Exercise Set 7

Exercise 7.1. Given an undirected graph G and disjoint sets $S_{e}, S_{o} \subseteq V(G)$, a partial $\left(S_{e}, S_{o}\right)$-join is a set $J \subseteq E(G)$ such that $|\delta(v) \cap J|$ is even for every $v \in S_{e}$ and odd for every $v \in S_{o}$. (In particular, a T-join is the same as a partial $(V(G) \backslash T, T)$-join.) Consider the Minimum Weight Partial (S_{e}, S_{o})Join Problem: Given an undirected graph G with edge-weights $c: E(G) \rightarrow \mathbb{R}_{\geq 0}$ and disjoint sets $S_{e}, S_{o} \subseteq V(G)$, find a partial (S_{e}, S_{o})-join of minimum weight, or determine that none exists. Show that this problem can be linearly reduced to the Minimum Weight T-Join Problem.

Exercise 7.2. Let G be a graph and $T \subseteq V(G)$ with $|T|$ even. Prove:
(i) A set $F \subseteq E(G)$ intersects every T-join if and only if it contains a T-cut.
(ii) A set $F \subseteq E(G)$ intersects every T-cut if and only if it contains a T-join.

$$
(2+2 \text { points })
$$

Exercise 7.3. The Undirected Minimum Mean-Weight Cycle Problem is the following: Given an undirected graph G with edge-weights $c: E(G) \rightarrow \mathbb{R}$, find a cycle C whose mean-weight $c(E(C)) /|E(C)|$ is minimum, or determine that G is acyclic. Consider the following algorithm for the Undirected Minimum Mean-Weight Cycle Problem: First determine with a linear search whether G has cycles or not, and if not return with this information. Let $\gamma:=\max \{c(e)$: $e \in E(G)\}$ and define a new edge-weight function via $c^{\prime}(e):=c(e)-\gamma$. Let $T:=\emptyset$. Now iterate the following: Find a minimum c^{\prime}-weight T-join J with a polynomial (black-box) algorithm. If $c^{\prime}(J)=0$, return any zero- c^{\prime}-weight cycle. Otherwise, let $\gamma^{\prime}:=c^{\prime}(J) /|J|$, reset c^{\prime} via $c^{\prime}(e) \leftarrow c^{\prime}(e)-\gamma^{\prime}$, and continue.

Show that this algorithm works correctly and runs in polynomial time. Also, explain how to the get the cycle to be returned in the case $c^{\prime}(J)=0$.
(6 points)

Exercise 7.4. Consider the metric $s-t$ path TSP: Given an instance of Metric TSP and two vertices s and t, we look for a Hamiltonian $s-t$ path of minimum weight. Describe a $\frac{5}{3}$-factor approximation algorithm, generalizing Christofides' Algorithm.

Information: Submissions in groups of up to two students are allowed.

Deadline: Tuesday, December 4, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws18/coex.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de.

