
Combinatorial Optimization
Winter Term 2017

Professor Dr. Stefan Hougardy
Jannik Silvanus

Programming Exercise 2

Exercise P.2. Task: Implement the Branch-and-Bound algorithm for the Trav-
eling Salesman Problem by Held and Karp.

Algorithm description: Let (Kn, c) be given, and consider a vector λ ∈ Rn. Define
edge costs cλ by cλ({i, j}) := c({i, j}) + λ(i) + λ(j). Given a 1-tree T , set

c(T, λ) := c(T) +
∑

v∈V (T)
(|δT (v)| − 2) · λ(v).

Now, let Tλ be a min-cλ-cost 1-tree (which also minimizes c(Tλ, λ)), and set

HK(Kn, c, λ) := c(Tλ, λ).

Then HK(Kn, c, λ) is a lower bound on the minimum weight of any tour in (Kn, c),
so HK(Kn, c) := maxλ∈Rn HK(Kn, c, λ) is also a lower bound on the minimum
weight of a tour. In particular, if Tλ is 2-regular, it is an optimum tour. The
idea of the algorithm is to use Branch-and-Bound to compute a 2-regular 1-tree of
minimum cost.

It has been shown in the lecture that we can compute a vector λ that approximately
maximizes HK(Kn, c, λ) using an iterative combinatorial algorithm, c.f. below.

In the Branch-and-Bound algorithm, we maintain an upper bound U on the cost
of a shortest tour, and a set Q of branching nodes to be processed. Each node
in the Branch-and-Bound tree is represented by two disjoint sets of edges (R,F)
which are initially empty, i.e., start with Q = {(∅, ∅)}. The node (R,F) represents
all tours in Kn where all edges in R are required, and all edges in F are forbidden.
Clearly the node (∅, ∅) represents all tours in Kn.
Now, while Q is not empty, select a node (R,F) ∈ Q and set Q := Q \ {(R,F)}.
Compute λ s.t. the weight of a min-cλ-cost 1-tree T with R ⊆ E(T) ⊆ E(Kn) \ F
is approximately maximum and let T be such a 1-tree.
If HK(Kn, c, R, F) := c(T, λ) ≥ U , we know that the node (R,F) does not repre-
sent a solution leading to better cost than U , so we can discard (R,F).
So assume c(T, λ) < U . If T is 2-regular, it is an optimum tour represented by
(R,F), so we can update U . Otherwise, there needs to be a vertex 2 ≤ i ≤ n with
|δT (i)| > 2. We can assume that |δT (i)\ (R∪F)| ≥ 2, because whenever two edges
incident to a vertex v are required, we can forbid all other edges incident to v. Let

Combinatorial Optimization
Winter Term 2017

Professor Dr. Stefan Hougardy
Jannik Silvanus

e1, e2 ∈ δT (i) \ (R ∪ F) be two distinct edges in T incident to i that we have not
yet branched on. Partition (R,F) into the three branching nodes

(R, F ∪ {e1}).
(R ∪ {e1}, F ∪ {e2}),
(R ∪ {e1, e2}, F),

where the last node is omitted if there is already a required edge incident to i, and
add these nodes to Q.
When Q is empty, we know that U equals the cost of a shortest tour in (Kn, c),
and we can return the tour that led to the current value of U .

Usage: Your program should be called as follows:

program_name --instance file.tsp [--solution file.opt.tour]

Input: The first argument, file.tsp, is mandatory (i.e., your program should exit
with an error message if it is not present), and it encodes the graph (Kn, c) for
which your program should find a shortest tour. It is expected to be in TSPLIB
format. The second argument is optional, and if present, an optimum solution
should be written to the specified file. The TSPLIB format allows to encode
arbitrary instances, however, we restrict to instances with rounded Euclidean costs.
In the following, one possible way to parse Euclidean TSPLIB files is sketched.

