Winter term 2016/17 Prof. Dr. Stefan Hougardy Tomás Silveira Salles

Combinatorial Optimization Exercise set 4

Exercise 4.1: (Infinite counter-example to Hall's Theorem) Find a countably infinite bipartite graph $G = (A \dot{\cup} B, E)$ with $|N(X)| \geq |X|$ for every $X \subseteq A$, such that there is no matching covering A in G. (2 points)

Exercise 4.2: Let $S = \{1, \ldots, n\}$ for some $n \ge 1$.

(i) Suppose $0 \le k \le n-1$ and consider the bipartite graph $G = (A \cup B, E)$ where

$$A := \{X \subseteq S : |X| = k\}$$

$$B := \{Y \subseteq S : |Y| = k + 1\}$$

$$E := \{\{X, Y\} : X \in A, Y \in B, X \subseteq Y\}$$

Show that there is a matching covering A if k < n/2, and that there is a matching covering B if k > n/2 - 1. (1 point)

(ii) Suppose \mathcal{F} is a family of subsets of S with the property that no element of \mathcal{F} is contained in another element of \mathcal{F} . Show that:

$$|\mathcal{F}| \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$$

and that this bound is tight (for every n).

Exercise 4.3: Consider the BOTTLENECK MATCHING PROBLEM: Given an undirected graph G with edge weights $c : E(G) \to \mathbb{R}$, find a perfect matching M (if one exists) minimizing $\max\{c(e) : e \in M\}$. Show how to solve the BOTTLENECK MATCHING PROBLEM in $O(nm \log n)$ -time. (4 points)

Exercise 4.4: (Cancelled!) Let G be a bipartite graph with edge weights $c : E(G) \to \mathbb{R}$, let $k \in \mathbb{N}$ and let M be a matching in G with |M| = k that has minimum weight among all matchings in G that contain exactly k edges. Let P be an M-augmenting path with minimum $\langle \text{weight} \rangle$ (wrong, should be "gain") among all M-augmenting paths and finally let $M' := M\Delta E(P)$. Show that M' has minimum weight among all matchings in G that contain exactly k + 1 edges. (4 points)

Exercise 4.5: Let G be a graph with edge weights $c : E(G) \to \mathbb{R}_{\geq 0}$. Let $\nu(G, c)$ denote the maximum weight of a matching in G. Suppose M is a matching in G for which there is no 2-augmentation with strictly positive gain. Show that

$$c(M) \ge \frac{2}{3}\,\nu(G,c)$$

(2 points)

(3 points)

Note on exercise 4.5: In the printed version you got I mistakenly wrote "bipartite graph". The assumption that G is bipartite is unnecessary, and probably does not make the solution any easier.

Deadline: Thursday, November 17, 2016, before the lecture.