Winter term 2015/16 Dr. U. Brenner

Linear and Integer Optimization Assignment Sheet 11

- 1. Assume that you are given a polynomial-time algorithm \mathcal{A} that computes for any feasible and bounded linear program $\max\{c^t x \mid Ax \leq b\}$ with $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ and $c \in \mathbb{Q}^n$ an optimum solution.
 - (a) Show how to use \mathcal{A} to compute in polynomial time an optimum solution x^* of $\max\{c^t x \mid Ax \leq b\}$ such that x^* is contained in a minimal face of the polyhedron $\{x \in \mathbb{R}^n \mid Ax \leq b\}$ (where we again assume that the problem is feasible and bounded).
 - (b) Use \mathcal{A} to find in polynomial running time an optimum solution of $\max\{c^t x \mid x \in P \cap \mathbb{Z}^n\}$ for a given non-empty integral polyhedron $P \subseteq \mathbb{R}^n$ for which the maximum is bounded. (4+5 points)
- 2. Prove that a polyhedral cone is rational if and only if it is generated by a finite number of integral vectors. Conclude that $C_I = C$ for any rational cone C. (6 points)
- 3. Let $a = (a_1, \ldots, a_n) \in (\mathbb{N} \setminus \{0\})^n$ be a vector and β a rational number. Prove that $a^t x \leq \beta$ is TDI if and only if the greatest common divisor of a_1, \ldots, a_n is 1 (4 points)
- 4. (a) Show that the systems

$$\left(\begin{array}{rrr}1 & 1\\1 & 0\\1 & -1\end{array}\right)\left(\begin{array}{r}x_1\\x_2\end{array}\right) \le \left(\begin{array}{r}0\\0\\0\end{array}\right)$$

and

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \le \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

define the same polyhedron. Prove that the first system is TDI while the second one is not TDI.

(b) Prove or disprove the following statement: If $Ax \leq b$ (with $A \in \mathbb{Q}^{m \times n}$ and $b \in \mathbb{Q}^m$) is TDI and $\alpha \in \mathbb{Q}_{>0}$, then $\alpha Ax \leq \alpha b$ is TDI. (3+3 points)

Due date: Tuesday, January 26, 2016, before the lecture.