Linear and Integer Optimization

Exercise Sheet 9

Exercise 9.1: Use the ELLIPSOID ALGORITHM to show that a given feasible and bounded linear program $\max\{c^t x \mid Ax \leq b\}$ with $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ and $c \in \mathbb{Q}^n$ can be solved in time $O((m+n)^9(\operatorname{size}(A) + \operatorname{size}(b) + \operatorname{size}(c))^2)$. (5 Points)

Exercise 9.2:

Let G be a simple graph. Show that the following problem can be solved in time polynomial in |V(G)|.

$$\min \sum_{e = \{v,w\} \in E(G)} x_{vw}$$
s.d.
$$\sum_{w \in S} x_{vw} \geq \left\lceil \frac{1}{4} |S|^2 + \frac{1}{2} |S| \right\rceil \quad (v \in V(G), S \subseteq V(G) \setminus \{v\})$$

$$x_{uw} \leq x_{uv} + x_{vw} \quad (u,v,w \in V(G))$$

$$x_{vw} \geq 0 \quad (v \in V(G))$$

$$x_{vv} = 0 \quad (v \in V(G))$$

(This is an LP-relaxation of the OPTIMAL LINEAR ARRANGEMENT PROBLEM: Find an ordering $\{v_1, \ldots, v_{|V(G)|}\} = V(G)$ of the vertices such that $\sum_{\{v_i, v_j\} \in E(G)} |i-j|$ is minimum.) (5 Points)

Exercise 9.3:

Let $K \subseteq \mathbb{R}^n$ be a convex set with $B(0,r) \subseteq K \subseteq B(0,R)$ for some numbers $0 < r \leq \frac{R}{2}$. Assume that you are given an oracle with polynomial running time that computes an optimum solution in K for any linear objective function. Show that there is a separation oracle with polynomial running time for $K^* := \{y \in \mathbb{R}^n \mid y^t x \leq 1 \text{ for all } x \in K\}$. (6 Points)

Submission deadline: Thursday, December 14, 2017, before the lecture (in groups of 2 students).