
Combinatorial Optimization
Winter Term 2018/2019

Professor Dr. Jens Vygen
Rudolf Scheifele

Programming Exercise 2

Exercise P.2. Task: Implement the Undirected Minimum Mean-Weight
Cycle Algorithm from Exercise 7.3.

Usage: Your program should be named min_mean_cycle, and it should be called
as follows:

min_mean_cycle input_graph output_graph

Input: The arguments input_graph and output_graph are mandatory, i.e. your
program should exit with an error message if they are not present. Here, the
file input_graph encodes the input graph for which your program should find
a minimum mean-weight cycle, and you should write the cycle you found (and
nothing else) to output_graph (see Output below).

The file input_graph is given in DIMACS format, which is used to encode undi-
rected graphs as follows: All lines beginning with a c are comments. Now, ignoring
any comment lines, to encode a graph G, the first line has the format

p edge n m

where n = |V (G)| and m = |E(G)|. From this, V (G) is implicitly identified with
{1, . . . , n}. Note that vertex indices start with 1 in the DIMACS format. The
following m lines have the format

e i j c

representing that {i, j} ∈ E(G) with weight c ∈ Z. You can assume that n, m and
every edge weight c fit into an integer on the machine to be used for evaluation.

Output: Your program should return a minimum mean-weight cycle C in G by
writing the complete DIMACS encoding (including edge weights) of the subgraph
(V (G), E(C)) to the file output_graph (and nothing else). Note that the vertex
set of your output graph should be V (G) (not V (C)). In particular, your program
should be able to read in output_graph as an input graph file again. If G is
acyclic, then, as a convention, write the DIMACS encoding of the graph (V (G), ∅)
to output_graph.

Your submission: Your program must be written in C or C++, although the
use of C++ is strongly encouraged. Program compilation and evaluation will be

Combinatorial Optimization
Winter Term 2018/2019

Professor Dr. Jens Vygen
Rudolf Scheifele

performed on Linux. Your program will be compiled with gcc-4.8.5 or gcc-7.3.0
using C++11 with the options -pedantic -Wall -Wextra -Werror enabled, i.e.
all warnings are enabled and each remaining warning will lead to compilation
failure. The default gcc version to be used is gcc-7.3.0, but you may also explicitly
request gcc-4.8.5 to be used for compilation. The standard library can be used as
well as a provided library for solving the Minimum Weight Perfect Matching
Problem (see Help below). Other libraries are not allowed. Your submission
must contain a bash script compile.sh which compiles your program (which for
example may just call gcc or make directly using the mandatory compile options
listed above). Since you will be linking against the library for solving the Minimum
Weight Perfect Matching Problem, you should also provide a copy of the
library located at the correct relative path with your submission. To achieve this,
your submission should consist of a single archive file in the .zip, .tar.gz or .tar.bz2
format with the correct directory structure.

Algorithm evaluation: The algorithm is to be implemented as described in the
exercise description.

Code evaluation: Your code must implement the Undirected Minimum Mean-
Weight Cycle Algorithm correctly. Running time in practice will also be
evaluated, as well as the elegance, cleanness and organization of your code. Make
sure to add good documentation and give the variables, functions and types mean-
ingful names that make their role clear. Break your complicated functions into
small simple ones, break your program into a few units etc. Of course, your pro-
gram should not trigger undefined behavior. In particular, your program should
be valgrind-clean, i.e. it should not leak memory and should not perform invalid
operations on memory.

Help: The website for the exercise class contains a set of test instances for testing
your code. Moreover, a solver for the Minimum Weight Perfect Matching
Problem with example code for calling it is provided. Included is also a file
README that contains further important information. If you wish, you can also use
the graph class from Programming Exercise 1 (but you have to extend it to store
edge weights).

(20 points)

Deadline: Friday, December 21, 23:59, via email to scheifele@or.uni-bonn.de.
The websites for the lecture with all exercises and test instances can be found at:

http://www.or.uni-bonn.de/lectures/ws18/coex.html

mailto:scheifele@or.uni-bonn.de
http://www.or.uni-bonn.de/lectures/ws18/coex.html