First, normalize the input by removing all colons (’:’) and replacing consecutive
spaces by a single one. Then, ignore all lines until a line of the form

DIMENSION n

is found, where n is an integer specifying the number of vertices in the instance.
Then, ignore all lines until a line of the form

NODE_COORD_SECTION

is found. The following n lines specify the coordinates of the vertices. Each line
has the form

i x y

where 1 ≤ i ≤ n is the vertex whose coordinates are specified, and x and y are
floating point representations of the coordinates of i. Finally, the file ends with:

EOF

Combinatorial Optimization
Winter Term 2017

Professor Dr. Stefan Hougardy
Jannik Silvanus

Cost function: The cost of an edge between two points is its rounded Euclidean
length, where we round to the nearest integer. The following C++ function com-
putes the distance of two points (x1, y1) and (x2, y2):

int distance(double x1, double y1, double x2, double y2)
{

return std::lround(std::sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2)));
}

Output: Your program should write the cost of a shortest tour in (Kn, c) to stdout.
No other output may be written to stdout / std::cout. If you wish to output
anything in addition (e.g. the current lower bound, upper bound, the number of
branching nodes, runtime, etc.), use stderr / std::cerr. Furthermore, if the
optional argument --solution file.opt.tour is specified, your program should
write an encoding of the found optimum solution to the specified file in TSPLIB
format. A tour is encoded as follows in TSPLIB format. The encoding starts with
a header of the form

TYPE : TOUR
DIMENSION : n
TOUR_SECTION

where n is the number of vertices in the instance. Now, n lines follow, each
consisting of a single integer i with 1 ≤ i ≤ n. These lines specify the order in
which the vertices are visited in an optimum tour. Finally, the encoding ends with
these two lines:

-1
EOF

Combinatorial Optimization
Winter Term 2017

Professor Dr. Stefan Hougardy
Jannik Silvanus

Implementation details: In [1], an effective implementation of the algorithm is
described, which may be helpful. It is recommended to follow [1] as close as
possible for at least the lower bound computation. They also describe heuristics to
find better values of U during the algorithm, which you do not need to implement.
Also, you may start with U =∞, although using a heuristic to determine a better
value of U before the algorithm may lead to better results.

Branching implementation: During branching, there are several choices to be made
that will influence the runtime of the algorithm. Most importantly, it is not spec-
ified how to select the next element (R,F) ∈ Q to be processed. The two most
prominent choices are best-bound and depth-first.
Best-bound always selects a node (R,F) minimizing HK(Kn, c, R, F), i.e., Q is a
priority queue. This approach processes a minimum amount of nodes, but may
take a long time to find good values of U .
Depth-first always processes an element of Q of maximum depth in the branch-
ing tree, i.e., Q is a stack. This approach tends to quickly find feasible solutions
and allows to delay the evaluation of HK(Kn, c, R, F), but may enumerate more
branching nodes. We recommend to use best-bound. Other choices to be made
are the selection of the vertex i to branch on, and the selection of the edges e1 and
e2.

Lower bound implementation: In the lecture, it has been shown that we can find a
vector λ that approximately maximizes HK(Kn, c, λ) by starting with λ0 ≡ 0 and
repeating the following step. In iteration i ≥ 0, compute a min-cλi

-weight 1-tree
Ti and set

λi+1(x) := λi(x) + ti · (|δTi
(x)| − 2), (1)

where the sequence ti converges to 0 and satisfies ∑∞i=0 ti =∞, e.g., ti := 1
i+1 .

In practice, a good choice of the step lengths ti is crucial for the algorithm to com-
pute a good approximation within a bounded number of iterations. In particular,
the step lengths of course should depend on the costs c. In [1], it is proposed to
fix the number of iterations N and the initial step length t0 in advance, and then
letting the ti converge to 0 (e.g., tN = 0) with a constant second order difference

(ti − ti+1)− (ti+1 − ti+2) ≡ const

under the (arbitrary) condition

(t0 − t1) = 3(tN−1 − tN).

