Wintersemester 2021/22 Prof. Dr. S. Held Dr. U. Brenner

Einführung in die Diskrete Mathematik 8. Übung

- 1. Es sei (G, u, b, c) eine Instanz des MINIMUM-COST-FLOW-PROBLEMS mit ganzzahligen Kapazitäten u und ganzzahligen Kosten c. Es sei f ein f-Fluss in (G, u) und f^* ein kostenminimaler b-Fluss in (G, u).
 - (a) Zeigen Sie, dass es, falls f nicht schon ein kostenminimaler b-Fluss ist, einen Kreis C im Residualgraph von f gibt, sodass

$$c(f) - c(f') \ge \frac{1}{|E(G)|} (c(f) - c(f^*))$$

gilt, wobei f' der Fluss sei, der aus f durch Augmentierung entlang C entstehe, und durch c(f), c(f') und $c(f^*)$ die Kosten der jeweiligen Flüsse angegeben werden.

(b) Zeigen Sie, dass $O(|E(G)|\log(|E(G)|CU))$ Augmentierungen entlang geeigneter Kreis ausreichen, um aus einem beliebigen b-Fluss einen kostenminimalen b-Fluss zu berechnen, wobei $C := \max\{|c(e)| \mid e \in E(G)\}$ und $U := \max\{u(e) \mid e \in E(G)\}$ sei. (3+2 Punkte)

Bemerkung: In dieser Aufgabe nehmen wir an, dass man stets entlang eines Kreises augmentiert, der die größte Verbesserung erzielt, was aber in der Regel zu aufwändig ist.

- 2. Man betrachte eine Verallgemeinerung des MINIMUM-COST-FLOW-PROBLEMS, bei der unendliche Kapazitäten erlaubt sind (d.h. $u(e) = \infty$ für manche Kanten e). Eine Instanz (G, u, b, c) heißt unbeschränkt, wenn es für jedes $\gamma \in \mathbb{R}$ einen b-Fluss f in (G, u) gibt mit $c(f) < \gamma$.
 - (a) Man zeige, dass eine Instanz genau dann unbeschränkt ist, wenn es einen b-Fluss in (G, u) gibt und ein negativer Kreis existiert, dessen Kanten alle unendliche Kapazität haben.
 - (b) Man zeige, wie man in $O(n^3 + m)$ -Zeit entscheiden kann, ob eine Instanz unbeschränkt ist.
 - (c) Man zeige, dass in einer nicht unbeschränkten Instanz jede unendliche Kapazität auf äquivalente Weise durch eine endliche Kapazität ersetzt werden kann. (2+2+2 Punkte)
- 3. Sei (G, u, b, c) eine Instanz des Minimum-Cost-Flow-Problems, für das eine zulässige Lösung existiere. Zeigen Sie, dass es dann eine kostenminimale Lösung f gibt, für die eine Kantenmenge $F \subseteq E(G)$ existiert, so dass der (V(G), F) zugrundeliegende ungerichtete Graph kreisfrei ist und auf allen Kanten $e \in E(G) \setminus F$ gilt: $f(e) \in \{0, u(e)\}$.
- 4. Wir betrachten ein Verfahren, das aus dem Sukzessive-Kürzeste-Wege-Algorithmus entsteht, indem man zwei Änderungen durchführt:
 - $\bullet \ \ \text{Man augmentiert stets um} \ \gamma' := \min \Big\{ \min_{e \in E(P)} u_f(e), \quad \max\{b'(s), -b'(t)\} \Big\}.$
 - Unter allen kürzesten s-t-Wegen im Residualgraphen wird der augmentierende P so ausgewählt, dass der zugehörige γ' -Wert maximal ist.

Zeigen Sie, dass dieser Algorithmus bei ganzzahligen b-Werten und Kapazitäten ebenfalls nach höchstens $\frac{1}{2} \sum_{v \in V(G)} |b(v)|$ Augmentierungen terminiert. Zeigen Sie außerdem durch ein Beispiel, dass er mehr Augmentierungen benötigen kann als der (unveränderte) Sukzessive-Kürzeste-Wege-Algorithmus.

(5 Punkte)

Abgabe: Dienstag, der 7.12.2021, vor der Vorlesung im Hörsaal