Exercise 4.1: Let \(P = P(A, b) \) be a polyhedron and \(F \) a minimal face of \(P \). Prove that \(Ax = Ay \) holds for all \(x, y \in F \). (3 Points)

Exercise 4.2: Let \(C \) be a convex cone and \(-C \) the cone \(\{ x : -x \in C \} \). We call \(L = (C \cap -C) \) the **lineality space** of \(C \).

a) Prove that \(\bar{C} := C \cap L^\perp \), where \(L^\perp = \{ u : u^\top x = 0 \ \forall x \in L \} \), is a pointed cone and that \(C \) is the direct sum of its lineality space \(L \) and the pointed cone \(\bar{C} \), i.e.

\[
C = (C \cap L^\perp) \oplus L.
\]

(2 Points)

b) Show that each polyhedron \(P \) has a decomposition \(P = (Q + C) \oplus L \), where \(Q \) is a polytope, \(C \) a pointed cone and \(L \) a linear subspace. (3 Points)

Exercise 4.3: Given two extreme points \(a \) and \(b \) of a polyhedron \(P \), we say that they are **adjacent** on \(P \) if the line segment between them forms an edge (i.e. a face of dimension 1) of \(P \). Prove that \(a \) and \(b \) are adjacent on \(P \) if and only if there exists a cost function \(c \) such that \(a \) and \(b \) are the only two extreme points of \(P \) minimizing \(c^\top x \) over \(P \). (3 Points)

Exercise 4.4: Let \(H = (V, E) \) be a hypergraph, i.e. \(V \) is a finite set of vertices and \(E \subseteq 2^V \). Furthermore, let \(F \subseteq V \) and \(x, y : F \to \mathbb{R} \). Provide an LP formulation for the following problem and dualize the LP:

Determine (an extension) \(x, y : V \setminus F \to \mathbb{R} \) such that

\[
\sum_{v \in E} (\max_{v \in e} x(v) - \min_{v \in e} x(v)) + \max_{v \in e} y(v) - \min_{v \in e} y(v)
\]

is minimized. (5 Points)
Remark: This is a relaxation of the placement problem in chip design. The vertices correspond to connected modules that must be placed minimizing the length of all interconnects (hyperedges). Vertices in F are preplaced. The problem becomes much harder when requiring disjointness of the modules.

Submission deadline: Thursday, November 9, 2017, before the lecture (in groups of 2 students).