Exercise Set 9

Exercise 9.1. Let G be a simple undirected graph such that $|\delta(v)|$ is odd for every $v \in V(G)$. For an edge $e \in E(G)$, let \mathcal{H}_e denote the family of all Hamiltonian cycles in G containing e. Show that $|\mathcal{H}_e|$ is even for every $e \in E(G)$. (4 points)

Exercise 9.2. Let $n \geq 3$ and let $f : V(K_n) \to \mathbb{R}^2$ be an injective function. We define a function $g_f : E(K_n) \to \mathcal{P}(\mathbb{R}^2)$ by mapping an edge $\{u,v\}$ to the open line-segment between $f(u)$ and $f(v)$ (i.e. the line-segment between $f(u)$ and $f(v)$ without its two endpoints). We say that two edges $e,e' \in E(K_n)$ cross (with respect to f) if $g_f(e) \cap g_f(e') \neq \emptyset$.

Given a Hamiltonian tour T in K_n and two edges $e,e' \in E(T)$ which cross, consider the algorithm REMOVECELLING(T,e,e'): Let u,v be the endpoints of e and u',v' be the endpoints of e'. Delete e and e' from T. If $T + \{u,u'\} + \{v,v'\}$ is a Hamiltonian tour, add $\{u,u'\}$ and $\{v,v'\}$ to T. Otherwise add $\{u,v'\}$ and $\{v,u'\}$ to T.

(i) Show that after REMOVECELLING(T,e,e'), T is still a Hamiltonian tour.

Consider the algorithm REMOVEALLCELLINGS(T): While there are edges in T that cross, choose one such pair of edges $e,e' \in E(T)$ and call REMOVECELLING(T,e,e').

(ii) Assuming that in the range of f no three points are colinear (i.e. lie on the same straight-line), show that for any Hamiltonian tour T the algorithm REMOVEALLCELLINGS(T) terminates after $O(n^3)$ calls of REMOVECELLING.

(iii) Give an example (i.e. a choice of n, f and T) such that REMOVEALLCELLINGS(T) does not terminate. (1+4+1 points)
Exercise 9.3. Let \(n \geq 3 \) and consider the complete graph \(K_n \) with an edge-weight function \(c : E(K_n) \to \mathbb{R}_{\geq 0} \). Given a (fixed) partition \((X_1, \ldots, X_k)\) of \(V(K_n) \), we say that \(e \in E(K_n) \) is an *intra-part edge* if \(e \in E(K_n[X_1]) \cup \ldots \cup E(K_n[X_k]) \). Otherwise, i.e. if \(e \in \delta(X_1) \cup \ldots \cup \delta(X_k) \) we say \(e \) is an *inter-part edge*.

Let \((X_1, \ldots, X_k)\) be a partition of \(V(K_n) \) such that every intra-part edge has weight 0.

(i) Show that every optimal solution of the TSP for \((K_n, c)\) uses at most \(k(k-1) \) edges of strictly positive weight.

(ii) Show that there is at least one optimal solution of the TSP for \((K_n, c)\) which uses at most \(k(k-1) \) inter-part edges.

(iii) Show that, using the partition \((X_1, \ldots, X_k)\), we can find an optimal solution of the TSP for \((K_n, c)\) in \(O(n^{2k(k-1)+1}) \)-time.

(1+1+4 points)

Deadline: December 14th, before the lecture. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ws17/co_exercises/exercises.html

In case of any questions feel free to contact me at silvanus@or.uni-bonn.de