Combinatorial Optimization
Exercise set 9

Exercise 9.1: Given a bipartite graph \(G = (A \cup B, E) \), we say that a \(B \)-half-tour in \(G \) is an edge-progression \(v_1, e_1, v_2, \ldots, v_t, e_t, v_{t+1} \) with \(v_1 = v_{t+1} \in A \) and such that every vertex of \(B \) appears precisely once in the sequence. (Vertices of \(A \) may appear any number of times or not at all, and edges may be repeated. And obviously \(t = 2|B| \).)

Given \(k, n \geq 1 \) let \(K_{k,n} \) be the complete bipartite graph with parts of sizes \(k \) and \(n \), i.e., there is a bipartition \((A_{k,n}, B_{k,n}) \) of \(V(K_{k,n}) \) with \(|A_{k,n}| = k, |B_{k,n}| = n \) and every vertex of \(A_{k,n} \) is connected to every vertex of \(B_{k,n} \). Consider the MINIMUM WEIGHT \(B \)-HALF-TOUR PROBLEM: Given \(k, n \geq 1 \) and an edge-weight function \(c : E(K_{k,n}) \to \mathbb{Q}_{\geq 0} \), find a \(B_{k,n} \)-half-tour in \(K_{k,n} \) of minimum weight. Show that this problem can be solved in time that is polynomial with respect to \(n \) (although exponential with respect to \(k \)).

\(\text{Hint 1:} \) Solve the “simpler” problem in which \(v_1 \) is pre-chosen (given as part of the input).

\(\text{Solving the original problem by solving } k \text{ instances of this “simpler” version is fast enough.} \)

\(\text{Hint 2:} \) Use exercise 8.3 considering the complete graph on \(\{v_1\} \cup B \).

Exercise 9.2: Let \(n \geq 4 \) and \(c : E(K_n) \to \mathbb{R}_{\geq 0} \) be such that \((K_n, c)\) is an instance of the METRIC TSP, and let \(T \) be a tour on \(K_n \). Show that there is a tour \(T' \neq T \) such that

\[|c(T') - c(T)| \leq \frac{2}{n} \cdot c(T) \]

(4 points)

Exercise 9.3: Let \(n \geq 3 \) and \(x : E(K_n) \to [0,1] \) be such that it satisfies all degree constraints of the TSP but not all subtour elimination constraints. Show that there is a non-empty set \(S \subsetneq V(K_n) \) such that

\[\sum_{e \in E(K_n[S])} x_e > |S| - 1 \]

and \(x_e < 1 \) for all \(e \in \delta(S) \).

(4 points)

Exercise 9.4: Consider the ANOTHER HAMILTONIAN CIRCUIT PROBLEM: Given an undirected graph \(G \) and a Hamiltonian circuit \(C \) in \(G \), decide whether there is any other Hamiltonian circuit in \(G \). Show that this problem is NP-complete.

(4 points)

Deadline: Thursday, January 12, 2017, before the lecture.

Note: Again, only hard copies this time. No submissions by e-mail!