabled and each remaining warning will
lead to compilation failure. Program evaluation will be performed on Linux. The
standard library can be used as you wish. No other libraries are allowed. Add a
script containing your compile command.

Algorithm evaluation: You are expected to implement the algorithm as described in
the lecture (slightly different from the presentation in Korte-Vygen, but it would
certainly be helpful to take a look at their description as well). The runtime
requirement will not be handled strictly, so complicated implementation details
that make your program slightly slower may be overlooked, but the core of the
algorithm must be as efficient as described in class.

Code evaluation: Running time in practice will also be evaluated, as well as the
elegance, cleanness and organization of your code. Make sure to add good docu-
mentation and give the variables, functions and types meaningful names that make
their role clear. Break your complicated functions into small simple ones, break
your program into a few units etc. Of course, your program should not trigger
undefined behavior. In particular, your program should be valgrind-clean, i.e. it
should not leak memory and should not perform invalid operations on memory.

Help: On the website for the exercise classes, which you should visit regularly, you
will find a C++ unit providing a simple graph class that you can use (if you wish),
as well as a precise definition of the DIMACS format and a few instances that you
can use to test your program. Also, you will find some optimum values for the test
instances. You may use the Makefile provided with the graph class if you like.

Please submit your programs in groups of 2 students.
(64 points)

Deadline: November 24, before the lecture. The websites for lecture and exer-
cises can be found at:

https://ecampus.uni-bonn.de/goto_ecampus_crs_2772883.html

In case of any questions feel free to contact me at armbruster@or.uni-bonn.de.

https://ecampus.uni-bonn.de/goto_ecampus_crs_2772883.html
mailto:armbruster@or.uni-bonn.de

