Exercise Set 2

Exercise 2.1. Let G be a bipartite graph with bipartition $V(G)=A \cup B$, $A=\left\{a_{1}, \ldots, a_{k}\right\}, B=\left\{b_{1}, \ldots, b_{k}\right\}$. For any vector $x=\left(x_{e}\right)_{e \in E(G)}$ we define the matrix $M_{G}(x)=\left(m_{i j}^{x}\right)_{1 \leq i, j \leq k}$ by

$$
m_{i j}^{x}:= \begin{cases}x_{e} & \text { if } e=\left\{a_{i}, b_{j}\right\} \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$

Its determinant $\operatorname{det} M_{G}(x)$ is a polynomial in $x=\left(x_{e}\right)_{e \in E(G)}$. Prove that G has a perfect matching if and only if $\operatorname{det} M_{G}(x)$ is not identically zero.

Exercise 2.2. Let G be a bipartite graph.
(a) Let $V(G)=A \dot{\cup} B$ be a bipartition of G.

If $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$, and there are a matching $M_{A^{\prime}}$ covering A^{\prime} and a matching $M_{B^{\prime}}$ covering B^{\prime}, show that there must be a matching that covers $A^{\prime} \cup B^{\prime}$.
(b) Suppose that for every non-empty $E^{\prime} \subseteq E(G)$ we have $\tau\left(G-E^{\prime}\right)<\tau(G)$. Show that $E(G)$ is a matching in G.

Exercise 2.3. Let G be a graph and M a matching in G that is not maximum. In this exercise we use the terminology disjoint subgraphs/paths/circuits and mean it quite literally: Two subgraphs are disjoint if they have no edges and no vertices in common. (Note that the term vertex-disjoint paths is often used to mean that two paths have no inner-vertices in common, but possibly endpoints.)
(i) Show that there are $\nu(G)-|M|$ disjoint M-augmenting paths in G.
(ii) Show the existence of an M-augmenting path of length at most $\frac{\nu(G)+|M|}{\nu(G)-|M|}$.
(iii) Let P be a shortest M-augmenting path in G and P^{\prime} an $(M \Delta E(P)$)-augmenting path. Prove $\left|E\left(P^{\prime}\right)\right| \geq|E(P)|+2 \cdot\left|E(P) \cap E\left(P^{\prime}\right)\right|$.

Consider the following algorithm: We start with the empty matching and in each iteration augment the matching along a shortest augmenting path. Let P_{1}, P_{2}, \ldots be the sequence of augmenting paths chosen.
(iv) Show that if $\left|E\left(P_{i}\right)\right|=\left|E\left(P_{j}\right)\right|$ for $i \neq j$, then P_{i} and P_{j} are disjoint.
(v) Show that the sequence $\left|E\left(P_{1}\right)\right|,\left|E\left(P_{2}\right)\right|, \ldots$ contains less than $2 \sqrt{\nu(G)}+1$ different numbers.

From now on, let G be bipartite and set $n:=|V(G)|$ and $m:=|E(G)|$.
(vi) Given a non-maximum matching M in G show that we can find in $O(n+m)$ time a family \mathcal{P} of disjoint shortest M-augmenting paths such that if M^{\prime} is the matching obtained by augmenting M over every path in \mathcal{P}, then

$$
\begin{aligned}
\min \left\{|E(P)|: P \text { is an } M^{\prime}\right. & \text {-augmenting path }\} \\
& \quad>\min \{|E(P)|: P \text { is an } M \text {-augmenting path }\}
\end{aligned}
$$

(vii) Describe an algorithm with runtime $O(\sqrt{n}(m+n))$ that solves the CARDInality Matching Problem in bipartite graphs.

$$
(1+1+2+2+2+3+1=12 \text { points })
$$

Information: Submissions in groups of up to two students are allowed.

Deadline: October 25, before the lecture. The websites for lecture and exercises can be found at:
http://www.or.uni-bonn.de/lectures/ws18/coex.html

In case of any questions feel free to contact me at scheifele@or.uni-bonn.de.

