Winter term 2016/17 Prof. Dr. Stefan Hougardy Tomás Silveira Salles

Combinatorial Optimization Exercise set 10

Exercise 10.1: Let G be an undirected graph. Given a partition (X_1, \ldots, X_k) of V(G) we define $\delta(X_1, \ldots, X_k) := \delta(X_1) \cup \cdots \cup \delta(X_k)$ (so, in particular, if $\emptyset \neq X \subsetneq V(G)$ we have $\delta(X) = \delta(X, V(G) \setminus X)$). Consider the polytope

$$R_G := \left\{ x : E(G) \to [0,1] : \sum_{e \in E(G)} x(e) = |V(G)| - 1 \text{ and} \right.$$
$$\sum_{e \in \delta(X_1, \dots, X_k)} x(e) \ge k - 1 \text{ for every partition } (X_1, \dots, X_k) \text{ of } V(G) \right\}$$

(Compare this with exercise 7.4.) Show that R_G is the spanning-tree polytope of G. (4 points)

Exercise 10.2: Consider NEAREST NEIGHBOR HEURISTIC: Given an instance (K_n, c) of the TSP with $V(K_n) = \{1, \ldots, n\}$, let $v_1 := 1$. For $i = 2, \ldots, n$: Choose $v_i \in V(K_n) \setminus \{v_1, \ldots, v_{i-1}\}$ such that $c(\{v_{i-1}, v_i\})$ is smallest possible. Return the tour given by the vertex sequence (v_1, \ldots, v_n) . Denote by $opt^{NNH}(K_n, c)$ the shortest possible length of a tour returned by the NEAREST NEIGHBOR HEURISTIC (note that there is some choice involved), and by $opt(K_n, c)$ the length of an optimum tour. Show that the ratio $opt^{NNH}(K_n, c)/opt(K_n, c)$ can be arbitrarily large. (4 points)

Exercise 10.3: As usual, given an instance (K_n, c) of the TSP, denote by $HK(K_n, c)$ the Held-Karp lower bound and by $opt(K_n, c)$ the length of an optimum tour. Show that there are instances (K_n, c) of the METRIC TSP such that the ratio $HK(K_n, c)/opt(K_n, c)$ is arbitrarily close to 3/4. (4 points)

Exercise 10.4: (Updated: A new assumption was added and the points are now bonus points.) Let $n \ge 3$ and $x : E(K_n) \to [0, 1]$. Suppose that for every $v \in V(K_n)$ we have $\sum_{e \in \delta(v)} x_e = 2$ and for every $X \subseteq V(K_n)$ and $F \subseteq \delta(X)$ such that |F| is odd and F is a matching we have

$$\sum_{\in E(K_n[X])\cup F} x_e \le |X| + \frac{|F| - 1}{2}$$

Show that x satisfies all of the 2-matching constraints.

(4 points)

Deadline: Thursday, January 19, 2017, before the lecture.

e