Exercise Set 2

Exercise 2.1. Let G be a bipartite graph with bipartition $V(G) = A \cup B$, $A = \{a_1, \ldots, a_k\}, B = \{b_1, \ldots, b_k\}$. For any vector $x = (x_e)_{e \in E(G)}$ we define the matrix $M_G(x) = (m_{ij}^x)_{1 \leq i,j \leq k}$ by

$$m_{ij}^x := \begin{cases} x_e & \text{if } e = \{a_i, b_j\} \in E(G), \\ 0 & \text{otherwise.} \end{cases}$$

Its determinant det $M_G(x)$ is a polynomial in $x = (x_e)_{e \in E(G)}$. Prove that G has a perfect matching if and only if det $M_G(x)$ is not identically zero.

(4 points)

Exercise 2.2. Let G be a bipartite graph.

- (a) Let $V(G) = A \cup B$ be a bipartition of G. If $A' \subseteq A$ and $B' \subseteq B$, and there are a matching $M_{A'}$ covering A' and a matching $M_{B'}$ covering B', show that there must be a matching that covers $A' \cup B'$.
- (b) Suppose that for every non-empty $E' \subseteq E(G)$ we have $\tau(G E') < \tau(G)$. Show that E(G) is a matching in G.

(3+1 points)

Exercise 2.3. Let G be a graph and M a matching in G that is not maximum. In this exercise we use the terminology $disjoint \ subgraphs/paths/circuits$ and mean it quite literally: Two subgraphs are disjoint if they have no edges and no vertices in common. (Note that the term vertex-disjoint paths is often used to mean that two paths have no inner-vertices in common, but possibly endpoints.)

- (i) Show that there are $\nu(G) |M|$ disjoint M-augmenting paths in G.
- (ii) Show the existence of an M-augmenting path of length at most $\frac{\nu(G)+|M|}{\nu(G)-|M|}$.
- (iii) Let P be a shortest M-augmenting path in G and P' an $(M\Delta E(P))$ -augmenting path. Prove $|E(P')| \ge |E(P)| + 2 \cdot |E(P)| \cap |E(P')|$.

Consider the following algorithm: We start with the empty matching and in each iteration augment the matching along a shortest augmenting path. Let P_1, P_2, \ldots be the sequence of augmenting paths chosen.

- (iv) Show that if $|E(P_i)| = |E(P_i)|$ for $i \neq j$, then P_i and P_j are disjoint.
- (v) Show that the sequence $|E(P_1)|, |E(P_2)|, \ldots$ contains less than $2\sqrt{\nu(G)} + 1$ different numbers.

From now on, let G be bipartite and set n := |V(G)| and m := |E(G)|.

(vi) Given a non-maximum matching M in G show that we can find in O(n+m)time a family \mathcal{P} of disjoint shortest M-augmenting paths such that if M' is
the matching obtained by augmenting M over every path in \mathcal{P} , then

$$\min\{|E(P)|: P \text{ is an } M'\text{-augmenting path}\}\$$
 $> \min\{|E(P)|: P \text{ is an } M\text{-augmenting path}\}\$

(vii) Describe an algorithm with runtime $O(\sqrt{n}(m+n))$ that solves the CARDI-NALITY MATCHING PROBLEM in bipartite graphs.

$$(1+1+2+2+2+3+1=12 \text{ points})$$

Information: Submissions in groups of up to two students are allowed.

Deadline: October 25, before the lecture. The websites for lecture and exercises can be found at:

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de.