Combinatorial Optimization
Winter Term 2017

Professor Dr. Stefan Hougardy
Jannik Silvanus

This can be achieved by defining ∆0 = 3t0
2N and ∆∆ = t0

N2−N , and, for 0 ≤ i ≤ N−1,

ti+1 = ti −∆i,

∆i+1 = ∆i −∆∆.

It remains to choose N and t0. Since the computations for branching nodes (R,F)
that are not the root of the branching tree (i.e., (∅, ∅)) can (and should!) start
with the vector λ of their parent, it is reasonable to use more iterations at the
root node. Hence, [1] propose to use N = dn2

50 e + n + 15 at the root node and
N = dn4 e+ 5 at other nodes. To let λ scale with c, at the root node set t0 = c(T0)

2n ,
where T0 is the 1-tree computed in the first iteration, i.e., a minimum cost 1-tree
of (Kn, c). At other nodes use t0 = 1

2n
∑n
i=1 |λroot(i)|, where λroot is the vector λ

computed at the root node.
Furthermore, Volgenant and Jonker [1] observed oscillating degrees during the
iterations. To dampen these oscillations, for i ≥ 1, they replace (1) by

λi+1(x) = λi(x) + ti ·
(
d · (|δTi

(x)| − 2) + (1− d) · (|δTi−1(x)| − 2)
)

with d = 0.6.
A minimum weight 1-tree can be obtained by starting with a MST on {2, . . . , n}
and adding the two cheapest edges incident to vertex 1. This approach can be ex-
tended to computing a minimum weight (R,F)-1-tree, i.e., a 1-tree T of minimum
weight s.t. R ⊆ E(T) ⊆ E(Kn) \ F : Artificially set the costs of all edges in F to
∞ and add all edges in R first.
Finally, note that since these computations are done using floating point arith-
metic, one must take care of not computing false lower bounds L > OPT (Kn, c),
which can be achieved by multiplying with 1− ε for a small value ε > 0. Moreover,
since all costs are integral, we can round up lower bounds.

Programming language: Your program should be written in C or C++, although
the use of C++ is strongly encouraged. By default, your program will be com-
piled using clang-4.0.0 using C++14. Different compilers or compiler versions are
available upon request. Your program will be compiled using -pedantic -Wall
-Wextra -Werror, i.e., all warnings are enabled and each remaining warning will
lead to compilation failure. Program evaluation will be performed on Linux. The
standard library can be used as you wish, but no other libraries.

Algorithm evaluation: Make sure to implement core steps of the algorithm as
fast as possible. Compute min-weight 1-trees in O(n2) time. Your algorithm
should be able to solve each of the instances berlin52.tsp, st70.tsp, eil76.tsp,
rat99.tsp, rd100.tsp, eil101.tsp and lin105.tsp in at most a few seconds.

Combinatorial Optimization
Winter Term 2017

Professor Dr. Stefan Hougardy
Jannik Silvanus

Code evaluation: The elegance, cleanness and organization of your code will be
evaluated. Make sure to add good documentation and give the variables, functions
and types meaningful names that make their role clear. Break your complicated
functions into small simple ones, break your program into a few units etc. Of
course, your program may not trigger undefined behavior. In particular, your pro-
gram must be valgrind-clean, i.e., must not leak memory and must not perform
invalid operations on memory. Follow the guidelines presented in the first exercise
class, which are still available on the website.

Help: On the website for the exercise classes, which you should visit regularly,
you will find a precise definition of the TSPLIB format and a few instances with
known optima that you can use to test your program.

References

[1] Volgenant, Ton, and Jonker, Roy, A branch and bound algorithm for the sym-
metric traveling salesman problem based on the 1-tree relaxation, European
Journal of Operational Research, 1982.

Please submit your programs in groups of 2 students.
(64 points)

Deadline: January 18th 2018, 14:15, via email to silvanus@or.uni-bonn.de. The
websites for the lecture with all exercises and test instances can be found at:

http://www.or.uni-bonn.de/lectures/ws17/co_exercises/exercises.html

mailto:silvanus@or.uni-bonn.de
http://www.or.uni-bonn.de/lectures/ws17/co_exercises/exercises.html

