Exercise Set 7

Exercise 7.1. Show that the Traveling Salesman Problem, restricted to instances that are the metric closure of a weighted tree, can be solved in polynomial time.

Exercise 7.2. Let $\lambda_{i j}, 1 \leq i, j \leq n$, be nonnegative numbers with $\lambda_{i j}=\lambda_{j i}$ and $\lambda_{i k} \geq \min \left\{\lambda_{i j}, \lambda_{j k}\right\}$ for any three distinct indices $i, j, k \in\{1, \ldots, n\}$. Show that there exists a graph G with $V(G)=\{1, \ldots, n\}$ and capacities $u: E(G) \rightarrow \mathbb{R}_{+}$such that the local edge-connectivities are precisely the $\lambda_{i j}$.

Hint: Consider a maximum weight spanning tree in $\left(K_{n}, c\right)$, where $c(\{i, j\}):=\lambda_{i j}$.

Exercise 7.3. Let G be an undirected graph and $T \subseteq V(G)$ with $|T|=2 k$ even. Prove that the minimum cardinality of a T-cut in G equals the maximum of $\min _{i=1}^{k} \lambda_{s_{i}, t_{i}}$ over all pairings $T=\left\{s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right\}$, where $\lambda_{s, t}$ denotes the maximum number of pairwise edge-disjoint s - t-paths.

Exercise 7.4. Let G be a graph, $u: E(G) \rightarrow \mathbb{N} \cup\{\infty\}$ and $b: V(G) \rightarrow \mathbb{N}$. Proof Theorem 2.29 from the lecture, i.e. show that (G, u) has a perfect b-matching if and only if for any two disjoint subsets $X, Y \subseteq V(G)$ the number of connected components C in $G-X-Y$ for which $\sum_{c \in V(C)} b(c)+\sum_{e \in E_{G}(v(C), Y)} u(e)$ is odd does not exceed

$$
\sum_{v \in X} b(v)+\sum_{y \in Y}\left(\sum_{e \in \delta(y)} u(e)-b(y)\right)-\sum_{e \in E_{G}(X, Y)} u(e)
$$

Deadline: November $28^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws19/co_exercises/exercises.html
In case of any questions feel free to contact me at rabenstein@or.uni-bonn.de

