Exercise Set 9

Exercise 9.1. Let $\lambda_{i j}, 1 \leq i, j \leq n$, be nonnegative numbers with $\lambda_{i j}=\lambda_{j i}$ and $\lambda_{i k} \geq \min \left\{\lambda_{i j}, \lambda_{j k}\right\}$ for any three distinct indices $i, j, k \in\{1, \ldots, n\}$. Show that there exists a graph G with $V(G)=\{1, \ldots, n\}$ and capacities $u: E(G) \rightarrow \mathbb{R}_{+}$such that the local edge-connectivities are precisely the $\lambda_{i j}$.

Hint: Consider a maximum weight spanning tree in $\left(K_{n}, c\right)$, where $c(\{i, j\}):=\lambda_{i j}$.

Exercise 9.2. Let G be an undirected graph and $T \subseteq V(G)$ with $|T|=2 k$ even. Prove that the minimum cardinality of a T-cut in G equals the maximum of $\min _{i=1}^{k} \lambda_{s_{i}, t_{i}}$ over all pairings $T=\left\{s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right\}$, where $\lambda_{s, t}$ denotes the maximum number of pairwise edge-disjoint s - t-paths.
(5 points)

Information: Submissions in groups of up to two students are allowed.

Deadline: Tuesday, December 18, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws18/coex.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de.

