Exercise Set 12

Exercise 12.1. Let $f: 2^{U} \rightarrow \mathbb{R}$ be a submodular function with $f(\emptyset)=0$, and let $B(f)$ denote its base polyhedron. Prove that

$$
\begin{aligned}
& \min \{f(X): X \subseteq U\} \\
& =\max \left\{\sum_{u \in U} z_{u}: z \in \mathbb{R}^{U} \text { with } \sum_{u \in A} z_{u} \leq \min \{0, f(A)\} \text { for all } A \subseteq U\right\} \\
& =\max \left\{\sum_{u \in U} \min \left\{0, y_{u}\right\}: y \in B(f)\right\} .
\end{aligned}
$$

Exercise 12.2. Consider the Simple Submodular Function Maximization Algorithm where the randomized step is replaced by setting $A:=A \cup\{i\}$ if $\Delta_{A} \geq \Delta_{B}$ and $B:=B \backslash\{i\}$ otherwise. Show that this algorithm is a 3 -approximation algorithm.
(5 points)
Exercise 12.3. Let $0<\epsilon<\frac{1}{2}$ be fixed and $n \in \mathbb{N}$ even with $\epsilon n \in \mathbb{N}$. Let $U=$ $\{1, \ldots, n\}$. For any $C \subset U$ with $2|C|=|U|$ consider the functions $g, f_{C}: 2^{U} \rightarrow \mathbb{Z}_{+}$ defined as follows: For $S \subseteq U$ let $k:=|S \cap C|$ and $l:=|S \backslash C|$, and let $g(S):=$ $|S||U \backslash S|$ and $f_{C}(S):=g(S)$ if $|k-l| \leq \epsilon n$ and $f_{C}(S):=n|S|-4 k l+\epsilon^{2} n^{2}-2 \epsilon n|k-l|$ if $|k-l| \geq \epsilon n$.
(i) Show that the two definitions of $f_{C}(S)$ coincide if $|k-l|=\epsilon n$.
(ii) Show that g and f_{C} are submodular. Hint: Use Exercise 10.4.
(iii) Observe that an algorithm is likely to need exponentially many oracle calls to find out which of these functions (g or f_{C} for some C) is the input.
(iv) Show that the maximum values of g and any f_{C} differ by a factor more than $2(1-2 \epsilon)$.

$$
\left(3+3+\text { Bonus* }^{*}+4 \text { points }\right)
$$

[^0]Information: Submissions in groups of up to two students are allowed.

Deadline: Tuesday, January 22, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws18/coex.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de.

[^0]: * Bonus points given for (iii) make up for points missing in (i) (ii) and (iv).

