Exercise Set 8

Exercise 8.1. For an undirected graph G, let P_{G} denote the spanning-tree polytope of G and

$$
Q_{G}:=\left\{x \in[0,1]^{E(G)}: \sum_{e \in E(G)} x_{e}=|V(G)|-1, \sum_{e \in \delta(X)} x_{e} \geq 1 \text { for } \emptyset \neq X \nsubseteq V(G)\right\} .
$$

Prove:
(i) $P_{G} \subseteq Q_{G}$ for every graph G.
(ii) There exists a graph G with $P_{G} \neq Q_{G}$.

Exercise 8.2. Let G be an undirected graph. Given a partition $\left(X_{1}, \ldots, X_{k}\right)$ of $V(G)$ we define $\delta\left(X_{1}, \ldots, X_{k}\right):=\delta\left(X_{1}\right) \cup \cdots \cup \delta\left(X_{k}\right)$ (so, in particular, if $\emptyset \neq X \varsubsetneqq V(G)$ we have $\delta(X)=\delta(X, V(G) \backslash X))$. Consider the polytope

$$
\begin{aligned}
R_{G}:=\{x: E(G) \rightarrow[0,1]: & \sum_{e \in E(G)} x(e)=|V(G)|-1 \text { and } \\
& \left.\sum_{e \in \delta\left(X_{1}, \ldots, X_{k}\right)} x(e) \geq k-1 \text { for every partition }\left(X_{1}, \ldots, X_{k}\right) \text { of } V(G)\right\}
\end{aligned}
$$

Show that R_{G} is the spanning-tree polytope of G.

Exercise 8.3. Let G be a 2-edge-connected graph, and let $T:=\{v \in V(G)$: $|\delta(v)|$ odd $\}$.
(i) Prove that $x \in \mathbb{R}^{E(G)}$ with $x_{e}=\frac{1}{3}$ for all $e \in E(G)$ is a convex combination of incidence vectors of T-joins.
(ii) Show that a connected Eulerian subgraph H of $2 G$ with $V(H)=V(G)$ and $|E(H)| \leq \frac{2}{3}(|V(G)|+|E(G)|-1)$ can be computed in polynomial time.

Exercise 8.4. Let G be a graph. A 2-cover of G is a function $y: V(G) \rightarrow\{0,1,2\}$ with $y(v)+y(w) \geq 2$ for all $\{v, w\} \in E(G)$. The size of y is $\sum_{v \in V(G)} y(v)$.
If y is a 2-cover, the set $\{v \in V(G): y(v)=0\}$ is a stable set.
Conversely, a stable set $A \subseteq V(G)$ determines a 2-cover y by setting

$$
y(v)= \begin{cases}0 & \text { if } v \in A \\ 2 & \text { if } v \in \Gamma(A) \\ 1 & \text { otherwise }\end{cases}
$$

Prove:
(i) The maximum size of a 2-matching in G equals the minimum size of a 2-cover of G, where the size of a 2-matching $f: E(G) \rightarrow\{0,1,2\}$ is $\sum_{e \in E(G)} f(e)$.
(ii) G has a perfect 2-matching iff $|\Gamma(A)| \geq|A|$ for all stable sets $A \subseteq V(G)$.

Deadline: December $5^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws19/co_exercises/exercises.html

In case of any questions feel free to contact me at rabenstein@or.uni-bonn.de

