Exercises Set 11

Exercise 11.1. Prove that a nonempty compact set \(P \subseteq \mathbb{R}_+^n \) is a polymatroid if and only if

(i) For all \(0 \leq x \leq y \in P \) we have \(x \in P \).

(ii) For all \(x \in \mathbb{R}_+^n \) and all \(y, z \leq x \) with \(y, z \in P \) that are maximal with this property (i.e. \(y \leq w \leq x \) and \(w \in P \) implies \(w = y \), and \(z \leq w \leq x \) and \(w \in P \) implies \(w = z \)) we have \(1_y = 1_z \), where \(1 \) is the vector whose entries are all 1.

(4 points)

Exercise 11.2. Let \((G, u, s, t)\) be a network and \(U := \delta^+(s) \). Let

\(P := \{ x \in \mathbb{R}_+^U : \text{there is an } s-t \text{ flow } f \text{ in } (G, u) \text{ with } f(e) = x_e \text{ for all } e \in U \} \).

Prove that \(P \) is a polymatroid.

(4 points)

Exercise 11.3. Let \(f : 2^U \to \mathbb{R} \) be a submodular function with \(f(\emptyset) = 0 \). Prove that the set of vertices of the base polyhedron of \(f \) is precisely the set of vectors \(b^\prec \) for all total orders \(\prec \) of \(U \), where

\(b^\prec(u) := f\left(\{v \in U : v \preceq u\}\right) - f\left(\{v \in U : v \prec u\}\right) \quad (u \in U) \).

(6 points)

Exercise 11.4. Let \(f : 2^U \to \mathbb{R} \) be a submodular function with \(f(\emptyset) = 0 \), and let \(B(f) \) denote its base polyhedron. Prove that

\[
\min\{f(X) : X \subseteq U\} = \max\left\{ \sum_{u \in A} z_u : z \in \mathbb{R}_+^U \text{ with } \sum_{u \in A} z_u \leq \min\{0, f(A)\} \text{ for all } A \subseteq U \right\} \\
= \max\left\{ \sum_{u \in U} \min\{0, y_u\} : y \in B(f) \right\}.
\]

(6 points)
Deadline: January 9th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ws19/co_exercises/exercises.html

In case of any questions feel free to contact me at rabenstein@or.uni-bonn.de.