
Combinatorial Optimization
Winter Term 2019

Professor Dr. Stephan Held
Stefan Rabenstein

Programming Exercise 1

Exercise P.1. Task: Implement the Cardinality Matching Algorithm as de-
scribed in the lecture.

Usage: Your program should be called as follows:

program_name --graph file1.dmx [--hint file2.dmx]

Input: The first argument, file1.dmx, is mandatory (i.e., your program should exit
with an error message if it is not present), and it encodes the graph G for which your
program should find a maximum cardinality matching.

The second argument, file2.dmx, is optional, and when present it is expected to
encode a matching M0 in G. To be precise (since DIMACS files encode graphs and
not sets of edges), it encodes the subgraph (V (G),M0) of G that corresponds to this
matching. If this argument is not present, M0 is implicitly defined as the empty set.
More on howM0 should be used below. Note that the square brackets [and] are not
part of the actual program call, but just indicate that everything within is optional.
For example, if file1.dmx and file2.dmx are DIMACS files, possible program calls
include:

program_name --graph file1.dmx
program_name --graph file1.dmx --hint file2.dmx

Files file1.dmx (and file2.dmx if present) are expected to be in DIMACS format,
which is used to encode undirected graphs as follows: All lines beginning with a c
are comments. Now, ignoring any comment-lines, to encode a graph G, the first line
has the format

p edge n m

where n = |V (G)| and m = |E(G)|. From this, V (G) is implicitly identified with
{1, . . . , n}. Note that vertex indices start with 1 in the DIMACS format. The fol-
lowing m lines have the format

e i j

representing that {i, j} ∈ E(G).

Output: Your program should return a maximum cardinality matching M in G by
writing the complete DIMACS encoding of the subgraph (V (G),M) to the standard
output.

Combinatorial Optimization
Winter Term 2019

Professor Dr. Stephan Held
Stefan Rabenstein

Use of the hint matching: The hint matching M0 should be used by your algorithm
as an initial matching, so that you only need to perform ν(G)− |M0| augmentations
to find a maximum matching. With this, you should achieve a runtime of O((ν(G)−
|M0|+ 1) · n2).

Use of heuristics: As an extra speed-up, if you wish, you may use some heuristics. For
example, you can start with a greedy routine to add edges to M0 until it is maximal.

Programming language: Your program should be written in C or C++, although the
use of C++ is strongly encouraged. By default, your program will be compiled using
clang-9.0.0 using C++17. Different compilers or compiler versions are available upon
request. Your program will be compiled using -pedantic -Wall -Wextra -Werror,
i.e., all warnings are enabled and each remaining warning will lead to compilation
failure. Program evaluation will be performed on Linux. The standard library can
be used as you wish, but no other libraries.

Algorithm evaluation: You are expected to implement the algorithm as described in
the lecture or in the book by Korte and Vygen. The runtime requirement will not
be handled strictly, so complicated implementation details that make your program
slightly slower may be overlooked, but the core of the algorithm must be as efficient
as described in class.

Code evaluation: The correctness, readability and organization of your code will be
evaluated. Make sure to add good documentation and give the variables, functions
and types meaningful names that make their role clear. Break your complicated func-
tions into small simple ones, break your program into a few units etc. Of course, your
program may not trigger undefined behavior. In particular, your program must be
valgrind-clean, i.e., must not leak memory and must not perform invalid operations
on memory.

Help: On the website for the exercise classes, which you should visit regularly, you
will a sample c++ graph class with code for parsing an input file. You may use it
in your solution if you wish. You will also find some help for compiling and testing
your code, including some instances to test it on.

Please submit your programs in groups of up to 2 students.
(64 points)

Deadline: November 18th, 8:00, via email to rabenstein@or.uni-bonn.de. The web-
sites for the lecture with all exercises and test instances can be found at:

http://www.or.uni-bonn.de/lectures/ws19/co_exercises/exercises.html

mailto:rabenstein@or.uni-bonn.de
http://www.or.uni-bonn.de/lectures/ws19/co_exercises/exercises.html

