Exercise Set 8

Exercise 8.1. Describe a set of instances of the METRIC TSP for which Christofides' Algorithm returns a tour whose length is arbitrarily close to $\frac{3}{2}$ times the optimum.

(4 points)

Exercise 8.2. For an undirected graph G, let P_G denote the spanning-tree polytope of G and

$$Q_G := \left\{ x \in [0,1]^{E(G)} : \sum_{e \in E(G)} x_e = |V(G)| - 1 , \sum_{e \in \delta(X)} x_e \ge 1 \text{ for } \emptyset \neq X \subsetneq V(G) \right\}.$$

Prove:

- (i) $P_G \subseteq Q_G$ for every graph G.
- (ii) There exists a graph G with $P_G \neq Q_G$.

(2+2 points)

Exercise 8.3. Let G be a 2-edge-connected graph, and let $T := \{v \in V(G) : |\delta(v)| \text{ odd}\}.$

- (i) Prove that $x \in \mathbb{R}^{E(G)}$ with $x_e = \frac{1}{3}$ for all $e \in E(G)$ is a convex combination of incidence vectors of T-joins.
- (ii) Show that a connected Eulerian subgraph H of 2G with V(H) = V(G) and $|E(H)| \le \frac{2}{3} \left(|V(G)| + |E(G)| 1 \right)$ can be computed in polynomial time.

(4 + 3 points)

Information: Submissions in groups of up to two students are allowed.

Deadline: Tuesday, December 11, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ws18/coex.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de.