## Exercise Set 8

Exercise 8.1. Describe a set of instances of the Metric TSP for which Christofides' Algorithm returns a tour whose length is arbitrarily close to $\frac{3}{2}$ times the optimum.
(4 points)
Exercise 8.2. For an undirected graph $G$, let $P_{G}$ denote the spanning-tree polytope of $G$ and
$Q_{G}:=\left\{x \in[0,1]^{E(G)}: \sum_{e \in E(G)} x_{e}=|V(G)|-1, \sum_{e \in \delta(X)} x_{e} \geq 1\right.$ for $\left.\emptyset \neq X \nsubseteq V(G)\right\}$.
Prove:
(i) $P_{G} \subseteq Q_{G}$ for every graph $G$.
(ii) There exists a graph $G$ with $P_{G} \neq Q_{G}$.

$$
(2+2 \text { points })
$$

Exercise 8.3. Let $G$ be a 2-edge-connected graph, and let $T:=\{v \in V(G)$ : $|\delta(v)|$ odd $\}$.
(i) Prove that $x \in \mathbb{R}^{E(G)}$ with $x_{e}=\frac{1}{3}$ for all $e \in E(G)$ is a convex combination of incidence vectors of $T$-joins.
(ii) Show that a connected Eulerian subgraph $H$ of $2 G$ with $V(H)=V(G)$ and $|E(H)| \leq \frac{2}{3}(|V(G)|+|E(G)|-1)$ can be computed in polynomial time.

$$
(4+3 \text { points })
$$

Information: Submissions in groups of up to two students are allowed.

Deadline: Tuesday, December 11, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws18/coex.html
In case of any questions feel free to contact me at scheifele@or.uni-bonn.de.

