Winter term 2016/17 Prof. Dr. Stefan Hougardy Tomás Silveira Salles

Combinatorial Optimization Exercise set 1

Exercise 1.1:

- (i) Let G be a graph and suppose M_1 and M_2 are maximal matchings in G. Show that $|M_1| \le 2 \cdot |M_2|$. (2 points)
- (ii) Let G be a bipartite graph and suppose that for every non-empty $E' \subseteq E(G)$ we have $\tau(G E') < \tau(G)$. Show that E(G) is a matching in G. (2 points)

Exercise 1.2: Let G be a bipartite graph and let $V(G) = A \cup B$ be a bipartition of G. If $A' \subseteq A$ and $B' \subseteq B$, and there are a matching $M_{A'}$ covering A' and a matching $M_{B'}$ covering B', show that there must be a matching covering $A' \cup B'$. (4 points)

Exercise 1.3: An edge of an undirected graph G is called *unmatchable* if it is not contained in any perfect matching of G. Show that the set of unmatchable edges of an undirected graph can be found in $O(n^3)$ -time. (4 points)

Special deadline only for exercise 1.3: Thursday, November 3, 2016.

Exercise 1.4:

- (i) Let G be a 3-regular undirected graph. Show that there is a matching in G covering at least $(7/8) \cdot |V(G)|$ vertices. (3 points)
- (ii) Give an example to prove that the bound of the previous item is tight. (1 points)

Deadline: Thursday, October 27, 2016, before the lecture.