Winter term 2016/17 Prof. Dr. Stefan Hougardy Tomás Silveira Salles

Combinatorial Optimization Exercise set 8

Exercise 8.1: Let G be a simple undirected graph such that $|\delta(v)|$ is odd for every $v \in V(G)$. For an edge $e \in E(G)$, let \mathcal{H}_e denote the family of all Hamiltonian cycles in G containing e. Show that $|\mathcal{H}_e|$ is even for every $e \in E(G)$. (4 points)

Exercise 8.2: Let $n \geq 3$ and let $f : V(K_n) \to \mathbb{R}^2$ be an injective function. We define a function $g_f : E(K_n) \to \mathcal{P}(\mathbb{R}^2)$ by mapping an edge $\{u, v\}$ to the *open* line-segment between f(u) and f(v) (i.e. the line-segment between f(u) and f(v) without its two endpoints). We say that two edges $e, e' \in E(K_n)$ cross (with respect to f) if $g_f(e) \cap g_f(e') \neq \emptyset$.

Given a Hamiltonian tour T in K_n and two edges $e, e' \in E(T)$ which cross, consider the algorithm REMOVECROSSING(T, e, e'): Let u, v be the endpoints of e and u', v' be the endpoints of e'. Delete e and e' from T. If $T + \{u, u'\} + \{v, v'\}$ is a Hamiltonian tour, add $\{u, u'\}$ and $\{v, v'\}$ to T. Otherwise add $\{u, v'\}$ and $\{v, u'\}$ to T.

(i) Show that after REMOVECROSSING(T, e, e'), T is still a Hamiltonian tour. (1 point)

Consider the algorithm REMOVEALLCROSSINGS(T): While there are edges in T that cross, choose one such pair of edges $e, e' \in E(T)$ and call REMOVECROSSING(T, e, e').

- (ii) Assuming that in the range of f no three points are collinear (i.e. lie on the same straightline), show that for any Hamiltonian tour T the algorithm REMOVEALLCROSSINGS(T) terminates after $O(n^3)$ calls of REMOVECROSSING. (4 points)
- (iii) Give an example (i.e. a choice of n, f and T) such that REMOVEALLCROSSINGS(T) does not terminate. (1 point)

Exercise 8.3: Let $n \geq 3$ and consider the complete graph K_n with an edge-weight function $c: E(K_n) \to \mathbb{Q}_{\geq 0}$. Let $M_1, \ldots, M_k \subseteq V(K_n)$ be disjoint sets such that $M_1 \cup \ldots \cup M_k = V(K_n)$ and

 $\forall i \; \forall u, v \in M_i \text{ distinct: } c(\{u, v\}) = 0$

- (i) Show that every optimal solution of the TSP for (K_n, c) uses at most k(k-1) edges of strictly positive weight. (2 points)
- (ii) Show that there is an edge-weight function $c': E(K_n) \to \mathbb{Q}_{\geq 0}$ such that

 $\forall i \; \forall u, v \in M_i \text{ distinct: } c'(\{u, v\}) = 0$

and

$$\forall i, j \text{ distinct } \forall u \in M_i \,\forall v \in M_j : c'(\{u, v\}) > 0$$

and such that every optimum solution of the TSP for (K_n, c') is also an optimum solution of the TSP for (K_n, c) . (2 points)

(iii) Show that (using the family M_1, \ldots, M_k) we can find an optimal solution of the TSP for (K_n, c) in $O(n^{2k(k-1)+1})$ -time. (3 points)

Deadline: Thursday, December 22, 2016, before the lecture. **Note: Only hard copies this time. No submissions by e-mail!**