Combinatorial Optimization

Exercise set 8

Exercise 8.1: Let G be a simple undirected graph such that $|\delta(v)|$ is odd for every $v \in V(G)$. For an edge $e \in E(G)$, let \mathcal{H}_e denote the family of all Hamiltonian cycles in G containing e. Show that $|\mathcal{H}_e|$ is even for every $e \in E(G)$. (4 points)

Exercise 8.2: Let $n \geq 3$ and let $f : V(K_n) \rightarrow \mathbb{R}^2$ be an injective function. We define a function $g_f : E(K_n) \rightarrow \mathcal{P}(\mathbb{R}^2)$ by mapping an edge $\{u,v\}$ to the open line-segment between $f(u)$ and $f(v)$ (i.e. the line-segment between $f(u)$ and $f(v)$ without its two endpoints). We say that two edges $e,e' \in E(K_n)$ cross (with respect to f) if $g_f(e) \cap g_f(e') \neq \emptyset$.

Given a Hamiltonian tour T in K_n and two edges $e,e' \in E(T)$ which cross, consider the algorithm REMOVE CROSSING(T,e,e'): Let u,v be the endpoints of e and u',v' be the endpoints of e'. Delete e and e' from T. If $T + \{u,u'\} + \{v,v'\}$ is a Hamiltonian tour, add $\{u,u'\}$ and $\{v,v'\}$ to T. Otherwise add $\{u,u'\}$ and $\{v,v'\}$ to T.

(i) Show that after REMOVE CROSSING(T,e,e'), T is still a Hamiltonian tour. (1 point)

Consider the algorithm REMOVE ALL CROSSINGS(T): While there are edges in T that cross, choose one such pair of edges $e,e' \in E(T)$ and call REMOVE CROSSING(T,e,e').

(ii) Assuming that in the range of f no three points are colinear (i.e. lie on the same straight-line), show that for any Hamiltonian tour T the algorithm REMOVE ALL CROSSINGS(T) terminates after $O(n^3)$ calls of REMOVE CROSSING. (4 points)

(iii) Give an example (i.e. a choice of n, f and T) such that REMOVE ALL CROSSINGS(T) does not terminate. (1 point)

Exercise 8.3: Let $n \geq 3$ and consider the complete graph K_n with an edge-weight function $c : E(K_n) \rightarrow \mathbb{Q}_{\geq 0}$. Let $M_1, \ldots , M_k \subseteq V(K_n)$ be disjoint sets such that $M_1 \cup \ldots \cup M_k = V(K_n)$ and

$$\forall i \forall u,v \in M_i \text{ distinct: } c(\{u,v\}) = 0$$

(i) Show that every optimal solution of the TSP for (K_n,c) uses at most $k(k-1)$ edges of strictly positive weight. (2 points)

(ii) Show that there is an edge-weight function $c' : E(K_n) \rightarrow \mathbb{Q}_{\geq 0}$ such that

$$\forall i \forall u,v \in M_i \text{ distinct: } c'(\{u,v\}) = 0$$

and

$$\forall i,j \text{ distinct } \forall u \in M_i \forall v \in M_j : c'(\{u,v\}) > 0$$

and such that every optimum solution of the TSP for (K_n,c') is also an optimum solution of the TSP for (K_n,c). (2 points)

(iii) Show that (using the family M_1, \ldots , M_k) we can find an optimal solution of the TSP for (K_n,c) in $O(n^{2k(k-1)+1})$-time. (3 points)

Deadline: Thursday, December 22, 2016, before the lecture.

Note: Only hard copies this time. No submissions by e-mail!