Exercise 1.1:

(i) Let \(G \) be a graph and suppose \(M_1 \) and \(M_2 \) are maximal matchings in \(G \). Show that \(|M_1| \leq 2 \cdot |M_2| \). (2 points)

(ii) Let \(G \) be a bipartite graph and suppose that for every non-empty \(E' \subseteq E(G) \) we have \(\tau(G - E') < \tau(G) \). Show that \(E(G) \) is a matching in \(G \). (2 points)

Exercise 1.2: Let \(G \) be a bipartite graph and let \(V(G) = A \cup B \) be a bipartition of \(G \). If \(A' \subseteq A \) and \(B' \subseteq B \), and there are a matching \(M_{A'} \) covering \(A' \) and a matching \(M_{B'} \) covering \(B' \), show that there must be a matching covering \(A' \cup B' \). (4 points)

Exercise 1.3: An edge of an undirected graph \(G \) is called unmatchable if it is not contained in any perfect matching of \(G \). Show that the set of unmatchable edges of an undirected graph can be found in \(O(n^3) \)-time. (4 points)

Special deadline only for exercise 1.3: Thursday, November 3, 2016.

Exercise 1.4:

(i) Let \(G \) be a 3-regular undirected graph. Show that there is a matching in \(G \) covering at least \((7/8) \cdot |V(G)| \) vertices. (3 points)

(ii) Give an example to prove that the bound of the previous item is tight. (1 points)

Deadline: Thursday, October 27, 2016, before the lecture.