Exercise Set 5

Exercise 5.1. Show that $|\Omega| \leq \frac{3}{2}|V(G)|$ holds throughout Edmonds' Minimum Weight Perfect Matching Algorithm.

Exercise 5.2. Consider the Minimum Cost Edge Cover Problem: Given a graph G with weights $c: E(G) \rightarrow \mathbb{R}_{\geq 0}$, find an edge cover $F \subseteq E(G)$ that minimizes $\sum_{e \in F} c(e)$. Show that the Minimum Cost Edge Cover Problem can be solved in polynomial time.

Exercise 5.3. Let $G=(V, E)$ be an undirected graph and P be the polytope defined by

$$
P=\left\{x \in \mathbb{R}^{E}: x_{e} \geq 0(e \in E), \sum_{e \in \delta(v)} x_{e}=1(v \in V)\right\} .
$$

Prove that a vector $x \in P$ is a vertex of P if and only if there exist vertex-disjoint odd circuits C_{1}, \ldots, C_{k} and a perfect matching M in $G-\left(V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k}\right)\right)$ such that

$$
x_{e}= \begin{cases}\frac{1}{2} & \text { if } e \in E\left(C_{1}\right) \cup \ldots \cup E\left(C_{k}\right), \\ 1 & \text { if } e \in M, \\ 0 & \text { otherwise }\end{cases}
$$

Information: Submissions in groups of up to two students are allowed.

Deadline: Tuesday, November 20, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws18/coex.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de.

