Exercise Set 2

Exercise 2.1. Let G be a graph and M a matching in G that is not maximum. In this exercise we use the terminology disjoint subgraphs/paths/circuits and mean it quite literally: Two subgraphs are disjoint if they have no edges and no vertices in common. (Note that the term vertex-disjoint paths is often used to mean that two paths have no inner-vertices in common, but possibly endpoints.)
(i) Show that there are $\nu(G)-|M|$ disjoint M-augmenting paths in G.
(ii) Show the existence of an M-augmenting path of length at most $\frac{\nu(G)+|M|}{\nu(G)-|M|}$.
(iii) Let P be a shortest M-augmenting path in G and P^{\prime} an $(M \Delta E(P))$-augmenting path. Prove $\left|E\left(P^{\prime}\right)\right| \geq|E(P)|+2 \cdot\left|E(P) \cap E\left(P^{\prime}\right)\right|$.

Consider the following algorithm: We start with the empty matching and in each iteration augment the matching along a shortest augmenting path. Let P_{1}, P_{2}, \ldots be the sequence of augmenting paths chosen.
(iv) Show that if $\left|E\left(P_{i}\right)\right|=\left|E\left(P_{j}\right)\right|$ for $i \neq j$, then P_{i} and P_{j} are disjoint.
(v) Show that the sequence $\left|E\left(P_{1}\right)\right|,\left|E\left(P_{2}\right)\right|, \ldots$ contains less than $2 \sqrt{\nu(G)}+1$ different numbers.

From now on, let G be bipartite and set $n:=|V(G)|$ and $m:=|E(G)|$.
(vi) Given a non-maximum matching M in G show that we can find in $O(n+m)$ time a family \mathcal{P} of disjoint shortest M-augmenting paths such that if M^{\prime} is the matching obtained by augmenting M over every path in \mathcal{P}, then

$$
\begin{aligned}
& \min \left\{|E(P)|: P \text { is an } M^{\prime} \text {-augmenting path }\right\} \\
& \quad>\min \{|E(P)|: P \text { is an } M \text {-augmenting path }\}
\end{aligned}
$$

(vii) Describe an algorithm with runtime $O(\sqrt{n}(m+n))$ that solves the CARDInality Matching Problem in bipartite graphs.

$$
(1+1+2+2+2+3+1=12 \text { points })
$$

Exercise 2.2. Let G be a 2-edge-connected graph, and let $\varphi(G)$ be the minimum number of even ears in any ear-decomposition of G. Show that then for every $v \in V(G)$ there is a matching in $G-v$ of cardinality $\frac{1}{2}(n-1-\varphi(G))$.

Exercise 2.3. The permanent of a square matrix $M=\left(m_{i j}\right)_{1 \leq i, j \leq n}$ is defined by

$$
\operatorname{per}(M)=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} m_{i, \pi(i)}
$$

where S_{n} denotes the group of permutations of $\{1, \ldots, n\}$ by S_{n}. In this exercise, you may use the following results about the permanent of M.

- If all entries of M are either 0 or 1 and its row sums are r_{1}, \ldots, r_{n}, then $\operatorname{per}(M) \leq\left(r_{1}!\right)^{\frac{1}{r_{1}}} \cdots \cdots\left(r_{n}!\right)^{\frac{1}{r_{n}}}$. This was shown by Brègman[1973].
- If M is a non negative $n \times n$ matrix whose collum and row sums are all equal to 1 , then $\operatorname{per}(M) \geq n!\left(\frac{1}{n}\right)^{n}$. This was conjectured by van der Waerden and later shown to be true by Falikman[1981] and Egoryčev[1980]. Such matrices are called doubly stochastic matrices.

Let G be a blanced bipartite graph on $2 n$ vertices, i.e. there is a bipartition $V(G)=A \dot{\cup} B$ of G with $|A|=|B|=n$. Recall $M_{G}(x)$ was defined in Exercise 1.4. Finally let $\Phi(G)$ denote the number of perfect matchings in G.
(a) Prove $\Phi(G)$ and $\operatorname{per}\left(M_{G}(\mathbb{1})\right)$ to be equal.
(b) In the case of a k-regular G, prove $n!\left(\frac{k}{n}\right)^{n} \leq \Phi(G) \leq(k!)^{\frac{n}{k}}$.

$$
\text { (2 }+4 \text { points })
$$

Deadline: October $24^{\text {th }}$, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws19/co_exercises/exercises.html

In case of any questions feel free to contact me at rabenstein@or.uni-bonn.de

